首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The current work examines regimes of the hydrogen–oxygen flame propagation and ignition of mixtures heated by radiation emitted from the flame. The gaseous phase is assumed to be transparent for the radiation, while the suspended particles of the dust cloud ahead of the flame absorb and reemit the radiation. The radiant heat absorbed by the particles is then lost by conduction to the surrounding unreacted gaseous phase so that the gas phase temperature lags that of the particles. The direct numerical simulations solve the full system of two phase gas dynamic time-dependent equations with a detailed chemical kinetics for a plane flames propagating through a dust cloud. It is shown that depending on the spatial distribution of the dispersed particles and on the value of radiation absorption length the consequence of the radiative preheating of the mixture ahead of the flame can be either the increase of the flame velocity for uniformly dispersed particles or ignition either new deflagration or detonation ahead of the original flame via the Zel'dovich gradient mechanism in the case of a layered particle-gas cloud deposits. In the latter case the ignited combustion regime depends on the radiation absorption length and correspondingly on the steepness of the formed temperature gradient in the preignition zone that can be treated independently of the primary flame. The impact of radiation heat transfer in a particle-laden flame is of paramount importance for better risk assessment and represents a route for understanding of dust explosion origin.  相似文献   

2.
Some results of measurements of laminar burning velocities and of maximum flame temperatures for combustible dust-air mixtures (starch dust-air mixtures, lycopodium-air mixtures and sulphur flour-air mixtures) are presented.Thin (25 and 50 μm) thermocouples have been used to measure maximum flame temperatures. The results are compared with those obtained with other devices such as resistors, pyrometers and are compared to the theoretical values. It appears that the observed discrepancies seem principally to come from the relatively poor efficiency of the burning processes inside the flame front than to heat losses by radiation as suggested before.Two methods for determining laminar burning velocities have been used: the classical ‘tube method’ and a ‘direct method’ based on the simultaneous determination of the flame speed and of the mixture velocity ahead of the flame front using a tomographic technique. Two different tube diameters are considered as well as additional results obtained with a small burner. The validity of these techniques is firstly assessed by comparing the results obtained with CH4-air mixtures and secondly by considering their relevancy for combustible dust-air mixtures (influence of the size of the apparatus). In particular, the influences of heat flame by radiation and of flame stretching are considered.  相似文献   

3.
Behaviors of particles across upward and downward flame propagating through iron particle clouds have been recorded on photomicrographs by using a high-speed video camera with a microscopic optical system. The velocity profiles of iron particles across flames were measured by using the high-speed photomicrographs, and the number density profiles of iron particles near the flames were calculated by using the velocity profiles. It is shown that the number density of iron particles changes in the range of x smaller than 11.0 mm, where x is the distance from the leading edge of the combustion zone. The number density increases with the decrease of x in the range 0<x<11.0 mm, reaches a maximum at leading edge of the combustion zone, and then decreases. For upward propagating flame, the maximum value of the number density is about 3.5 times larger than that at the region far ahead of the flame (x>10.0 mm), however, for downward propagating flame, it is only 2.3 times larger than that at the region far ahead of the flame.  相似文献   

4.
A study of explosions in several elongated cylindrical vessels with length to diameter L/D = 2.4–20.7 and ignition at vessel's bottom is reported. Ethylene–air mixtures with variable concentration between 3.0 and 10.0 vol% and pressures between 0.30 and 1.80 bara were experimentally investigated at ambient initial temperature. For the whole range of ethylene concentration, several characteristic stages of flame propagation were observed. The height and rate of pressure rise in these stages were found to depend on ethylene concentration, on volume and asymmetry ratio L/D of each vessel. High rates of pressure rise were found in the early stage; in later stages lower rates of pressure rise were observed due to the increase of heat losses. The peak explosion pressures and the maximum rates of pressure rise differ strongly from those measured in centrally ignited explosions, in all examined vessels. In elongated vessels, smooth p(t) records have been obtained for the explosions of lean C2H4–air mixtures. In stoichiometric and rich mixtures, pressure oscillations appear even at initial pressures below ambient, resulting in significant overpressures as compared to compact vessels. In the stoichiometric mixture, the frequency of the oscillations was close to the fundamental characteristic frequency of the tube.  相似文献   

5.
A series of six large scale high pressure jet fires were conducted using natural gas and natural gas/hydrogen mixtures. Three tests involved natural gas and three involved a mixture of natural gas and hydrogen containing approximately 24% by volume hydrogen. For each fuel, the three tests involved horizontal releases from 20, 35 and 50 mm diameter holes at a gauge pressure of approximately 60 bar. During the experiments, the flame length and the incident radiation field produced around the fire were measured. The fires also engulfed a 1 m diameter horizontal pipe placed across the flow direction and about halfway along the flame. This pipe was instrumented to measure the heat fluxes to the pipe. The data obtained is compared with previous data obtained for various hydrocarbons at large scale.  相似文献   

