首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 616 毫秒
1.
2.
The current study investigated oxidative stress parameters (enzymes activities, metallothionein content and lipid peroxidation) in freshwater fish, Oreochromis niloticus, tilapia exposure to Monjolinho River (in 4 months of year: January, April, July and November). One critical site in Monjolinho River (site B) was assessed in comparison to a reference site (site A). Water pH and oxygen concentration was lower than that recommended by CONAMA (Brazilian National Environmental Committee), resolution 357/2005 for protection of aquatic communities, and ammonium and the metals Cu, Zn, Mn and Fe (on all months) concentrations were higher than the maximum concentration recommended. Glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities were significantly decreased in liver and muscle in tilapia from Monjolinho River, throughout the year, in relation to reference except in gills that SOD activity increased. Glutathione S-transferase (GST) activity was significantly increased in liver of the tilapia from Monjolinho River in all sites, in relation to reference except in gills that GST activity increased in July and decreased in November, suggesting that GST activity could be induced to neutralize the pollutants toxicity. On the other hand, GST activity was significantly decreased in white muscle indicating a toxic effect of pollutants, resulting in a decreased ability of tilapia to perform defense reactions associated to GSTs. The decrease of catalase (CAT) activity in gills of the O. niloticus together with the increase of SOD activity, could explain the increased lipid peroxidation (LPO) level in this organ. Metallothionein levels in liver and gills were significantly high in all sites. Results indicate that the exposure to metals caused severe damage to tissues; despite the consensually assumed antioxidant induction as a sign of exposure to contaminants the effects seem in part to be mediated by suppression of antioxidant system with SOD, CAT and GPx as potential candidates for tissues toxicity biomarkers of pollutants.  相似文献   

3.
In this study the effects of the main marine pollutants (metals, PAHs, PCBs and DDTs) were assessed in native mussels from the Mediterranean coast of Spain. For this purpose several biomarkers such as benzo[a]pyrene hydroxylase (BPH), DT-diaphorase (DTD), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPs), glutathione reductase (GR), metallothionein (MT) and lipid peroxidation (LPO) were measured in the digestive gland. Results showed increased LPO levels in mussels which accumulated high loads of organic compounds and arsenic in their tissues. BPH levels correlated to the concentrations of organic compounds in mussel tissues, though the range of BPH response was low in relation to the high gradient of accumulation of organic pollutants. Increased BPH levels, concomitant to low DTD and GST activities, were detected in mussels which presented high levels of organic pollutants in their tissues. This suggests that signs of LPO present in these organisms are related to the imbalance between phase I and phase II biotransformation processes. Furthermore, the increased levels of MT and CAT detected in mussels which showed high levels of Cd in their tissues appear to reflect a coordinated response which protects against the toxicity of this metal. The application of these biomarkers in environmental assessment is discussed.  相似文献   

4.
Polygodial is a drimane sesquiterpene dialdehyde derived from certain terrestrial plant species that potently inhibits ascidian metamorphosis, and thus has potential for controlling fouling ascidians in bivalve aquaculture. The current study examined the effects of polygodial on a range of biochemical biomarkers of oxidative stress and detoxification effort in the gills of adult Perna canaliculus Gmelin. Despite high statistical power and the success of positive controls, the antioxidant enzymes glutathione reductase (GR), glutathione peroxidase (GPOX), catalase (CAT), and superoxide dismutase (SOD); thiol status, as measured by total glutathione (GSH-t), glutathione disulphide (GSSG), and GSH-t/GSSG ratio; end products of oxidative damage, lipid hydroperoxides (LHPO) and protein carbonyls; and detoxification pathways, represented by GSH-t and glutathione S-transferase (GST), were unaffected in the gills of adult P. canaliculus exposed to polygodial at 0.1 or 1 × the 99% effective dose in fouling ascidians (IC99). Similarly, GR levels, thiol status, and detoxification activities were unaffected in mussels exposed to polygodial at 10 × the IC99, although GPOX, CAT, and SOD activities increased. However, the increases were small relative to positive controls, no corresponding oxidative damage was detected, and this concentration greatly exceeds effective doses required to inhibit fouling ascidians in aquaculture. These findings compliment a previous study that established the insensitivity to polygodial of P. canaliculus growth, condition, and mitochondrial functioning, providing additional support for the suitability of polygodial for use as an antifouling agent in bivalve aquaculture.  相似文献   

