首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 856 毫秒
1.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

2.
To reveal the effects of particle characteristics on the mechanisms of flame propagation during organic dust explosions clearly, three long chain monobasic alcohols which are solids at room temperature and have similar physical–chemical properties were chosen to carry out experiments in a half-closed small chamber. A high-speed video camera was used to record the flame propagation process and to obtain the direct light emission photographs. Flame temperature was detected by a fine thermocouple. Based on the experimental results above, analysis was conducted on flame propagation characteristics and temperature profiles of organic particle cloud. As a result, it was found that the particle materials, especially volatility, strongly affected the flame propagation behavior. Particle concentration also affects the combustion zone propagation process significantly. With increasing the particle concentration, the maximum temperature of the combustion zone increases at the lower concentration, reaches a maximum value, and then decreases at the higher concentration. The propagation velocity of the combustion zone has a linear relationship with the maximum temperature, which implies conductive heat transfer is dominant in the flame propagation process of the three different volatile dusts.  相似文献   

3.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

4.
It is important to sufficiently understand the phenomena during the dust explosions in order to take appropriate measures preventing dust explosion accidents. However, at present basic knowledge on flame propagation mechanisms during dust explosions is not enough. In this study, therefore, the flame propagation mechanisms during dust explosions are examined by detailed analyses using a special observation at UV band. Small scale experiments were performed to analyze flame propagating processes in detail. In the experiments, the stearic acid was used as the combustible particle, suspended particles were ignited by an electric spark, and flame propagation through the combustible dust was observed by using a special observation system at UV band. The leading combustion zone is observed to consist of discrete burning blue spot flames by the observation using ordinary photograph system. It is questionable how the leading flame of such discrete structure propagates. In this study, high-speed video images at UV band through a band-pass filter were taken to detect OH emission from combustion reaction zone. Using this method, the propagating flame could be detected clearly and the flame propagation mechanism could be examined in detail. In the conditions performed in this study, discrete flame propagation was not observed and the leading flame was observed to propagate continuously. This result is of importance for understanding the flame propagation phenomena during dust explosion.  相似文献   

5.
Flame regime of gasoline-air mixture explosion is related to chemical reaction, turbulent flow and heat and mass transfer. Experimental data of gas velocity, pressure and flame temperature of gasoline-air mixture explosion in a tube at the equivalence ratio of 0.72, 1.00 and 1.28 were preliminarily acquired. Then, fluctuating velocities, overpressures, and burned and unburned gas temperatures at early stage (50 ms), intermediate stage (150 ms) and last stage (250 ms) in three explosions were determined through the analysis of the experimental data. Finally, the Damköhler number and Reynolds number of the early, intermediate and late stage were calculated respectively, and the flame regimes for each stage were estimated through the Damköhler number vs. Reynolds number diagram. Results show that all the flames at early, intermediate and late stage of the three explosions have the same regime of flamelets-in-eddies. The conclusions can provide some useful references for further study of the flame regime and the numerical analysis model selection of gasoline-air mixture explosion.  相似文献   

6.
Experiments using an open space dust explosion apparatus and a standard 20 L explosion apparatus on nano and micron polymethyl methacrylate dust explosions were conducted to reveal the differences in flame and pressure evolutions. Then the effect of combustion and flame propagation regimes on the explosion overpressure characteristics was discussed. The results showed that the flame propagation behavior, flame temperature distribution and ion current distribution all demonstrated the different flame structures for nano and micron dust explosions. The combustion and flame propagation of 100 nm and 30 μm PMMA dust clouds were mainly controlled by the heat transfer efficiency between the particles and external heat sources. Compared with the cluster diffusion dominant combustion of 30 μm dust flame, the premixed-gas dominant combustion of 100 nm dust flame determined a quicker pyrolysis and combustion reaction rate, a faster flame propagation velocity, a stronger combustion reaction intensity, a quicker heat release rate and a higher amount of released reaction heat, which resulted in an earlier pressure rise, a larger maximum overpressure and a higher explosion hazard class. The complex combustion and propagation regime of agglomerated particles strongly influenced the nano flame propagation and explosion pressure evolution characteristics, and limited the maximum overpressure.  相似文献   

