首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The minimum ignition energy (MIE) is an important property for designing safety standards and understanding the ignition process of combustible mixtures. The minimum ignition energy (MIE) of gaseous epoxypropane/air mixtures is measured using capacitive spark discharge. The effect of humidity on MIE is studied. It is shown that the MIE is not constant when the relative humidity increases from 40% to 88% at room temperature. The relative humidity has no significant influence on the MIE of gaseous epoxypropane/air mixtures at the lower volume fraction of gaseous epoxypropane in air. But, it has significant influence on that at the higher volume fraction. The MIEs of gaseous epoxypropane/air mixtures vary with the fraction of gaseous epoxypropane in air and the humidity. The lowest value of MIE (0.12 mJ) of gaseous epoxypropane/air mixtures is reached at around 10% in the examined ranges of the concentrations for the humidity 40%. The lowest values of MIE (0.1 mJ) of the mixtures are reached also at around 10% in the examined ranges of the concentrations for the humidity 66% and 88% respectively.  相似文献   

2.
Current standard test methods for electric-spark minimum ignition energies (MIEs) of dust clouds in air require that a series inductance of at least 1–2 mH be included in the electric-spark discharge circuit. The reason is to prolong the spark discharge duration and thus minimize the spark energy required for ignition. However, when assessing the minimum electrostatic energy ½CU2 for dust cloud ignition by accidental electrostatic-spark discharges, current testing standards require that the series inductance of at least 1–2 mH be removed from the spark discharge circuit. No other changes of apparatus and test procedure are required. The present paper questions whether this simple approach is always adequate. The reason is that in practice in industry accidental electrostatic-spark discharge circuits may contain large ohmic resistances due to corrosion, poor electrical grounding connections, poorly electrically conducting construction materials etc. The result is increased spark discharge durations and reduced mechanical disturbance of the dust cloud by the blast wave emitted by the spark. Therefore, testing for minimum ½CU2 for ignition by accidental electrostatic spark discharges may not only require removal of the series inductance of 1–2 mH from the standard MIE spark discharge circuit. Additional tests may be needed with one or more quite large series resistances Rs inserted into the spark discharge circuit. The present paper proposes a modified standard test procedure for measurement of the minimum electrostatic-spark ignition energy of dust clouds that accounts for these effects.  相似文献   

3.
The knowledge of the ignition behavior of dust–air mixtures due to electrical sparks (MIE, Minimum Ignition Energy) and hot surfaces (MIT, Minimum Ignition Temperature) is important for risk assessments in chemical production plants. The ignition behavior determines the extent and hence the cost of preventive protection measures.This paper describes the use of the minimum ignition energy and minimum ignition temperature as very important safety indexes in practice.  相似文献   

4.
In this study, the dependence of minimum ignition energies (MIE) on ignition geometry, ignition source radius and mixture composition is investigated numerically for methane/air and iso-octane/air mixtures. Methane and iso-octane are both important hydrocarbon fuels, but differ strongly with respect to their Lewis numbers. Lean iso-octane air mixtures have particularly large Lewis numbers. The results show that within the flammability limits, the MIE for both mixtures stays almost constant, and increases rapidly at the limits. The MIEs for both fuels are also similar within the flammability limits. Furthermore, the MIEs of iso-octane/air mixtures with a small spherical ignition source increase rapidly for lean mixtures. Here the Lewis number is above unity, and thus, the flame may quench because of flame curvature effects. The observations show a distinct difference between ignition and flame propagation for iso-octane. The minimum energy required for initiating a successful flame propagation can be considerably higher than that required for initiating an ignition in the ignition volume. For iso-octane with a small spherical ignition source, this effect was observed at all equivalence ratios. For iso-octane with cylindrical ignition sources, the phenomenon appeared at lower equivalence ratios only, where the mixture's Lewis number is large. For methane fuel, the effect was negligible. The results highlight the significance of molecular transport properties on the decision whether or not an ignitable mixture can evolve into a propagating flame.  相似文献   