5.
The antioxidant responses of coffee (Coffea arabica L.) cell suspension cultures to cadmium (Cd) were investigated. Cd accumulated very rapidly in the cells and this accumulation was directly correlated with an increase in applied CdCl(2) concentration in the external medium. At 0.05mM CdCl(2), growth was stimulated, but at 0.5mM CdCl(2), the growth rate was reduced. An alteration in activated oxygen metabolism was detected by visual analysis as well as by an increase in lipid peroxidation at the higher CdCl(2) concentration. Catalase (CAT; EC 1.11.1.6), glutathione reductase (GR; EC 1.6.4.2) and superoxide dismutase (SOD; EC 1.15.1.1) activity increased, particularly at the higher concentration of CdCl(2). Ascorbate peroxidase (APX; EC 1.11.1.11) activity was increased at the lower CdCl(2) concentration used, but could not be detected in cells growing in the higher CdCl(2) concentration after 24h of growth, whilst guaiacol peroxidase (GOPX; EC 1.11.1.7) did not show a clear response to Cd treatment. An analysis by non-denaturing PAGE followed by staining for enzyme activity, revealed one CAT isoenzyme, nine SOD isoenzymes and four GR isoenzymes. The SOD isoenzymes were differently affected by CdCl(2) treatment and one GR isoenzyme was shown to specifically respond to CdCl(2). The results suggest that the higher concentrations of CdCl(2) may lead to oxidative stress. The main response appears to be via the induction of SOD and CAT activities for the removal of reactive oxygen species (ROS), and by the induction of GR to ensure the availability of reduced glutathione for the synthesis of Cd-binding peptides, which may also be related to the inhibition of APX activity probably due to glutathione and ascorbate depletion.  相似文献   

6.
Li X  Lin L  Luan T  Yang L  Lan C 《Chemosphere》2008,70(10):1903-1909
Environmental contaminants with estrogenic activity have recently attracted attention due to their potential detrimental effects on the reproduction of human and wildlife. The aim of this study was to evaluate the use of endogenous glutathione and glutathione-related enzymes as biomarkers of exposure to landfill leachate effluent and bisphenol A (BPA) in the freshwater snail, Bellamya purificata. Following exposure to 1%, 5% and 10% landfill leachate effluent and 1, 10, 50 and 100mugl(-1) BPA for 0, 2, 7 and 15d, activities of glutathione S-transferase (GST), selenium-dependent glutathione peroxidase (SeGPx) and glutathione reductase (GR) and levels of total glutathione were measured in the gills and digestive glands of the snails. GST and total glutathione were the most sensitive parameters in both exposure scenarios. GST activities increased by about 80%, while total glutathione decreased to 70% and 80% in the gills and digestive glands, respectively. In contrast, SeGPx and GR activities remained at the same levels in all the treatment groups compared with those of controls. The results indicated that among glutathione and glutathione-related enzymes, GST activity and total glutathione level, which showed dose-dependent dynamics, could be used as biomarkers of aquatic ecosystems contaminated with landfill leachate.  相似文献   

7.
The effects of permethrin (PER) on a panel of antoxidant enzymes; superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and indices of protein oxidation status (carbonylation and free thiols) were determined in digestive gland and gills of the clam Ruditapes decussatus. Animals were exposed to 100 ppb PER for 2 days. These enzyme activities increased significantly in digestive gland (p?<?0.05) after PER treatment and oxidative modification of proteins was detected in both gill and digestive gland extracts using redox proteomics. PER exposure significantly reduced the amount of protein free thiol groups in digestive gland rather than in gill, when compared to controls. Conversely, digestive gland showed significantly higher levels of carbonylated proteins than gill after PER exposure. Some proteins were successfully identified by mass spectrometry of tryptic peptides. Our data suggest that digestive gland of R. decussatus can be used as a model tissue for investigating environmental risk of PER contamination.  相似文献   

