首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
D. Westphalen 《Marine Biology》1993,117(1):145-157
In Bermuda, stromatolitoid microbial nodules are found in dense groups in seagrass beds and on subtidal sandy or rocky bottoms. They develop between January and the beginning of August and may reach 15 cm in diameter and 6 cm in height. Nodules grow on top of the sediment surface and consist of convex interwoven mats of the cyanobacterium Phormidium corium and fine sediment particles trapped in these mats. Nodules were studied in the field and laboratory (in 1989–1992) with respect to their structure, microbial community, sediment chemistry and associated meiofauna. Vertical profiles taken with microelectrodes showed steep gradients of oxygen and sulfide. While free oxygen was only detected in the upper 2 mm, the sulfide concentrations increased with depth and reached maximal 1250 moll-1 inside the nodules. On the basis of microscopic observations and sediment chemistry, vertical sections through a nodule reveal four distinct layers: (A) an oxic green surface layer of growing cyanobacteria mats, (B) an anoxic yellow-white laminated layer of sediment particles, mucus and unpigmented cyanobacteria sheaths, (C) an anoxic sulfidic (sulfide <50 moll-1) interface where colour changes from yellow to gray and (D) an anoxic sulfidic (sulfide can increase to 1250 moll-1) gray core composed of sediment and decomposing cyanobacteria. The following meiofauna taxa were found in the nodules: Ciliata, Turbellaria, Gnathostomulida, Gastrotricha, Nematoda, Kinorhyncha, Polychaeta, Ostracoda and Harpacticoida. The distribution of the meiofauna was significantly different (p<0.05) within the four layers. The highest density of individuals was found in the sulfidic interface and core. Nematodes represented the dominant group in general. Thiobiotic organisms, such as the Gnathostomulida, Solenofilomorphidae, and Stilbonematinae were primarily found in the anoxic sulfidic layers of the nodules.  相似文献   

2.
Specimens of the hydrothermal vent pogonophoran Riftia pachyptila Jones were collected by submersible at a depth of 2 600 m at the 21°N hydrothermal vent site on the East Pacific Rise (20°50N, 109°06W) in April and May of 1982. The worms were maintained in pressurized aquaria for up to 45 d for metabolic studies. Consumption of O2 was regulated down to low PO 2 (oxygen partial pressure) values; O2 consumption rates were 0.63 and 1.12 mol g-1 wet wt h-1 at 2.5° and 8°C, respectively; such rates were comparable to those previously measured for other pogonophorans. Intact specimens of R. pachyptila (including bacterial symbionts) did not consume significant amounts of CH4 from the environment. The respiratory quotients, in the absence of added sulfide, indicated that metabolism was mainly heterotrophic. High rates of uptake of dissolved amino acids were recorded for one specimen. The total [CO2] in the vascular blood and the Hb-containing coelomic fluid were high. Under anaerobic conditions, there were equilibrium distributions of pH, total [CO2] and sulfide concentrations between the vascular blood and the coelomic fluid, apparently because these metabolites were readily exchanged between the two compartments. The vascular blood bound neither CH4 nor H2. However, sulfide was reversibly bound by both the vascular blood and coelomic fluid; because this binding depended strongly on pH (with a maximum at about 7.5), HS- was probably the molecular species bound. Under anaerobic, but not aerobic conditions, the trophosome bound substantial amount of sulfide; thus, the high concentrations of sulfide in the trophosome may have resulted mainly from sulfide bound to sulfide oxidases under anaerobic conditions. The coelomic fluid had a relatively low buffering capacity (2.2 mmol CO2pH-1).  相似文献   