5.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures.  相似文献   

6.
The investigation of the ignition conditions of kerosene vapors in the air contained in an aircraft fuel tank contributes to the definition of onboard safety requirements. Civil and military kerosene are characterized by specification. The specification of civil aviation kerosene is based upon usage requirements and property limits. while military kerosene is primarily controlled by specific chemical composition. Characterization of the flammability properties is a first step for the establishment of aircraft safety conditions. Flash point, vapor pressure, gas chromatography analysis, and flammability properties of the kerosene used by the French Military aviation (F-34 and F-35 kerosene) are compared with the flammability properties of civil kerosene. The empirical law established by the Federal Aviation Administration (FAA) in 1998, expressing the ignition energy in terms of fuel, temperature, flash point and altitude is modified and expressed in terms of fuel temperature, flash point and pressure.  相似文献   

7.
The original break spark test apparatus for intrinsically safe circuits was modified to allow the measurements of minimum ignition currents (MICs) at different initial pressures between 20 and 120 kPa. The MICs of different propylene/air mixtures at ambient temperature and at both atmospheric and sub-atmospheric pressures were measured. The corresponding minimum ignition energies (MIEs) using break sparks were calculated and compared with those derived from MIE/quenching distance correlations using high voltage sparks between flanged electrodes.  相似文献   

8.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

9.
Electrostatic Powder coating which is a surface finishing technique has widely been used in paint industry since its invention in the 1960s. However, so far, insufficient attention has been paid to the powder fires and/or explosion hazards caused by electrostatic spark during coating process. This paper is a report of the electrostatic spark ignitability of aluminous coating powders (dry blend-type) used in practical electrostatic powder coating. The Hartman vertical-tube apparatus was used for the minimum ignition energy (MIE) test. Various aluminous coating powders, different with respect to the amount of aluminum pigment, were used in this study. Experimental results obtained in this study are as follows: (1) The aluminous coating powder was so sensitive that even an electrostatic spark with an energy as low as 10 mJ could ignite it. (2) The particle size of aluminous coating powder has a considerable effect on the ignitability when the aluminum pigment concentration is within 6 wt% of the practical coating powder manufacturing standards. Thus, the conventional expression for estimating the MIE can be useful when assessing the electrostatic hazards associated with aluminum coating powders.  相似文献   

10.
In general terms, the purpose of any safety standard is to define borderlines between safe and unsafe conditions, with reasonable safety margins. The electrical spark ignition sensitivity of dust clouds (MIE) varies over at least eight orders of magnitude. Therefore, in the case of intrinsically safe electrical apparatus to be used in the presence of explosive dust clouds, substantial differentiation of the minimum requirements to prevent ignition by electrical sparks is needed. The present paper proposes a method by which adequate differentiation of required maximum permissible currents and/or voltages in intrinsically safe electrical circuits to be used in explosive dust clouds can be achieved. In essence, the concept is to use conservative first-order ignition curves, calculated or estimated from the experimental MIE value of clouds in air of the actual dust. Charts to be used for design purposes are given in the paper. Internationally standardised test methods allow MIE for clouds of any dust to be determined, at least down to the range of a few mJ. There is, however, a need for a supplementary method covering the range of lower energies, down to 0.01 mJ.  相似文献   

11.
The possibility of ignition and flame propagation in accumulated difluoromethane (CH2F2, R32) was examined experimentally, simulating a situation in which a service operative uses a kerosene lighter for smoking. To simulate the situation where a kerosene cigarette lighter is used in accumulated R32, electrodes fixed in the windbreak of the lighter were remotely supplied with electricity to generate sparks of various durations but of similar energies to those of actual sparks generated by rubbing a flint to ignite the fuel in the lighter. We identified several cases of ignition and formation of an open flame in the windbreak of the lighter, and the flame propagated to the accumulated R32 when it was supplied with sufficient energy from the spark. Gas chromatographic analyses confirmed that the mixture in the windbreak of the kerosene lighter consisted mainly of vaporized fuel and air, with no R32. Therefore, even if the lighter is located in accumulated R32, an open flame can be generated in the windbreak of the kerosene cigarette lighter through ignition by the spark energy generated by friction between the flint and the flint wheel. Our results confirmed that there is a real possibility of ignition and flame propagation when a kerosene cigarette lighter is used in accumulated R32 under the leak rate conditions of the present experiment.  相似文献   