8.
In this study, the effects of cadmium (Cd) stress on the activities of disaccharidases (sucrase, lactase, and maltase), amylase, trypsin, pepsase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and malondialdehyde (MDA) content in the alimentary system of freshwater crabs Sinopotamon henanense were studied. Results showed that the enzyme activities in the stomach, intestine, and hepatopancreas changed with Cd concentration. In terms of digestive enzymes, Cd exposure had an inhibitory effect on the activities of the disaccharidases, amylase, and pepsase (only in the stomach). Significant induction of trypsin activity by Cd at a lower concentration was observed, but as Cd concentration increased, trypsin activity decreased. Maltase activity showed a slight recovery after inhibition by Cd. The activities of SOD and CAT increased initially and decreased subsequently. Cd significantly inhibited the activity of GPx. MDA content increased with increasing concentration of Cd. These results showed that acute Cd exposure led to harmful effects on the alimentary system of crabs, which are likely linked to Cd induced oxidative stress.  相似文献   

9.
This field study investigates the morphological indices (condition index, hepatosomatic index) and biochemical (catalase (CAT), glutathione S-transferase (GST), acetylcholinesterase (AChE), metallothionein (MT), lipid peroxidation) parameters in liver, gills and kidney of common sole (Solea solea) originating from different sites of the Tunisian coast area impacted by different anthropogenic activities. Differences among sites and tissues for AChE, GST, CAT, MT and TBARS were found and possibly related to known sources of domestic and industrial discharges in the studied sites. Liver, gills and kidney CAT, liver and kidney MT and brain AChE were key biomarkers to discriminate fish of different sites. So, we suggest using these biomarkers in future biomonitoring.  相似文献   

10.
The distribution of essential elements Co, Cu, Fe, Mn, Se, and Zn, and nonessential element Cd among cytosolic proteins of different molecular masses in the gills of European chub (Squalius cephalus) sampled in the moderately contaminated Sutla River in September of 2009, was studied after the protein separation by size exclusion high-performance liquid chromatography (SEC-HPLC), and the metal determination in the obtained fractions by high-resolution inductively coupled plasma mass spectrometry (HR ICP-MS). The aims of the study were to characterize the distribution profiles of metals within different protein categories in gills in the conditions of low metal exposure in the river water, and to compare them with the previously published hepatic profiles. The distribution profiles of analyzed metals were mainly characterized with several peaks. However, some observations could be emphasized: both Cu and Cd were eluted near metallothionein elution time; elution time of one of Co peaks could be associated with Co-containing compound cobalamin; increasing cytosolic Fe concentrations resulted in possible Fe binding to storage protein ferritin; both Mn and Zn had poorly resolved peaks covering wide ranges of molecular masses and indicating their binding to various proteins; both Zn and Se increased in protein fractions of molecular masses <5 kDa following their concentration increase in the gill cytosol; expected clear metallothionein peak was not observed for Zn. Comparison of gill profiles with previously published hepatic profiles revealed similar and in case of some elements (e.g., Co, Fe, Mn, and Se) almost identical distributions in both organs regarding elution times. On the contrary, heights of obtained peaks were different, indicating possible metal binding to the same proteins in the gills and liver, but in different proportions. The results obtained in this study can be used as a basis for comparison in monitoring studies, for identification of changes that would occur after exposure of chub to increased metal concentrations.  相似文献   

11.
Cadmium, like many other pollutants, is nondegradable and can be accumulated by Lymantria dispar at a level that affects fitness components, physiology, and development, which could indicate presence of environment pollution by heavy metals. The cadmium effect on fitness-related traits in the third, fourth, fifth, and sixth instar of L. dispar L. was determined. Furthermore, activities of the following antioxidative defense components after the larvae had been fed on the artificial cadmium-supplemented diet (50 μg Cd/g dry food) were assessed: superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX), total glutathione amount (GSH), glutathione-S-transferase (GST), glutathione reductase (GR), and the amount of free sulfhydryl (SH) groups. Statistically significant delay of development in the fourth, fifth, and sixth instar and decrease of the larval mass in the third and fourth instar were estimated after the exposure to cadmium through food in comparison to the control. There were no changes in SOD activity of cadmium-treated larvae. Significantly lower CAT, APOX, and GR activities were recorded in the third, fifth, and in the third instar, respectively. At the same time, higher activity was recorded in the sixth instar, while GST activity was higher in the third. GSH content was significantly lower during all instars after treatment but the amount of SH groups was higher in older larvae. The strategy of antioxidative defense and the adjustment or modulation of fitness-related traits in presence of cadmium was dependent on the age of larvae in L. dispar, which might be used in early metal risk assessment in Lepidoptera and other insects.  相似文献   