3.
The hydrothermal vent crab Bythograea thermydron is exposed to high environmental concentrations of sulfide and low levels of oxygen for extended periods of time. It has previously been shown that hydrogen sulfide is oxidized to the relatively non-toxic thiosulfate (S2O 3 2– ), which accumulates in the hemolymph. Hemolymph thiosulfate levels in freshly captured crabs vary significantly among crabs from different hydrothermal vent sites as well as between crabs from different microhabitats within the same site. Hemolymph thiosulfate concentrations were not significantly different between crabs captured at the same site 6 mo apart. Hemolymph thiosulfate concentrations ranged from 66 mol 1–1 in a crab captured at a site with relatively low sulfide venting, to 3206 mol 1–1 in an individual that was netted from an active smoker vent with much higher sulfide exposure. The differences in hemolymph thiosulfate between sites and the stability of hemolymph thiosulfate in crabs captured at the same site at different times suggest that sulfide exposure is significantly different between sites and that this exposure may not vary significantly over the course of a few months. B. thermydron experimentally exposed to sulfide had high levels of thiosulfate in their hemolymph and increased abilities to regulate oxygen consumption in conditions of low oxygen. This enhancement of regulatory abilities suggests that the previously demonstrated increased hemocyaninoxygen (Hc–O2) affinity due to elevated thiosulfate may be adaptive in vivo. Average oxygen-consumption rates were much higher in crabs experimentally exposed to sulfide than in unexposed crabs. Crabs injected with isosmotic thiosulfate did not have increased oxygen-consumption rates as did the sulfide-exposed individuals, but did show a similar reduction in P c (the critical partial pressure of oxygen at which crabs can no longer regulate oxygen consumption). This suggests that it is the sulfide exposure and/or detoxification rather than the elimination of thiosulfate that causes the increase in metabolic rate. Thiosulfate diffuses into dead crabs and into live crabs exposed to 15 mmol S2O 3 2- l–1, indicating substantial permeability, and yet live crabs are able to eliminate thiosulfate when incubated in sea water containing 1.5 mmol S2O 3 2- l–1, suggesting a process that has an active component.  相似文献   

4.
Feeding, growth and bioluminescence of the thecate heterotrophic dinoflagellate Protoperidinium huberi were measured as a function of food concentration for laboratory cultures grown on the diatom Ditylum brightwellii. Ingestion of food increased with food concentration. Maximum ingestion rates were measured at food concentrations of 600 g C l-1 and were 0.7 g C individual-1 h-1 (1.8 D. brightwelli cells individual-1 h-1). Clearance rates decreased asymptotically with increasing food concentration. Maximum clearance rates at low food concentration were ca. 23 l ind-1 h-1, which corresponds to a volume-specific clearance rate of 5.9x105 h-1. Cell size of P huberi was highly variable, with a mean diameter of 42 m, but no clear relationship between cell size and food concentration was evident. Specific growth rates increased with food concentration until maximum growth rates of 0.7 d-1 were reached at a food concentration of 400 g C l-1 (1000 cells ml-1). Food concentrations as low as 10 g C l-1 of D. brightwellii (25 cells ml-1) were able to support growth of P. huberi. The bioluminescence of P. huberi varied with its nutritional condition and growth rate. Cells held without food lost their bioluminescence capacity in a matter of days. P. huberi raised at different food concentrations showed increased bioluminescence capacity, up to food concentration that supported maximum growth rates. The bioluminescence of P. huberi varied over a diel cycle, and these rhythmic changes persisted during 48 h of continuous darkness, indicating that the rhythm was under endogenous control.  相似文献   

5.
The substrate analogue [14C]-methylammonium was used to study ammonium/methylammonium uptake by Symbiodinium microadriaticum (zooxanthellae). The value of the Michaelis constant (K m) for the uptake system was approximately 35 M with methylammonium as substrate; ammonium was a competitive inhibitor of methylammonium uptake, and the K m for ammonium uptake (determined as the inhibition constant, K i, for methylammonium) was 6.6 M. Methylammonium uptake by zooxanthellae was light-dependent. Methylammonium uptake rates of zooxanthellae which had been freshly isolated from the hermatypic coral Acropora formosa (0.85±0.05x10-10 mol min-1 cell-1) were lower than those of axenic cultures of the zooxanthellae from Montipora verrucosa (Acroporidae) grown under various nitrogen regimes (1.6 to 12x10-10 mol min-1 cell-1). Maximum uptake rates were found for ammonium-starved cultured M. verrucosa zooxanthellae (10.2 to 12x10-10 mol min-1 cell-1); M. verrucosa zooxanthellae growing with ammonium as nitrogen source and zooxanthellae which had been freshly isolated from A. formosa gave similar and considerably lower uptake rates (0.85 to 1.6x10-1 mol min-1 cell-1). These results suggest that either coral tissue contains sufficient ammonium to repress synthesis of the uptake system of the algal symbionts or, alternatively, there are additional barriers to ammonium transport for zooxanthellae in vivo.  相似文献   