6.
Damage caused by the 2005 Buncefield explosion indicates pressures in excess of 2000 mbar over all of the area covered by the vapour cloud. Such high overpressures are normally associated with high (super-sonic) rates of flame spread. On the other hand, evidence from witnesses, building damage analysis and CCTV cameras all suggest the average rate of progress of the explosion flame front was only around 150 m/s.The high overpressures in the cloud and low average rate of flame advance can be reconciled if the rate of flame advance was episodic, with periods of very rapid combustion being punctuated by pauses when the flame advanced very slowly. The widespread high overpressures were caused by the rapid phases of combustion; the low average speed of advance was caused by the pauses.Mechanisms of flame spread through radiative ignition of particulates ahead of the flame front provide possible explanations for such unusual episodic behaviour.The first part of this paper reviews a wide range of empirical evidence on average flame speed and rate of blast pressure increase.The second part explores the theoretical consequences of forward radiation and how the new theory might be developed into a practical means of assessment.  相似文献   

7.
Explosibility studies of hybrid methane/air/cork dust mixtures were carried out in a near-spherical 22.7 L explosibility test chamber, using 2500 J pyrotechnic ignitors. The suspension dust burned as methane/air/dust clouds and the uniformity of the cork dust dispersion inside the chamber was evaluated through optical dust probes and during the explosion the pressure and the temperature evolution inside the reactor were measured. Tested dust particles had mass median diameter of 71.3 μm and the covered dust cloud concentration was up to 550 g/m3. Measured explosions parameters included minimum explosion concentration, maximum explosion pressures and maximum rate of pressure rise. The cork dust explosion behavior in hybrid methane/air mixtures was studied for atmospheres with 1.98 and 3.5% (v/v) of methane. The effect of methane content on the explosions characteristic parameters was evaluated. The conclusion is that the risk and explosion danger rises with the increase of methane concentration characterized by the reduction of the minimum dust explosion concentration, as methane content increases in the atmosphere. The maximum explosion pressure is not very much sensitive to the methane content and only for the system with 3.5% (v/v) of methane it was observed an increase of maximum rate of pressure rise, when compared with the value obtained for the air/dust system.  相似文献   

8.
To avoid the influence of external parameters, such as the vessel volume or the initial turbulence, the explosion severity should be determined from intrinsic properties of the fuel-air mixture. Therefore, the flame propagation of gaseous mixtures is often studied in order to estimate their laminar burning velocity, which is both independent of external factors and a useful input for CFD simulation. Experimentally, this parameter is difficult to evaluate when it comes to dust explosion, due to the inherent turbulence during the dispersion of the cloud. However, the low inertia of nanoparticles allows performing tests at very low turbulence without sedimentation. Knowledge on flame propagation concerning nanoparticles may then be modelled and, under certain conditions, extrapolated to microparticles, for which an experimental measurement is a delicate task. This work focuses on a nanocellulose with primary fiber dimensions of 3 nm width and 70 nm length. A one-dimensional model was developed to estimate the flame velocity of a nanocellulose explosion, based on an existing model already validated for hybrid mixtures of gas and carbonaceous nanopowders similar to soot. Assuming the fast devolatilization of organic nanopowders, the chemical reactions considered are limited to the combustion of the pyrolysis gases. The finite volume method was used to solve the mass and energy balances equations and mass reactions rates constituting the numerical system. Finally, the radiative heat transfer was also considered, highlighting the influence of the total surface area of the particles on the thermal radiation. Flame velocities of nanocellulose from 17.5 to 20.8 cm/s were obtained numerically depending on the radiative heat transfer, which proves a good agreement with the values around 21 cm/s measured experimentally by flame visualization and allows the validation of the model for nanoparticles.  相似文献   

9.
A study of vented explosions in a length over diameter (L/D) of 2 in cylindrical vessel connecting with a vent duct (L/D = 7) is reported. The influence of vent burst pressure and ignition locations on the maximum overpressure and flame speeds at constant vent coefficient, K of 16.4 were investigated to elucidate how these parameters affect the severity of a vented explosion. Propane and methane/air mixtures were studied with equivalence ratio, Φ ranges from 0.8 to 1.6. It is demonstrated that end ignition exhibited higher maximum overpressures and flame speeds in comparison to central ignition, contrary to what is reported in literature. There was a large acceleration of the flame toward the duct due to the development of cellular flames and end ignition demonstrated to have higher flame speeds prior to entry into the vent due to the larger flame distance. The higher vent flow velocities and subsequent flame speeds were responsible for the higher overpressures obtained. Rich mixtures for propane/air mixtures at Φ = 1.35 had the greatest flame acceleration and the highest overpressures. In addition, the results showed that Bartknecht's gas explosion venting correlation is grossly overestimated the overpressure for K = 16.4 and thus, misleading the impact of the vent burst pressure.  相似文献   