12.
13.
One-month old horsegram (Macrotyloma uniflorum (Lam.) Verdc. cv VZM1) and bengalgram (Cicer arietinum L. cv Annogiri) were exposed to different regimes of lead stress as Pb(NO3)2 at 0, 200, 500 and 800 ppm concentrations. The extent of oxidative damage as the rate of lipid peroxidation, antioxidative response and the accumulation of lead in roots and shoots of both plants were evaluated after 12 days of lead stress. Lead (Pb) treated plants showed increased levels of lipid peroxidation as evidenced from the increased malondialdehyde content coupled with the increase in the activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), glutathione reductase (GR), glutathione S-transferase (GST) compared to control (untreated) plants. Lead stress caused significant changes in the activity of antioxidative enzymes. The effect of lead was found to be concentration dependent. Higher concentration of lead (800 ppm) resulted 2- to 3-fold increase in SOD, catalase and peroxidase activities, 3- to 5-fold increase in GR activity and 3- to 4-fold increase in GST activity in roots and leaves of both horsegram and bengalgram plants. Lead stress caused a significant increase in the rate of peroxidation as showed in the levels of malondialdehyde content in roots and leaves of both plant species. Horsegram registered lower Pb accumulation than bengalgram, however localization of Pb was greater in roots than leaves in both plants. In general, lipid peroxide levels and antioxidative enzyme activities were higher in horsegram than bengalgram and also more in roots than leaves which best concordance with the lead contents of both the plants and organs. These results suggest that Pb toxicity causes oxidative stress in plants and the antioxidative enzymes SOD, CAT, POD, GR, GST could play a pivotal role against oxidative injury.  相似文献   

14.
To report a novel metallothionein (MT) gene and evaluate its potency as a biomarker, we clone this MT gene and measured the expression levels in the metal-exposed polychaete Perinereis nuntia. Accumulated metal contents and metallothionein-like proteins (MTLPs), which have been recognized as potential biomarkers, were compared with the relative mRNA expressions of the MT gene of P. nuntia (Pn-MT). In addition, the metal-binding affinity was estimated by recombinant Pn-MT protein. Pn-MT having high cysteine residues with three metal response elements in the promoter region closely clusters with those of other invertebrates. The accumulation patterns of metals were dependent on the exposure times in lead (Pb), cadmium (Cd), and copper (Cu) exposure. Particularly, both MTLP levels and relative mRNA expressions of MT were increased with accumulated metal contents and exposure time in P. nuntia exposed to Pb and Cd. There was no significant modulation of the Pn-MT gene in polychaetes exposed to Zn and As. However, the metal-binding ability of the recombinant Pn-MT protein provides a clear evidence for a high affinity of MT to several metal elements. These results suggest that Pn-MT would play an important role in the detoxification and/or sequestration of specific metals (e.g., Pb and Cd) in P. nuntia and have potential as a molecular biomarker in the monitoring of the marine environment using a polychaete.  相似文献   

15.
In vitro experiments were conducted to investigate the effects of abscisic acid (ABA) and Cd on antioxidative defense systems and indole-3-acetic acid (IAA) oxidase during adventitious rooting in mung bean [Vigna radiata (L.) Wilczek] seedlings. The exogenous ABA significantly enhanced the number and fresh weight of the adventitious roots. CdCl2 strongly inhibited adventitious rooting. Pretreatment with 10 μM ABA clearly alleviated the inhibitory effect of Cd on rooting. ABA significantly reduced superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase (POD), and catalase (CAT) activities, as well as the levels of glutathione (GSH) and ascorbic acid (ASA) during adventitious rooting. ABA strongly increased IAA-oxidase activity during the induction (0–12 h) and expression (after 48 h) phases and increased the phenols levels. Cd treatment significantly reduced the activities of SOD, APX, POD, and IAA oxidase, as well as GSH level. Cd strongly increased ASA levels. ABA pretreatment counteracted Cd-induced alterations of certain antioxidants and antioxidative enzymes, e.g., remarkably rescued APX and POD activities, reduced the elevated SOD and CAT activities and ASA levels, and recovered the reduced GSH levels, caused by Cd stress. Thus, the physiological effects of the combination of ABA and Cd treatments were opposite of those obtained with Cd treatment alone, suggesting that ABA involved in the regulation of antioxidative defense systems and the alleviation of wounding- and Cd-induced oxidative stress.  相似文献   