6.
The bloodworm Glycera dibranchiata Ehlers, 1968 accumulates cadmium through the general body surface and the intestine. Absorption through the gut accounts for cadmium which rapidly binds to coelomic proteins. Intracoelomic injection of 109Cd demonstrates that cadmium binds readily to hemoglobin and other proteins. The degree of cadmium binding is pH-dependent. The apparent pK of binding sites in body wall and musculature homogenates is 5.39. Cadmium ions injected into the coelom at 7 g g-1 tissue increase proline incorporation rates into the positively charged hemoglobin (cathode fraction) by 15-fold in 3 days. A 3-fold increase of proline incorporation was observed in the anode hemoglobin fraction over the same time period. Radioactivity in various protein fractions decreases at different rates after injection of 109Cd. Comparisons between the function of mammalian metallothionein and the coelomic fluid proteins of G. dibranchiata as a detoxification mechanism are discussed.  相似文献   

7.
The distribution of cyanobacteria in the surface waters of the North Sea was measured during July 1987. Numbers of cyanobacteria ranged from 2.5x106 to 1.7x108 cells 1-1. In the majority of stations, cyanobacterial numbers were highest in the near-surface water and a subsurface maximum was found at only one station. The distribution of 14C among the end-products of photosynthesis was determined for picoplankton (<1 m) and other phytoplankton >1 m throughout the North Sea. The majority of label was found in the protein fraction of both picoplankton and >1 m phytoplankton; incorporation into lipids and polysaccharides plus nucleic acids was much lower. We interpret the large incorporation into protein to be a consequence of nutrient limitation of these natural assemblages. Photosynthetic parameters of the two size fractions were also determined. Assimilation number (P m B ) and initial slope were greater for the picoplankton fraction than for phytoplankton >1 m but there was no evidence of significant photoinhibition of either fraction at irradiances up to 1 000 E m-2 s-1.  相似文献   

8.
The effect of total cadmium and organic complexing on the rate of cadmium uptake by the brine shrimp, Artemia franciscana has been studied in chemically defined saltwater solutions. The uptake of cadmium from solution by the laboratory-reared brine shrimp displays saturable uptake kinetics. Uptake of cadmium is linear in time up to a total cadmium concentration of 200 moll-1 and saturates above 800 moll-1. Complexation of cadmium with organic ligands decreases the uptake of the metal by the brine shrimp. This is in agreement with the view that the availability of cadmium to aquatic organisms is related to the activity of the free cadmium ion in the solution. There is no evidence that the direct uptake of cadmium complexes is important in determining uptake of cadmium. Cadmium uptake is not, however, a mere function of the free cadmium ion activity in the solution, i.e., cadmium uptake rates may differ by an order of magnitude for the same free cadmium ion activity depending on the complexation conditions. In addition to controlling the free cadmium ion activity, the role of organic ligands in metal ion buffering and metal ion masking appear important factors in determining the availability of the metal to the organism.  相似文献   