10.
Experiments were performed on the influence of pre-ignition turbulence on the course of vented gas and dust explosions. A vertical cylindrical explosion chamber of approximately 100 l volume and a length-to-diameter ratio (l/d) of 4.7 consisting of a steel bottom segment and three glass sections connected by steel flanges was used to perform the experiments. Sixteen small fans evenly distributed within the chamber produced turbulent fluctuations from 0 to 0.45 m/s. A Laser-Doppler-anemometer (LDA) was used to measure the flow and turbulence fields. During the experiments the pressure and in the case of dust explosions the dust concentration were measured. In addition, the flame propagation was observed by a high-speed video camera. A propane/nitrogen/oxygen mixture was used for the gas explosion experiments, while the dust explosions were produced by a cornstarch/air mixture.It turned out that the reduced explosion pressure increased with increasing turbulence intensity. This effect was most pronounced for small vents with low activation pressures, e.g. for bursting disks made from polyethylene foil. In this case, the overpressure at an initial turbulence of 0.45 m/s was twice that for zero initial turbulence.  相似文献   

11.
The effect of carbon dioxide (CO2) concentration on the ignition behaviour of hydrocarbon and CO2 gas mixtures is examined in both jets and confined explosions. Results from explosion tests are presented using a 20 l explosion sphere and an 8 m long section of 1.04 m diameter pipeline. Experiments to assess the flame stability and ignition probability in free-jets are reported for a range of different release velocities. An empirically-based flammability factor model for free-jets is also presented and results are compared to ignition probability measurements previously reported in the literature and those resulting from the present tests.The results help to understand how CO2 changes the severity of fires and explosions resulting from hydrocarbon releases. They also demonstrate that it is possible to ignite gas mixtures when the mean concentration is outside the flammable range. This information may be useful for risk assessments of offshore platforms involved in carbon sequestration or enhanced oil recovery, or in assessing the hazards posed by poorly-inerted hydrocarbon processing plant.  相似文献   

12.
The downstream as well as the upstream oil and gas industry has for a number of years been aware of the potential for flame acceleration and overpressure generation due to obstacles in gas clouds caused by leaks of flammable substances. To a large extent the obstacles were mainly considered to be equipment, piping, structure etc. typically found in many installations. For landbased installations there may however also be a potential for flame acceleration in regions of vegetation, like trees and bushes. This is likely to have been the case for the Buncefield explosion that occurred in 2005 (Buncefield Major Incident Investigation Board, 2008), which led to the work described in the present paper. The study contains both a numerical and an experimental part and was performed in the period 2006–2008 (Bakke and Brewerton, 2008, Van Wingerden and Wilkins, 2008).The numerical analysis consisted of modelling the Buncefield tank farm and the surrounding area with FLACS. The site itself was not significantly congested and it was not expected to give rise to high overpressures in case of a hydrocarbon leak. However, alongside the roads surrounding the site (Buncefield Lane and Cherry Tree Lane), dense vegetation in the form of trees and bushes was included in the model. This was based on a site survey (which was documented by video) performed in the summer of 2006.A large, shallow, heavier-than-air gas cloud was defined to cover part of the site and surroundings. Upon ignition a flame was established in the gas cloud. This flame accelerated through the trees along the surrounding roads, and resulted in high overpressures of several barg being generated by FLACS. This is to the authors’ knowledge the first time a possible effect of vegetation on explosions has been demonstrated by 3D analyses.As a consequence of these results, and since the software had been validated against typical industrial congestion rather than dense vegetation, a set of experiments to try to demonstrate if these effects were physical was carried out as well. The test volume consisted of a plastic tunnel, 20 m long with a semi-circular cross-section 3.2 m in diameter allowing for representing lanes of vegetation. The total volume of the tent was approximately 80.4 m3. The experimental programme involved different degrees of vegetation size, vegetation density (blocking ratio) and number of vegetation lanes (over the full length of the tunnel). The experiments were performed with stoichiometric propane–air mixtures resulting in continuously accelerating flames over the full length of the tunnel for some of the scenarios investigated.The main conclusions of the study are that trees can have an influence on flame acceleration in gas–air clouds, and that advanced models such as FLACS can be used to study such influence. More research is needed, however, because even if FLACS predicts flame acceleration in dense vegetation, no evidence exists that applying the code to trees rather than rigid obstacles provides results of acceptable accuracy.  相似文献   