12.
An investigation of ignition of dust clouds by the use of electric spark discharges triggered by the explosive dust cloud itself has been conducted. This method of triggering capacitive sparks probably represents a realistic mechanism for initiating accidental dust explosions in industrial practice. Unlike the conventional method for determining the minimum ignition energy (MIE) in the laboratory, the delay between dust dispersion and spark discharge is not a degree of freedom. In stead, the transient dust cloud itself is used to initiate spark breakdown between electrodes set at a high voltage lower than breakdown in pure air. In the present study, different kinds of dusts were tested as ‘spark triggers’, and they exhibited quite different abilities to trigger breakdown. Large particles were found to initiate breakdown at lower voltages than smaller ones. In general, conductive particles were not found to initiate breakdown at lower voltages than dielectric ones when using the same dust concentration.Minimum ignition energies (MIE) of three dusts (Lycopodium clavatum, sulphur and maize starch) were determined using the authors' method of study. The MIEs were somewhat higher than those obtained using conventional methods, but relatively close to the values obtained through conventional methods.  相似文献   

13.
The modern world depends greatly on hydrocarbons, which are ubiquitous, indispensable fuels used in nearly every existing industry. Although important, their use may trigger dangerous incidents, whether in their production, handling, storage, or transporting phase, especially when aerosolized. In light of proposing a standard procedure to assess the flammability and explosivity of fuel mists, a new test method was established based on the EN 14034 standards series. For the previous purposes, a gravity-fed mist generation system was designed and employed in a modified 20 L explosion vessel. This test method allowed the determination of the ignition sensitivity of several fuels. In addition, their explosion severity was represented by the explosion overpressure Pex, and the rate of pressure rise dP/dtex, two thermo-kinetic parameters determined with a specifically developed control system and custom software. Nonetheless, a noticeable difference in the ignition sensitivity and the explosion severity was perceived when changing suppliers or petroleum cuts of some fuels. Moreover, sensitivity studies showed that both the droplet size distribution and the temperature of the droplets play a significant role in fuel mist explosion. These parameters can be directly related to the vapor fraction surrounding a droplet during its ignition. Consequently, this study focuses on the influence of varying the composition of three well-known and abundantly used fuels. Different petroleum cuts were introduced in different fractions into isooctane, Jet A1 aviation fuel, and diesel fuel mixtures, which were then aerosolized into a uniformly distributed turbulent mist cloud and ignited using spark ignitors of 100 J. Subsequently, complementary tests were executed in a vertical flame propagation tube coupled with a high-speed video camera allowing the visualization of the flame and the determination of the spatial flame velocity, and a tentative estimation of the laminar burning velocity. The latter was also estimated from the pressure-time evolution in the 20 L sphere using existing correlations. Indeed, the determination of the laminar burning velocity can be useful in modeling such accidents. Finally, highlighting the essential role of the mist and vapor fraction during their ignition has led to a better understanding of their explosion mechanisms.  相似文献   

14.
To achieve the rapid prediction of minimum ignition energy (MIE) for premixed gases with wide-span equivalence ratios, a theoretical model is developed based on the proposed idea of flame propagation layer by layer. The validity and high accuracy of this model in predicting MIE have been corroborated against experimental data (from literature) and traditional models. In comparison, this model is mainly applicable to uniform premixed flammable mixtures, and the ignition source needs to be regarded as a punctiform energy source. Nevertheless, this model can exhibit higher accuracy (up to 90%) than traditional models when applied to premixed gases with wide-span equivalence ratios, such as C3H8-air mixtures with 0.7–1.5 equivalence ratios, CH4-air mixtures with 0.7–1.25 equivalence ratios, H2-air mixtures with 0.6–3.15 equivalence ratios et al. Further, the model parameters have been pre-determined using a 20 L spherical closed explosion setup with a high-speed camera, and then the MIE of common flammable gases (CH4, C2H6, C3H8, C4H10, C2H4, C3H6, C2H2, C3H4, C2H6O, CO and H2) under stoichiometric or wide-span equivalence ratios has been calculated. Eventually, the influences of model parameters on MIE have been discussed. Results show that MIE is the sum of the energy required for flame propagation during ignition. The increase in exothermic and heat transfer efficiency for fuel molecules can reduce MIE, whereas prolonging the flame induction period can increase MIE.  相似文献   