9.
S. Mayer 《Marine Biology》1994,119(4):571-582
An experimental setup was designed for in situ videotape recording of the particle capture process in the crown of the polychaete Sabella penicillus. Intact individuals of S. penicillus (collected in the Gullmornfjord, Sweden in 1992) were exposed to either 6 m Latex spheres or Rhodomonas sp. flagellate cells (6 m). The capture of the added particles was recorded on video. From frameby-frame analyses particle velocities were estimated and the shape of the three-dimensional particle paths was inferred. The mean velocity of particles approaching the crown was estimated to be ca. 1 mm s-1, increasing to ca. 1.7 mm s-1 in the interpinnule channel. At the moment of capture the particles were seen to follow a curved, near circular path close to the tips of the latero-frontal cilia. The transport velocities on the frontal side of the pinnules and filaments were estimated to be up to 0.15 and 0.5 mm s-1, respectively. Counting captured particles relative to particles arriving within the area of the pinnules gave a rough, direct estimate of nearly 100% retention rate when the polychaete was feeding undisturbed. Together with results from clearance measurements in the literature this implies that the worm is able to capture particles down to 3 m entering the interpinnule channel almost 100% effectively. In view of the 80-m wide interpinnule channel and 40-m spacing between the tips of the latero-frontal cilia on both sides of the channel, this result cannot be explained by mechanisms based solely on direct mechanical contact between cilia and particles but must involve fluid mechanical mechanisms. The present work is the experimental basis for ongoing numerical simulations of the particle motion in the interpinnule channel.  相似文献   

10.
Symbiotic filamentous bacteria thrive in the intestinal caecum of the deposit-feeding echinoid Echinocardium cordatum. Specimens of E. cordatum were collected at Wimereux (Nord Pas-de-Calais, France) in 1991. Their symbiotic bacteria build nodules by forming multilayered mats around detrital particles that enter the caecum. The morphological features of the bacteria are those of Thiothrix, a sulfide-oxidizing genus. The filaments, which may form rosettes, are sheathed and made by a succession of hundreds of rod-shaped bacteria which store elemental sulfur in the presence of external sulfide. Live bacteria are restricted to the outer layers of the nodules. Their sulfide-oxidizing activity was investigated, using a Biological Oxygen Monitor, by measuring the O2-consumption when reduced sulfur compounds are provided. They oxidize thiosulfate and sulfide. Optimal sulfide oxidation occurs at intermediary pO2 (100 to 160 M O2l-1). Spectrophotometry has confirmed that the sulfur content of the filamentous symbiotic sulfideoxidizing bacteria depends on the presence of external sulfide. This is the first report of symbiotic intradigestive Thiothrixspp.-like bacteria; it lengthens the list of symbioses between sulfide-oxidizing bacteria and invertebrates from sulfide-rich habitats.  相似文献   

11.
Suspended matter sampled in 1982 in the North Equatorial Current, in the open Atlantic to the west of West Africa, was analyzed by high performance liquid chromatography. The pigment fingerprint of samples taken in the surface mixed layer was dominated by zeaxanthin and chlorophyll a, in agreement with observed dominance of coccoid cyanobacteria. Near the bottom of the euphotic zone the fingerprint was more complicated, with a sharp transition at the depth of the deep chlorophyll maximum layer to dominance of chlorophyll b, 19-hexanoyloxyfucoxanthin and an unknown fucoxanthin derivative in the lower part of this layer; this fingerprint suggests dominance of eukaryotes (green algae, Prymnesiophyceae and Chrysophyceae) at depth. Up to 90% of the chl a was contained in particles smaller than 8 m, and in the surface mixed layer even more than 50% in particles smaller than 1 m. The high concentration of zeaxanthin relative to chl a near the surface suggests adaptation of the cyanobacteria to exposure to high irradiance. Evidence of this adaptation was the very high specific phytoplankton growth rate between sunrise and sunset (=0.16 h-1), measured by recording 14C incorporation into organic carbon and into chl a carbon after isolation of the latter by HPLC. The high concentration of chl b relative to chl a at depth was possibly caused by shade-adapted green algae containing more chl b than chl a. The specific growth rate of the deep shade community was low (<0.04 h-1), yet net primary production, calculated on the basis of chl a increase during incubation, was greatest at depth.  相似文献   