7.
Reaction kinetics is fundamental for modelling the thermal oxidation of a solid phase, in processes such as dust explosions, combustion or gasification. The methodology followed in this study consists in i) the experimental identification of the reaction mechanisms involved in the explosion of organic powders, ii) the proposal of simplified mechanisms of pyrolysis and oxidation, iii) the implementation of the model to assess the explosion severity of organic dusts. Flash pyrolysis and combustion experiments were carried out on starch (22 μm) and cellulose (53 μm) at temperatures ranging from 973 K to 1173 K. The gases generated were collected and analyzed by gas chromatography. In this paper, a semi-global pyrolysis model was developed for reactive systems with low Damköhler number. It is in good agreement with the experimental data and shows that both carbon monoxide and hydrogen are mainly generated during the pyrolysis of the solid, the generation of the latter compound being greatly promoted at high temperature. A simplified combustion model was also proposed by adding two oxidation reactions of the pyrolysis products. In parallel, flame propagation tests were performed in a semi open tube in order to assess the burning velocity of such compounds. The laminar burning velocity of cellulose was determined to be 21 cm s−1. Finally, this model will be integrated to a predictive model of dust explosions and its validation will be based on experimental data obtained using the 20 L explosion sphere. The explosion severity of cellulose was determined and will be used to develop and adjust the predictive model.  相似文献   

8.
To reveal clearly the effects of particle thermal characteristics on flame microstructures during organic dust explosions, three long-chain monobasic alcohols, solid at room temperature and similar in physical-chemical properties, were chosen to conduct experiments in a half-closed chamber. In the experiments, the dust materials were dispersed into the chamber by air to form dust clouds and the hybrids were ignited by an electrical spark. A high-speed optical schlieren system was used to record the flame propagation behaviors. A fine thermocouple and an ion current probe were respectively used to measure the flame temperature profile and the reaction behaviors of the combustion zone. Based on the experimental results, combustion behaviors and flame microstructures in dust clouds with different thermal characteristics were analyzed in detail. As a result, it was found that the dust flame surfaces were completely covered by cellular structures that significantly increased the flame frontal areas. Flame propagated more quickly and the number of the cellular cells increased as increasing the volatility of the particles. On the contrary, maximum temperature and the thickness of the preheated zone decreased as increasing the volatility of the particles. According to the ion current profile, the particles in the preheat zone were pyrolyzed to intermediate radicals and the radicals' fraction in the higher volatile dust flame was higher than that in the lower volatile dust flame.  相似文献   

9.
为探索铝粉尘云燃烧火焰形态和灾变演化,基于改造的竖直开口实验管道,借助高速摄像仪和离子探针,研究火焰结构及变化,分析粒径因素对铝粉火焰前锋形态的影响。实验结果表明:铝粉燃烧能量的释放和空间束缚使燃烧转为爆燃,火焰前锋下方存在大片的燃烧反应区;铝粉粒径越小,颗粒氧化层破裂需要的热应力越小,越容易被点燃;随着铝粉粒径减小,热膨胀对火焰传播速度的影响明显增强。  相似文献   

10.
11.
In this paper, an analytical model has been performed to scrutinize the structure of the flame propagation in counterflow configuration where the mixture of solid fuel particles and air are injected as opposed streams. The structure of counterflow premixed flame in a symmetric configuration, containing uniformly distributed volatile fuel particles, with nonunity Lewis number is examined with considering radiative heat loss effect in counterflow configuration with strain rate issue. The flame structure governing equations, required boundary conditions, and matching conditions are applied for each zone in order to solve the differential equations. The flame position is determined, mass fraction of solid particles and gaseous phases, effect of Lewis number change on the gaseous and solid fuel mass fraction distribution, and the role of strain rate, and different particle diameters are investigated with and without considering thermal radiation effect. In addition, the effect of equivalence ratio on the flame temperature, mixture temperate and non-dimensional flame position is investigated in counterflow flame propagation. According to our finding, the burning velocity of counterflow flame remarkably increases as a function of vaporization Damköhler number as well as non-dimensional vaporization temperature with considering thermal radiation effect in counterflow domain.  相似文献   

12.
Knowledge of the mechanism of combustion zone propagation during dust explosion is of great importance to prevent damage caused by accidental dust explosions. In this study, the temperature profile across the combustion zone propagating through an iron particle cloud is measured experimentally by a thermocouple to elucidate the propagation mechanism. The measured temperature starts to increase slowly at a position about 5 mm ahead of the leading edge of the combustion zone, increases quickly at a position about 3 mm ahead of the leading edge, reaches a maximum value near the end of the combustion zone, and then decreases. As the iron particle concentration increases, the maximum temperature increases at lower concentration, takes a maximum value, and then decreases at higher concentration. The relation between the propagation velocity of the combustion zone and the maximum temperature is also examined. It is found that the propagation velocity has a linear relationship with the maximum temperature. This result suggests that the conductive heat transfer is dominant in the propagation process of the combustion zone through an iron particle cloud.  相似文献   