16.
Background, aim, and scope  Tobacco, Nicotiana tabacum, is a widely used model plant for growth on heavy-metal-contaminated sites. Its high biomass and deep rooting system make it interesting for phytoextraction. In the present study, we investigated the antioxidative activities and glutathione-dependent enzymes of different tobacco clones optimized for better Cd and Zn accumulation in order to characterize their performance in the field. Main features  The improved heavy metal resistance also makes the investigated tobacco clones interesting for understanding the plant defense enzyme system in general. Freshly harvested plant material (N. tabacum leaves) was used to investigate the antioxidative cascade in plants grown on heavy metal contaminated sites with and without amendments of different ammonium nitrate and ammonium sulfate fertilizers. Materials and methods  Plants were grown on heavily polluted soils in north-east Switzerland. Leaves were harvested at the field site and directly deep frozen in liquid N2. Studies were concentrated on the antioxidative enzymes of the Halliwell–Asada cycle, and spectrophotometric measurements of catalase (CAT, EC 1.11.1.6), ascorbate peroxidase (APX, EC 1.11.1.11), superoxide dismutase (SOD, EC 1.15.1.1), glutathione peroxidase (GPX, EC 1.11.1.9), glutathione reductase (GR, EC 1.6.4.2), glutathione S-transferase (GST, EC 2.5.1.18) were performed. Results and discussion  We tried to explain the relationship between fertilizer amendments and the activity of the enzymatic defense systems. When tobacco (N. tabacum) plants originating from different mutants were grown under field conditions with varying fertilizer application, the uptake of cadmium and zinc from soil increased with increasing biomass. Depending on Cd and Zn uptake, several antioxidant enzymes showed significantly different activities. Whereas SOD and CAT were usually elevated, several other enzymes, and isoforms of GST were strongly inhibited. Conclusions  Heavy metal uptake represents severe stress to plants, and specific antioxidative enzymes are induced at the cost of more general reactions of the Halliwell–Asada cycle. In well-supplied plants, the glutathione level remains more or less unchanged. The lack of certain glutathione S-transferases upon exposure to heavy metals might be problematic in cases when organic pollutants coincide with heavy metal pollution. When planning phytoremediation of sites, mixed pollution scenarios have to be foreseen and plants should be selected according to both, their stress resistance and hyperaccumulative capacity.  相似文献   

17.
Qiu RL  Zhao X  Tang YT  Yu FM  Hu PJ 《Chemosphere》2008,74(1):6-12
A hydroponic experiment was carried out to study the effect of cadmium (Cd) on growth, Cd accumulation, lipid peroxidation, reactive oxygen species (ROS) content and antioxidative enzymes in leaves and roots of Arabis paniculata F., a new Cd hyperaccumuator found in China. The results showed that 22-89 microM Cd in solution enhanced the growth of A. paniculata after three weeks, with 21-27% biomass increase compared to the control. Cd concentrations in shoots and roots increased with increasing Cd supply levels, and reached a maximum of 1662 and 8670 mg kg(-1) Cd dry weight at 178 microM Cd treatment, respectively. In roots, 22-89 microM Cd reduced the content of malondialdehyde (MDA), superoxide (O(2)(-1)) and H(2)O(2) as well as the activities of superoxide dismutase (SOD), guaiacol peroxidase (GPX), ascorbate peroxidase (APX) and glutathione reductase (GR). In leaves, the contents of MDA, O(2)(-1) and H(2)O(2) remained unaffected by 22-89 microM Cd, while 178 microM Cd treatment significantly increased the MDA content, 69.5% higher than that of the control; generally, the activities of SOD, catalase (CAT), GPX and APX showed an increasing pattern with increasing Cd supply levels. Our present work concluded that A. paniculata has a great capability of Cd tolerance and accumulation. Moderate Cd treatment (22-89 microM Cd) alleviated the oxidative stress in roots, while higher level of Cd addition (178 microM) could cause an increasing generation of ROS, which was effectively scavenged by the antioxidative system.  相似文献   