13.
In order to explore flame propagation characteristics during wood dust explosions in a semi-closed tube, a high-speed camera, a thermal infrared imaging device and a pressure sensor were used in the study. Poplar dusts with different particle size distributions (0–50, 50–96 and 96–180 μm) were respectively placed in a Hartmann tube to mimic dust cloud explosions, and flame propagation behaviors such as flame propagation velocity, flame temperature and explosion pressure were detected and analyzed. According to the changes of flame shapes, flame propagations in wood dust explosions were divided into three stages including ignition, vertical propagation and free diffusion. Flame propagations for the two smaller particles were dominated by homogeneous combustion, while flame propagation for the largest particles was controlled by heterogeneous combustion, which had been confirmed by individual Damköhler number. All flame propagation velocities for different groups of wood particles in dust explosions were increased at first and then decreased with the augmentation of mass concentration. Flame temperatures and explosion pressures were almost similarly changed. Dust explosions in 50–96 μm wood particles were more intense than in the other two particles, of which the most severe explosion appeared at a mass concentration of 750 g/m3. Meanwhile, flame propagation velocity, flame propagation temperature and explosion pressure reached to the maximum values of 10.45 m/s, 1373 °C and 0.41 MPa. In addition, sensitive concentrations corresponding to the three groups of particles from small to large were 500, 750 and 1000 g/m3, separately, indicating that sensitive concentration in dust explosions of wood particles was elevated with the increase of particle size. Taken together, the finding demonstrated that particle size and mass concentration of wood dusts affected the occurrence and severity of dust explosions, which could provide guidance and reference for the identification, assessment and industrial safety management of wood dust explosions.  相似文献   

14.
As part of the EC funded Naturalhy project, two large scale experiments were conducted to study the hazard presented by the rupture of high pressure transmission pipelines conveying natural gas or a natural gas/hydrogen mixture containing approximately 22% hydrogen by volume. The experiments involved complete rupture of a 150 mm diameter pipeline pressurised to nominally 70 bar. The released gas was ignited and formed a fireball which rose upwards and then burned out. It was followed by a jet fire which continued to increase in length, reaching a maximum of about 100 m before steadily declining as the pipeline depressurised. During the experiments, the flame length and the incident radiation field produced around the fire were measured. Measurements of the overpressure due to pipeline rupture and gas ignition were also recorded. The results showed that the addition of the hydrogen to the natural gas made little difference to radiative characteristics of the fires. However, the fraction of heat radiated by these pipeline fires was significantly higher than that observed for above ground high pressure jet fires (also conducted as part of the Naturalhy project) which achieved flame lengths up to 50 m. Due to the lower density, the natural gas/hydrogen mixture depressurised more quickly and also had a slightly reduced power. Hence, the pipeline conveying the natural gas/hydrogen mixture resulted in a slightly lower hazard in terms of thermal dose compared to the natural gas pipeline, when operating at the same pressure.  相似文献   

15.
An experimental test program has been undertaken on the pressure coupling between gaseous deflagration and detonations and an underlying volume of water. The two forms of gaseous explosions were initiated in an ullage space within of a closed cylindrical metal vessel. The vessel, placed in a vertical orientation, and was 2 m high and 0.247 m diameter. The depth of water used for the experiments was 1.44 m. For the combustion tests the maximum pressure recorded in the ullage was also developed in the water volume. For detonation tests however a distinct pressure wave developed in the water filled region, significantly modifying the time resolved pressure history at the vessel wall.  相似文献   

16.
The paper outlines an experimental study on influence of the spark duration and the vessel volume on explosion parameters of premixed methane–air mixtures in the closed explosion vessels. The main findings from these experiments are: For the weaker ignition the spark durations in the range from 6.5 μs to 40.6 μs had little impact on explosion parameters for premixed methane–air mixtures in the 5 L vessel or 20 L vessel; For the same ignitions and volume fractions of methane in air the explosion pressures and the flame temperatures in both vessels of 5 L and 20 L were approximately the same, but the rates of pressure rises in both vessels of 5 L and 20 L were different; The explosion indexes obtained from the measured pressure time histories for both vessels of 5 L and 20 L were approximately equal; For the weaker ignition with the fixed spark duration 45 μs the ignition energies in the range from 54 mJ to 430 mJ had little impact on the explosion parameters; For the same ignition and the volume fractions of methane in air, the vessel volumes had a significant impact on the flame temperatures near the vessel wall; The flame temperatures near the vessel wall decreased as the vessel volumes increased.  相似文献   