13.
Dust Explosion Simulation Code (DESC) was a project supported by the European Commission under the Fifth Framework Programme. The main purpose of the project was to develop a simulation tool based on computational fluid dynamics (CFD) that could predict the potential consequences of industrial dust explosions in complex geometries. Partners in the DESC consortium performed experimental work on a wide range of topics related to dust explosions, including dust lifting by flow or shock waves, flame propagation in vertical pipes, dispersion-induced turbulence and flame propagation in closed vessels, dust explosions in closed and vented interconnected vessel systems, and measurements in real process plants. The new CFD code DESC is based on the existing CFD code FLame ACceleration Simulator (FLACS) for gas explosions. The modelling approach adopted in the first version entails the extraction of combustion parameters from pressure–time histories measured in standardized 20-l explosion vessels. The present paper summarizes the main experimental results obtained during the DESC project, with a view to their relevance regarding dust explosion modelling, and describes the modelling of flow and combustion in the first version of the DESC code. Capabilities and limitations of the code are discussed, both in light of its ability to reproduce experimental results, and as a practical tool in the field of dust explosion safety.  相似文献   

14.
This paper presents a 2-dimensional numerical model of Eulerian–Lagrangian multi-phase combustion flow to predict maize starch explosions in a 12 m3 silo. The flow field after ignition, flame propagation velocity and pressure development histories etc. during the explosion, are calculated. The data of non-uniform initial conditions including dust concentration, flow velocity and turbulent RMS velocity in the silo for this model are adopted from Hauert, Vogl and Radandt (1994) [Hauert, F., Vogl, A., Radandt, S. (1994). Measurement of turbulence and dust concentration in silos and vessels. 6th international colloquium on dust explosions (pp. 71–80), Shenyang, China, August 28–September 2, 1994.]. A simple concept of dust granule taking into consideration dust dispersion efficiency is proposed and introduced. The Lagrangian method is used to trace trajectories and granules, so it is easier to consider particle size distribution. The kε model is used to simulate the turbulence of the gas phase, and the particle's pulsation is modeled by random vector wind generated by the surrounding gas. In the combustion model, vaporization of water, volatilization of volatile, gas phase reaction and the particle's surface reaction are taken into account.  相似文献   

15.
Current status and expected future trends in dust explosion research   总被引:4,自引:0,他引:4  
In spite of extensive research and development for more than 100 years to prevent and mitigate dust explosions in the process industries, this hazard continues to threaten industries that manufacture, use and/or handle powders and dusts of combustible materials. Lack of methods for predicting real dust cloud structures and flame propagation processes has been a major obstacle to prediction of course and consequences of dust explosions in practice. However, work at developing comprehensive numerical simulation models for solving these problems is now on its way. This requires detailed experimental and theoretical studies of the physics and chemistry of dust cloud generation and combustion. The present paper discusses how this kind of work will promote the development of means for prevention and mitigation of dust explosions in practice. However, progress in other areas will also be discussed, e.g. ignition prevention. The importance of using inherently safe process design, building on knowledge in powder science and technology, and of systematic education/training of personnel, is also emphasized.  相似文献   

16.
The present study discusses experiments on organic dust explosions in a setup with low wall influence. The proposed apparatus decouples the dust dispersion and the deflagration event in two separate compartments. The use of a continuous-wave laser to illuminate the centre plane of the observation chamber allows capturing both, the dust cloud and the flame during the same experiment and eliminates typical problems caused by the limited dynamic range of high-speed cameras. A k-means clustering method is used for image segmentation to obtain the spatial extent and the propagation velocities of the unreacted particle cloud and the flame zone. Spatially resolved velocities are calculated by the additional use of an optical flow method. The main goal of the presented setup and image processing method is to provide high quality validation data for the development of numerical models on dust deflagration.  相似文献   