12.
The separate and combined effects of ammonium (10M) and phosphate (2M) on the ultrastructure of zooxanthellae (Symbiodinium sp.) from giant clams, Tridacna maxima, were examined in the field. Nitrogen addition significantly changed the ultrastructure of the zooxanthellae inhabiting the clams. After 9 mo exposure, the cross-sectional area of zooxanthellae from N-treated clams was significantly lower than that from other treatments [N=39.3 m2; C=47.9 m2; P=43.2m2; N+P=44.5 m2; (P=0.001)]. There was also a significant decrease in the size of starch bodies, especially around the pyrenoid of the zooxanthellae from N and N+P treatments [N=1.2 m2; C=2.0 m2; P=1.8 m2; N+P=1.2 m2; (P=2.08E-11)]. This presumably occurs as a result of the mobilization of organic carbon stores in response to stimulated amino acid synthesis under enriched nutrient conditions. These data strongly suggest that the symbiotic zooxanthellae of clams are limited to some extent by the availability of inorganic nitrogen, and that relatively minor changes to the nutrient loading of the water column can have substantial effects on the biochemistry of symbioses such as that which exists between clams and zooxanthellae.  相似文献   

13.
The resting rate of ammonia excretion for the sediment living bivalve Nucula tenuis (Montagu) was found to be 38.8 gN mg-1 dw h-1×10-4 in August and November 1985 in the Oslofjord. The excretion rate of experimental individuals was 37% higher when placed in artificial glass bead sediment. The regression between dry weight and excretion was logN excretion=1.338+1.192 log x, where excretion is gN individual-1 h-1×10-4 and log x=mg dry weight.  相似文献   

14.
Experiments were conducted to develop a sensitive sublethal toxicity test protocol to determine the toxicity of municipal wastewater effluents to larvae of the red abalone Haliotis rufescens. In multiple tests, fertilized abalone embryos were exposed for 48 h to dilutions of a reference toxicant, zinc sulfate, and to dilutions of primary-and secondary-treated effluents. The resulting veliger larvae were examined microscopically for larval shell abnormalities. In a longer flowthrough experiment, abalone were exposed for the entire larval phase, from the two-cell stage through metamorphosis, to compare zinc effects on metamorphosis with zinc effects on short-term larval shell development. Dissolved oxygen, pH, salinity and temperature were measured daily in test solutions, and zinc concentrations were verified by chemical analysis. No observed effect concentrations (NOECs) for zinc were 39±2.1 g l-1 in three 48 h exposures, and 19 g l-1 for the 9 d exposure through metamorphosis. Median effect concentrations (EC50s) were 68±6.9 g l-1 in 48 h tests and 50 g l-1 in the 9 d test. Abalone larvae were affected at lower concentrations of primary than of secondary effluent.  相似文献   

15.
Respiration rates of Thais haemastoma and Callinectes sapidus were determined as a function of salinity with a flow-through respirometer at 20°C. Respiration rates were measured at 10, 20 and 30 S for acclimated animals. The effects of 10-5-10, 20-10-20, 30-10-30 and 10-30-10 S semidiurnal cycles (12 h) of fluctuating salinity on the rate of respiration of the oyster drill were studied. During each cycle, salinity was changed from the acclimation salinity over a 4 h interval, held at that salinity for 2 h, returned to the acclimation salinity over 4 h and held at that salinity for 2 h. The effects of diurnal (24.8 h) salinity cycles on respiration in the oyster drill and blue crab were also studied. Salinity was changed from the acclimation salinity over a 10.4 h interval, held at that salinity for 2 h, then returned to the acclimation salinity over 10.4 h and held at that salinity for 2 h. The respiration rate of 30 S acclimated oyster drills (679 l O2 g dry weight–1 h–1) was significantly higher than for individuals acclimated to 10 S (534 l O2 g dry weight–1 h–1). Blue crab respiration was 170 l O2 g dry weight–1 h–1 at 30 S, and was significantly higher at 10 and 20 S than at 30 S. With the exception of the 20-10-20 S semidiurnal cycle, the respiration rate of oyster drills declined as salinity fluctuated in either direction from the acclimation salinity and increased as ambient salinity returned to the acclimation salinity. Semidiurnal cycles (12 h) of fluctuating salinity produced greater changes in the respiration rate of snails than analogous diurnal cycles (24.8 h). A 10-30-10 S pattern of fluctuation caused a greater percentage reduction in the steady state respiration rate of oyster drills than the 30-10-30 S pattern. The respiration rate of blue crabs varied inversely with fluctuating salinity. Relatively minor changes occurred in blue crab respiration rate with fluctuating salinity. Blue crab respiration rate characteristically dropped during the initial phase of declining salinity at a rate directly proportional to the rate of salinity decrease, perhaps representing a metabolic adjustment period by the blue crabs. The respiratory response of T. haemastoma to salinity is consistent with its incomplete volume regulation, while the response of C. sapidus is compatible with its ability to regulate extracellular fluid osmotic and ionic composition.  相似文献   