15.
The minimum ignition temperature of dust suspension (MIT) and the hot surface ignition temperature of the dust layer (LIT) are essential safety parameters for the process industry. However, the knowledge of the ignition behavior when solid mixtures of flammable fuels and phosphorous-free inhibitors are considered is still scarce and further experimental and theoretical analyses are requested. In this work, the ignition temperature of phosphorous-free inhibitors (coal fly ash and calcium carbonate) mixed with lycopodium dust have been studied in terms of LIT analysis (hot plate thickness: 5 mm, 12.5 mm and 15 mm), and by the Godbert-Greenwald test for the MIT. Both coal fly ash and calcium carbonate have been tested at different concentrations and particle sizes.Results show that the effects of the inhibitor can be counter-productive when layer ignition temperature is considered even if the minimum ignition temperature of the dust suspension shows a positive effect from the safety point of view. This behavior has been analyzed in the terms of thermal conductivity and diffusivity of the mixture, by using Maxwell's equation for two-phase solid mixtures. Standard empirical correlations for the ignition temperature of solid mixtures have been also tested, showing their weakness in reproducing mixture behavior.  相似文献   

16.
随着现代工业的发展,粉尘爆炸事故发生的频率也逐年增加,因此,对粉尘云点火敏感程度进行测量和计算就变得十分重要。粉尘云最小点火能是粉尘爆炸重要的特性参数之一,是采取粉尘爆炸防护的基础。最小点火能在测量的过程中受到多个敏感条件的影响,其中湍流则是最复杂的影响因素之一。文中对实验过程中粉尘云的湍流进行了定义,并分析了湍流对粉尘云最小点火能影响的内在原因;同时对通过数值模拟计算粉尘云最小点火能过程中的湍流计算给出了数学模型。从实验和数学模型两个方向对湍流进行了全面描述,对粉尘云电火花点火过程中湍流影响的分析结论,可有效的指导实验。  相似文献   

17.
In order to prevent dust explosions due to electrostatic discharges (ESD), this paper reports the minimum ignition energy (MIE) of aluminum powders in the air and the effective nitrogen (N2) concentration for the inert technique. The Hartman vertical-tube apparatus and five kinds of different sized pure aluminum powders (median particle size, D50; 8.53 μm–51.2 μm) were used in this study. The statistic minimum ignition energy (MIEs) of the most sensitive aluminum powder used in this study was 5 mJ, which was affected by the powder particle size (D50; 8.53 μm). In the case of aluminum powder, the inerting effects of N2 were quite different from the polymer powders. The MIE of aluminum powder barely changed until the N2 concentration was 89% in comparison with that of the normal air. When the N2 concentration was 90%, the MIE of aluminum powders suddenly exceeded 1000 mJ, which does not occur easily with ESD in the industrial process.  相似文献   

18.
For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested.The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system.Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results.  相似文献   

19.
Hybrid mixtures – mixtures of burnable dusts and burnable gases – pose special problems to industries, as their combined Lower Explosion Limit (LEL) can lie below the LEL of the single substances. Different mathematical relations have been proposed by various authors in literature to predict the Lower Explosion Limit of hybrid mixtures (LELhybrid). The aim of this work is to prove the validity or limitations of these formulas for various combinations of dusts and gases. The experiments were executed in a standard 20 L vessel apparatus used for dust explosion testing. Permanent spark with an ignition energy of 10 J was used as ignition source. The results obtained so far show that, there are some combinations of dust and gas where the proposed mathematical formulas to predict the lower explosible limits of hybrid mixtures are not safe enough.  相似文献   

20.
A correlation of the lower flammability limit for hybrid mixtures was recently proposed by us. The experimental conditions including ignition energy and turbulence which play a primary role in a gas or dust explosion were at fixed values. The sensitivity of such experimental conditions to the accuracy of the proposed formula was not thoroughly discussed in the previous work. Therefore, this work studied the effect of varying the ignition energy and turbulence intensity to the formula proposed in our previous paper. For ignition energy effect, results from methane/niacin mixture demonstrated that the MEC and LFL will not be affected by changing ignition energy. There is no distinguishable difference among gas explosion index (KG) and dust explosion index (KSt) derived from tests with every ignition energy (2.5 kJ, 5 kJ and 10 kJ) in a 36 L vessel. The proposed formula is independent of ignition energy. For turbulence effect, the proposed formula can have a good prediction of the explosion and non-explosion zone if the ignition delay time is within a certain range. The formula prediction is good as the ignition delay time increases up to 100 ms in this work. Propane/niacin and propane/cornstarch mixtures are also tested to validate the proposed formula. It has been confirmed that the proposed formula predicts the explosion and non-explosion zone boundary of such mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号