17.
This study investigates dust explosions in vessel-pipe systems to develop a better understanding of dust flame propagation between interconnected vessels and implications for the proper application of explosion isolation systems. Cornstarch dust explosions were conducted in a large-scale setup consisting of a vented 8-m3 vessel and an attached pipe with a diameter of 0.4 m and a length of 9.8 m. The ignition location and effective dust reactivity were varied between experiments. The experimental results are compared against previous experiments with initially quiescent propane-air mixtures, demonstrating a significantly higher reactivity of the dust explosions due to elevated initial turbulence, leading to higher peak pressures and faster flame propagation. In addition, a physics-based model developed previously to predict gas explosion dynamics in vessel-pipe systems was extended for dust combustion. The model successfully predicts the pressure transients and flame progress recorded in the experiments and captures the effects of ignition location and effective dust reactivity.  相似文献   

18.
Experiments on the flame propagation of starch dust explosion with the participation of ultrafine Mg(OH)2 in a vertical duct were conducted to reveal the inerting evolution of explosion processes. Combining the dynamic behaviors of flame propagation, the formation law of gaseous combustion products, and the heat dissipation features of solid inert particles, the inerting mechanism of explosion flame propagation is discussed. Results indicate that the ultrafine of Mg(OH)2 powders can cause the agglomeration of suspended dust clouds, which makes the flame combustion reaction zone fragmented and forms multiple small flame regions. The flame reaction zone presents non-homogeneous insufficient combustion, which leads to the obstruction of the explosion flame propagation process and the obvious pulsation propagation phenomenon. As the proportion of ultrafine Mg(OH)2 increases, flame speed, flame luminescence intensity, flame temperature and deflagration pressure all show different degrees of inerting behavior. The addition of ultrafine Mg(OH)2 not only causes partial inerting on the explosion flame, but also the heat dissipation of solid inert particles affects the acceleration of its propagation. The explosion flame propagation is inhibited by the synergistic effect of inert gas-solid phase, which attenuates the risk of starch explosion. The gas-solid synergistic inerting mechanism of starch explosion flame propagation by ultrafine Mg(OH)2 is further revealed.  相似文献   

19.
When aluminum magnesium alloy dust floats in the air, a certain ignition energy can easily cause an accidental explosion. To prevent and control the occurrence of accidental explosions and reduce the severity of accidents, it is necessary to carry out research on the explosion suppression of aluminum magnesium alloy dust. This paper uses a vertical glass tube experimental device and a 20 L spherical explosive experimental device to carry out experimental studies on the suppression of the flame propagation and explosion overpressure of aluminum magnesium alloy dust with melamine polyphosphate (MPP) and Al(OH)3. With increasing MPP and Al(OH)3 concentrations, the flame brightness darkened, the flame velocity and propagation distance gradually decreased, and Pmax and (dp/dt)max decreased significantly. When the amount of MPP added reached 60%, the flame propagation distance decreased to 188 mm, which is a decrease of 68%, and the explosion overpressure decreased to 0.014 MPa, effectively suppressing the explosion of aluminum magnesium alloy dust. The experimental results showed that MPP was more effective than Al(OH)3 in inhibiting the flame propagation and explosion overpressure of the aluminum magnesium alloy dust. Finally, the inhibitory mechanisms of the MPP and Al(OH)3 were further investigated. The MPP and Al(OH)3 endothermic decomposition produced an inert gas, diluted the oxygen concentration and trapped active radicals to terminate the combustion chain reaction.  相似文献   

20.
The hybrid mixture of combustible dusts and flammable gases/vapours widely exist in various industries, including mining, petrochemical, metallurgical, textile and pharmaceutical. It may pose a higher explosion risk than gas/vapor or dust/mist explosions since the hybrid explosions can still be initiated even though both the gas and the dust concentration are lower than their lower explosion limit (LEL) values. Understanding the explosion threat of hybrid mixtures not only contributes to the inherent safety and sustainability of industrial process design, but promotes the efficiency of loss prevention and mitigation. To date, however, there is no test standard with reliable explosion criteria available to determine the safety parameters of all types of hybrid mixture explosions, nor the flame propagation and quenching mechanism or theoretical explanation behind these parameters. This review presents a state-of-the-art overview of the comprehensive understanding of hybrid mixture explosions mainly in an experimental study level; thereby, the main limitations and challenges to be faced are explored. The discussed main contents include the experimental measurement for the safety parameters of hybrid mixtures (i.e., explosion sensitivity and severity parameters) via typical test apparatuses, explosion regime and criterion of hybrid mixtures, the detailed flame propagation/quenching characteristics behind the explosion severities/sensitivities of hybrid mixtures. This work aims to summarize the essential basics of experimental studies, and to provide the perspectives based on the current research gaps to understand the explosion hazards of hybrid mixtures in-depth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号