首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 76 毫秒
1.
Water environmental degradation is a major issue in the Heihe River Basin belonging to the inland river basin of temperate arid zone in northwestern China. Mankind’s activities, such as dense population and heavy dependence on irrigated agriculture, place immense pressure on available and limited water resources during the last century, especially the recent five decades. An investigation on the water environmental degradation in the Heihe River Basin and analysis of its causation were conducted. The results indicated that water environmental changes in the whole basin were tremendous mostly in the middle reaches, which reflected in surface water runoff change, decline of groundwater table and degeneration of surface water and groundwater quality. Some new forms of management based on traditional and scientific knowledge must be introduced to solve problems of water environmental degradation in the Heihe River Basin.  相似文献   

2.
Samples of water, sediment and suspended particulates were collected from 13 sites in the middle and lower reaches of the Yellow River in China. Phthalic acid esters (PAEs) concentrations in different phases of each sample were determined by Gas Chromatogram GC-FID. The results are shown as follows: (1) In the Xiao Langdi–Dongming Bridge section, PAEs concentrations in water phase from the main river ranged from 3.99 × 10−3 to 45.45 × 10−3 mg/L, which were similar to those from other rivers in the world. The PAEs levels in the tributaries of the Yellow River were much higher than those of the main river. (2) In the studied branches, the concentration of PAEs in sediment for Luoyang Petrochemical Channel (331.70 mg/Kg) was the highest. The concentrations of PAEs in sediment phase of the main river were 30.52 to 85.16 mg/Kg, which were much higher than those from other rivers in the world. In the main river, the concentration level of PAEs on suspended solid phases reached 94.22 mg/Kg, and it reached 691.23 mg/Kg in the Yiluo River – one tributary of the Yellow River. (3) Whether in the sediment or on the suspended solid phases, there was no significant correlation between the contents of PAEs and TOC or particle size of the solid phase; and the calculated Koc of Di (2-Ethylhexyl) Phthalate (DEHP) in the river were much less than the theoretical value, which inferred that PAEs were not on the equilibrium between water and suspended solid phases/sediment. (4) Among the measured PAEs compounds, the proportions of DEHP and di-n-butyl phthalate (DBP) were much higher than the others. The concentrations of DEHP exceeded the Quality Standard in all the main river and tributary stations except those in the Mengjin and Jiaogong Bridge of the main river. This indicates that more attention should be paid to pollution control and further assessment in understanding risks associated with human health.  相似文献   

3.
Based on land ecological classification of the source regions of the Yangtze and Yellow Rivers and field investigation, two phases of TM remote sensing data obtained in 1986 and 2000 were compared. From spatial variations and type transformation trends, the spatial changes and evolutional patterns of land ecosystem in the source regions of the two rivers were analyzed using the analytical method of landscape ecological spatial patterns. Results show that middle and high-cover high-cold steppe areas degraded considerably by 15.82%, high-cover high-cold meadow areas by 5.15%, while high-cold swamp meadow areas decreased by 24.36%. Lake water area was reduced by 7.5%, especially the lakes in the source region of the Yangtze River. Land desertification is developing rapidly and the average of desertified land area has increased by 17.11%. Desertified land in the source region of Yellow River is expanding at an annual rate of 1.83%. Analysis of the evolutional pattern of land ecotypes shows that the general tendencies of spatial evolution in the regions are coverage reduction and desertification of high-cold steppe, cover reduction and steppification of high-cold meadows, and desiccation of swamp meadows. As a result, land ecological spatial distribution pattern in the region is changing and the state of eco-environment declining.  相似文献   

4.
Using the Yellow River, China, the study explores the problem of the use of COD and BOD5 as water quality management parameters in the presence of very high levels of suspended sediment (TSS) that characterize this river. Although the amount of natural organic matter per unit of suspended sediment of the Yellow River is not high, the very high concentration of mineral sediment in the Yellow River results in a large concentration of organic matter, which artificially inflates the laboratory values of COD and, as a consequent, leads to greatly exaggerated reports of pollution of the Yellow River. BOD5 can more accurately reflect the pollution of the Yellow River than COD; however, measured values of BOD under-report the actual values due to settling of the sediment in the incubation chamber resulting in values that are 21.6--38.3% less than the actual values. Therefore corrections are required for laboratory COD and BOD values so that the values are not artifacts of the sediment regime. Our work provides new insight into this phenomenon and demonstrates how correction factors may be determined and used with pollution data. Our work also suggests that the actual pollution levels of the Yellow River are probably not as high as reported by monitoring agencies.  相似文献   

5.
A total of 292 soil samples were taken from surface soil (0–20 cm) of a typical small watershed–Tongshuang in the black soil region of Heilongjiang province, northeast China in June 2005 for examining the concentration of soil organic carbon (SOC). Spatial variability of SOC in relation to topography and land use was evaluated using classical statistics, geostatistics and geographic information system (GIS) analyses. The objective of this study was to provide a scientific basis for land management targeting at improving soil quality in this region. Classical statistical analysis results indicated that the variability of SOC was moderate (C V = 0.30). Slope position and land use types were discriminating factors for its spatial variability. Geostatistics analyses showed that SOC had a strong spatial autocorrelation, which was mainly induced by structural factors. Mean concentration of SOC in surface soil was 2.27% in this watershed, which was a very low level in the northern black soil region of northeast China. In this small watershed, present soil and water conservation measures played an important role in controlling soil loss. But SOC's restoration was unsatisfactory. Nearly three-quarters of the area had worrisome productivity. How to improve SOC concentration targeting at soil fertility is a pressing need in the future.  相似文献   

6.
The phosphorus fractions and adsorption characteristics of seven floodplain sediment samples collected in the lower reaches of China’s Hanjiang River were studied. Most phosphorus fractions showed a marked downstream increase in response to point-source inputs from urban areas. Total phosphorus (TP) contents in the sediments ranged from 603.68 to 945.25 mg.kg−1. Inorganic phosphorus (IP) was the major component of TP, and calcium-bound phosphorus (Ca–P) was the major fraction of IP. The distribution characteristics of the phosphorus contents were affected by sediment grain size and hydrodynamic conditions. The maximum phosphorus adsorption capacities (Q max) and the half-saturation concentration (k) were obtained using an improved Langmuir model. Native adsorbed exchangeable phosphorus content (w NAP) and the zero-equilibrium phosphorus concentration value (c EPC0) were subsequently calculated. The effects of sediment grain size, temperature, and disturbance on the phosphorus adsorption isotherms were also studied. The results showed that phosphorus adsorption on floodplain sediments was primarily chemisorption; the particle concentration effect played a more important role at a disturbance intensity of 150 r.min−1 (on a shaker table) than at 100 r.min−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号