16.
Rainwater concentrations of either ammonium or nitrate were sufficient to stimulate chlorophyll a (chl a) production in bioassay experiments using Gulf Stream surface water collected off North Carolina during the summer of 1991. Previous studies primarily examined inshore waters and did not address the impact of rainwater ammonium. An increase in chl a occurred within 1 d of the addition of synthetic rainwater (2 or 5% rainwater, 98 or 95% seawater) containing up to 10 M ammonium; this increase was followed by a decrease in chl a the following day. A similar response to nitrate addition (5% addition of 20 M nitrate rain) was observed. In separate experiments, natural rainwater having nitrate and ammonium concentrations less than those in the experimental synthetic rain yielded a greater chl a response than synthetic rain when added at similar dilutions (0.5 to 5.0% rain). The maximum dissolved inorganic nitrogen concentration in the enriched seawater in these bioassays was 1.8 M; prior to enrichment the maximum was < 0.4 M. Bioassay experiments begun 2 d after a major storm event (sustained NE winds with gusts to 13 m s-1 and ca. 390 mol m-2 inorganic nitrogen deposition from rain) showed a chl a increase in response to addition of natural rainwater, but not to synthetic rainwater with similar dissolved inorganic nitrogen concentration. These results suggest that phytoplankton stimulants, in addition to nitrate and ammonium, exist in natural rain but not in the synthetic rain used in these experiments.  相似文献   

17.
The shortterm (10–22 d) effect of Zn, Hg, Cu, Cd, Pb, and Ni on the length growth of Mytilus edulis is studied. Significant reductions of growth rate was found at 0.3 g Hgl-1, 3 g Cul-1, 10 g Znl-1, and 10 g Cdl-1 added to the local sea water, while concentrations of up to 200 gl-1 of Pb and Ni had no effect on the growth. With exposure to Cu and Zn, there was a linear reduction in growth rate with increasing metal concentration up to about 6 g Cul-1 and 100 g Znl-1. Above these levels, growth stopped with Cu, while with Zn it was stabilized at about 20% of control growth. When Hg and Cd were added, a curvilinear relationship between growth and metal concentration is indicated. With Hg, growth rate is nearly zero above 3–4 g Hgl-1, while the growth rate was 50% of control after 10 d of exposure to 100 g Cdl-1. At 2 g Cdl-1 there was a significant stimulation of length increase. Observed EC50-values for growth were 0.3–0.4 g Hgl-1, 3–4 g Cul-1, 60 g Znl-1, and 100 g Cdl-1.  相似文献   