18.
Dragun Z  Raspor B  Podrug M 《Chemosphere》2007,69(6):911-919
The influence of the season and the biotic factors (age and gill mass) on metal and protein levels in the gill cytosol of the young chubs (2 and 3 years old) was studied in Sava River in autumn 2005 and spring 2006. The obtained results are the first reported cytosolic concentrations of five metals and proteins for the chub gills. The average levels in autumn and spring, respectively, for total cytosolic proteins were 11.2 and 19.9 mg ml(-1), for Zn 6.3 and 10.3 microg ml(-1), for Fe 3.9 and 9.6 microg ml(-1), for Cu 68.4 and 79.0 ng ml(-1), for Mn 55.0 and 63.5 ng ml(-1), and for Cd 2.9 and 3.6 ng ml(-1). The influence of the gill mass on both the protein and the metal levels was observed, but it was seasonally dependent. In autumn, positive correlations were obtained between the gill mass and four parameters (total proteins, Mn, Zn and Fe), and negative with Cu. Contrary, in spring, even negative correlations of total proteins and some metals with the gill mass were observed. The proposed explanation for the different dependence of metal levels on the gill mass in autumn and spring was the seasonal difference in feeding intensity and metabolic rate, with presumably faster metabolism and water filtration through gills in spring. This hypothesis was further supported by the statistically significantly higher concentrations of the total proteins, Zn and Fe, as well as the Fulton condition indices in the spring period.  相似文献   

19.
The biochemical response to chronic heavy metal exposure was studied in tissues of bank voles Clethrionomys glareolus. Animals were collected from three sites located 4, 8 and 30km from a zinc-lead smelter, the area's main source of metal contamination. Concentrations of Cd, Pb, Zn and Fe were measured in the liver, kidneys and gonads to assess the level of metal intoxication. In response to intoxication, organisms activate detoxification mechanisms which can protect animals from metals' toxicity. Glutathione plays an important role in toxic substance detoxification. Total glutathione (tGSH) and glutathione disulfide (GSSG) were measured in the tissues. Also, the activity of glutathione reductase (GR), glutathione peroxidase (GPX), and glutathione-S-transferase (GST) was measured in the studied tissues. Results indicate that levels of all studied parameters were tissue and site-dependent. Evidence indicates that the most sensitive parameter of metal toxicity for animals living in a chronically contaminated environment is the GSH/GSSG ratio. In our study, the GSH/GSSG ratio was decreased in the liver of animals with high Cd levels. However, the relationship between Pb and the GSH/GSSG ratio was positive in the gonads. Cadmium and lead negatively influenced GPX activity in the liver; this was probably connected with inhibition of the Se-dependent fraction. The relationship between iron and GR activity in the kidney was also negative, but other correlations for iron both in liver and kidney were not significant. Positive correlations between Zn levels and GST and GR activity were found in the gonads of bank voles.  相似文献   

20.
This study examined the advantages of the use of biomarkers as an early warning system by applying it to different shrimp farming systems in Soctrang and Camau provinces, main shrimp producers in Mekong River Delta, Vietnam. Shrimp were collected at 15 different farms divided into four different farming systems: three farms were converted from originally rice paddies into intensive shrimp farming systems (IS1, IS2, IS3); three farms were rice-shrimp integrated farming systems (RS4, RS5, RS6); three farms were intensive farming systems (IS7, IS8, IS9); six farms were extensive shrimp farming systems (From ES1 to ES6). Lipid peroxidation (LPO) and total glutathione (GSH) were measured as well as catalase (CAT), glutathione peroxidase (GPX), glutathione S-transferase (GST) and acetylcholinesterase activities (ACHE). Organ specificity was observed between gills and hepatopancreas with generally higher activity of GST in gills (GSTG) whereas the contrary was observed for LPO level in gills (LPOG). Hierarchical clustering and principal component analysis clearly indicated that shrimp reared in extensive culture system formed a distinct group from those reared in intensive or rice-shrimp integrated systems. CAT in gills (CATG), GPX in gills (GPXG) and hepatopancreas (GPXHP) and ACHE in muscle (ACHEM) of shrimp collected in extensive farms showed a general higher level than those in intensively farmed shrimp. On the contrary, we observed clear high levels of GSTG and GST in hepatopancreas (GSTHP) and LPOG and hepatopancreas (LPOHP) of shrimp sampled in intensive and rice-shrimp integrated systems. Thus, we propose that LPO and CAT, GPX, GST and ACHE can be used as a set of biomarkers for the assessment of health condition and can discriminate between shrimp cultivated in different farming systems. These findings provide the usefulness of integrating a set of biomarkers to define the health status of shrimp in different shrimp culture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号