17.
The explosion of the methane/air mixture and the methane/coal dust/air mixture under 40 J center spark ignition condition was experimentally studied in a large-scale system of 10 m3 vessel. Five pressure sensors were arranged in space with different distances from the ignition point. A high-speed camera system was used to record the growth of the flame. The maximum overpressure of the methane/air mixture appeared at 0.75 m away from the ignition point; the thickness of the flame was about 10 mm and the propagation speed of the flame fluctuated around 2.5 m/s with the methane concentration of 9.5%. The maximum overpressure of the methane/coal dust/air mixture appeared at 0.5 m. The flame had a structure of three concentric zones from outside were the red zone, the yellow illuminating zone and the bright white illuminating zone respectively; the thickness and the propagation speed of the flame increased gradually, the thickness of red zone and yellow illuminating zone reached 3.5 cm and 1 cm, the speed reached 9.2 m/s at 28 ms.  相似文献   

18.
To reveal the flame-propagation behavior and the thermal-radiation effects during coal-dust explosions, two coal-dust clouds were tested in a semi-enclosed vertical combustion tube. A high-speed video camera and a thermal infrared imaging device were used to record the flame-propagation process and the thermal-radiation effects of the fireball at the combustion-tube outlet. The flame propagated more quickly and with a higher temperature in the more volatile coal-dust cloud. The coal-dust concentration also significantly affected the propagation behavior of the combustion zone. When the coal-dust concentration was increased, the flame-propagation velocity and the fireball temperature increased before decreasing overall. Based on the experimental results, a dynamic model of the thermal radiation was employed to describe the changes in the fireballs quantitatively and to estimate the thermal-radiation effects during coal-dust explosions.  相似文献   

19.
Flame propagation behaviors of nano- and micro-polymethyl methacrylate (PMMA) dust explosions were experimentally studied in the open-space dust explosion apparatus. High-speed photography with normal and microscopic lenses were used to record the particle combustion behaviors and flame microstructures. Simple physical models were developed to explore the flame propagation mechanisms. High-speed photographs showed two distinct flame propagation behaviors of nano- and micro-PMMA dust explosions. For nano-particles, flame was characterized by a regular spherical shape and spatially continuous combustion structure combined with a number of luminous spot flames. The flame propagation mechanism was similar to that of a premixed gas flame coupled with solid surface combustion of the agglomerates. In comparison, for micro-particles, flame was characterized by clusters of flames and the irregular flame front, which was inferred to be composed of the diffusion flame accompanying the local premixed flame. It was indicated that smaller particles maintained the leading part of the propagating flame and governed the combustion process of PMMA dust clouds. Increasing the mass densities from 105 g/m3 to 217 g/m3 for 100 nm PMMA particles, and from 72 g/m3 to 170 g/m3 for 30 μm PMMA particles, the flame luminous intensity, scale and the average propagation velocity were enhanced. Besides, the flame front became more irregular for 30 μm PMMA dust clouds.  相似文献   

20.
For the case where a dust or gas explosion can occur in a connected process vessel, it would be useful, for the purpose of designing protection measures and also for assessing the existing protection measures such as the correct placement, to have a tool to estimate the time for flame front propagation along the connecting pipe. Measurements of data from large-scale explosion tests in industrially relevant process vessels are reported. To determine the flame front propagation time, either a 1 m3 or a 4.25 m3 primary process vessel was connected via a pipe to a mechanically or pneumatically fed 9.4 m3 secondary silo. The explosion propagation started after ignition of a maize starch/air mixture in the primary vessel. No additional dust was present along the connecting pipe. Systematic investigations of the explosion data have shown a relationship between the flame front propagating time and the reduced explosion over-pressure of the primary explosion vessel for both vessel volumes. Furthermore, it was possible to validate this theory by using explosion data from previous investigations. Using the data, a flame front propagation time prediction model was developed which is applicable for:
  • •gas and dust explosions up to a K value of 100 and 200 bar m s−1, respectively, and a maximum reduced explosion over-pressure of up to 7 bar;
  • •explosion vessel volumes of 0.5, 1, 4.25 and 9.4 m3, independent of whether they are closed or vented;
  • •connecting pipes of pneumatic systems with diameters of 100–200 mm and an air velocity up to 30 m s−1;
  • •open ended pipes and pipes of interconnected vessels with a diameter equal to or greater than 100 mm;
  • •lengths of connecting pipe of at least 2.5–7 m.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号