18.
Particulate organic carbon (POC) and nitrogen in sea water were measured in samples collected in the adjacent seas of the Pacific Ocean during the cruises of T. S. Oshoro-Maru (1969, 1970) and the R. V. Hakuho-Maru (KH-70-4, KH-72-1). High values were obtained in the northern North Pacific and the Bering Sea, the concentration of particulate carbon in the upper 50-m layer ranged from 35 to 550 g Cl-1. In the deep waters of these area, values above 50 g Cl-1 were frequently observed. The lowest values in the surface layer and deeper layers were obtained in the Japan Sea (23 gCl-1) and in the South China Sea (7 g Cl-1) respectively. A consistent minimum was located in the intermediate waters (100–400 m) throughout the entire region studied. Variation with depth was generally irregular with marked peak values in different layers. The POC distribution consited of these peak values and a relatively uniform background concentration. These background values slightly decreased with increasing depth and were different locally. Correlation analysis between carbon concentration and apparent oxygen utilization (AOU) of ambient water for the samples in the Japan Sea and the Sulu Sea showed that there was no systematic decrease of particulate carbon with increasing AOU. In these areas, the carbon concentration scattered in the higher AOU domain ranged from 10–100 g Cl-1. These observations support the conception that downward transport of particulate matter from the overlying surface layer in the adjacent seas of the Pacific Ocean may be fairly rapid.  相似文献   

19.
Samples of Halobates robustus Barber (Heteroptera: Gerridae) from the Galápagos Islands were analysed by optical emission spectrometry. The levels (in g g-1 dry weight) of Zn (134), Cu (155), Pb (< 1), Cd (7), and Cr (3) were not significantly different among insects of different sexes or developmental stages. The low natural levels of Cd in H. robustus from the relatively unpolluted environment of the Galápagos Islands are compared to the high concentrations of Cd in Halobates spp. from relatively polluted regions. Since the measured levels of Cd in their natural zooplankton food rarely exceed 10 g g-1, and very little of the Cd is found in the soft tissues, the high Cd concentrations (100 to 200 g g–1) in some seaskater species have evidently been derived by drinking from the surface microlayer of the seawater.  相似文献   

20.
U. Hoeger  I. Kunz 《Marine Biology》1993,115(4):653-660
The activities of some enzymes of the intermediary metabolism and the content of soluble protein and carbohydrate (glycogen plus free glucose) were measured in one type of coelomic cells (eleocytes) of the polychaete Nereis virens. Specimens used in this study were collected between 1989 and 1991 in Oosterscheldt Bay, The Netherlands, and divided into six different stages of sexual maturation as determined by the mean oocyte volume. In both sexes, the soluble protein content in eleocytes of immature individuals (11 mg ml–1 cell vol) increased three-fold. In prespawning N. virens the soluble protein content decreased to less than 2 mg protein ml–1 cell vol in females but not in males. In both sexes, the carbohydrate content decreased continuously from immature [300 mol glucose equivalent (equiv) ml–1 cell vol] to prespawning individuals (< 40 mol glucose equiv ml–1 cell vol). During the time course of maturation, the specific activities (expressed as units mg–1 protein) of pyruvate kinase, phosphoenolpyruvate carboxykinase, malate dehydrogenase, alanine aminotransferase and glutamate dehydrogenase decreased in both sexes. A transient increase in the specific activities was found for glycogen phosphorylase and aspartate aminotransferase. No major changes were found for hexokinase, lactase dehydrogenase, glucose-6-phosphate dehydrogenase and malic enzyme. Sex specific differences were found for the activities of citrate synthase and isocitrate dehydrogenase, which were higher in males. the specific activities of the latter enzyme increased more than ten-fold in males, but only four-fold in female eleocytes during maturation. In eleocytes of prespawning females, the activities of most enzymes showed extremely high variations not found in prespawning males. For two enzymes of fatty acid catabolism, -hydroxyacyl-CoA dehydrogenase and -hydroxybutyrate dehydrogenase, only traces of activities were detected, suggesting the absence of significant fatty acid catabolism in the eleocytes. Compared to the eleocytes, the body wall tissue showed ten-fold higher activities of phosphofructokinase, whereas the eleocytes displayed higher activities of the amino acid interconverting enzymes glutamate dehydrogenase and alanine aminotransferase and the glyconeogenic enzyme phosphoenolpyruvate carboxykinase. Citrate synthase activities were similar for both tissues. In the coelomic fluid of N. virens, glucose (< 0.1 to 3.5 mM) and d-lactate (0.1 to 4 mM) were present and represent exogenous substrates for the eleocyte metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号