首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The effect of modified montmorillonites on the biodegradation and adsorption of selected steranes, diasteranes and hopanes was investigated in aqueous clay/oil microcosm experiments with a hydrocarbon degrading microorganism community. The unmodified montmorillonite was treated with didecyldimethylammonium bromide, hydrochloric acid and the relevant metallic chloride to produce organomontmorillonite, acid activated montmorillonite and homoionic montmorillonite respectively which were used in this study. The study indicated that organomontmorillonite, acid activated montmorillonite and potassium montmorillonite did not support the biodegradation of the selected steranes, diasteranes and hopanes as alteration of the biomarkers via biodegradation varied from a paltry 2–6 %. The adsorption of the selected biomarkers on acid activated montmorillonite and organomontmorillonite was also poor. However, adsorption of the biomarkers on potassium montmorillonite was relatively high. Sodium montmorillonite and unmodified montmorillonite appear to stimulate the biodegradation of the selected biomarkers moderately (30–35 %) with adsorption occurring at low level. Calcium montmorillonite and ferric montmorillonite effected significant biodegradation (51–60 %) of the selected biomarkers.  相似文献   

2.
Yang L  Jiang L  Zhou Z  Chen Y  Wang X 《Chemosphere》2002,48(4):461-466
Natural montmorillonite was modified with a quaternary ammonium compound, hexadecyltrimethylammonium (HDTMA). The sedimentation capabilities of unmodified and modified montmorillonites were then investigated. The sedimentation velocity of modified montmorillonites increased if the amounts of adsorbed HDTMA were from 0.3 to 1.0 times the cation exchange capacitity (CEC). It also emerged that the sedimentation capability of modified montmorillonites was improved and that the variously CEC-modified montmorillonites had similar sedimentation capabilities after they had sorbed organic matter from oily wastewater. Thus, modified montmorillonites (especially 0.5 CEC treatment) had good sedimentation capabilities for sorbing organic substance and can act as carriers in wastewater biotreatment.  相似文献   

3.
In order to better understand the fate of metals during the biodegradation of organic matter in soils, an in vitro incubation experiment was conducted with metal-rich and metal-free leaves of Arabidopsis halleri introduced in a non-contaminated soil. During incubation of these microcosms, we followed the partitioning of Zn and Cd between the solution and their solid components, by determining the metal contents of six soil fractions and dissolved metals after granulo-densimetric separations at selected times. Microbial biomass and exchangeable metals in K(2)SO(4) solutions were also determined at the same times, and two main stages were identified. The first one takes place after a fast abiotic transfer of Zn and Cd from readily soluble plant tissues onto fine soil constituents, keeping metals away from the liquid phase: during about 14 days, microbial biomass increased as well as metal contents of some soil fractions, particularly those rich in particulate organic matter. During the second stage, between 14 and 60 days and for the metal-rich microcosms, Zn and Cd contents in solution increased, while microbial biomass decreased instead of staying constant as in control. A change of Zn and Cd speciation is assumed, from non-toxic adsorbed forms to more toxic species in solution. Remaining metal-rich plant residues seem to create a stable organic C compartment in the soil.  相似文献   

4.
利用十六烷基三甲基溴化铵对天然蒙脱土进行改性,并用聚乙烯醇对改性蒙脱土进行固定化处理,然后进行柱状吸附和振荡条件的吸附试验。研究结果表明,HDTMA改性蒙脱土固定化后能有效吸附苯酚,不同环境条件对苯酚的柱状吸附能力产生不同的影响。在pH4~8的范围内,固定化改性蒙脱土对苯酚的吸附效果无显著性差异,pH在10以上,其吸附能力明显下降;温度对吸附效果影响不大;进水苯酚浓度越高,改性蒙脱土对苯酚的吸附量越大,但出水苯酚浓度也高;苯酚的流速越小,吸附容量越高,吸附效果越好。  相似文献   

5.
Dubbin WE 《Chemosphere》2004,54(8):1071-1077
Retention of metals as hydroxy precipitates on mineral surfaces is an important process maintaining environmental quality. Hydroxy precipitates of Cr(III) are particularly important because appreciable mobilisation of intercalated, hydrolysed Cr from montmorillonite is currently thought to occur only via oxidative dissolution. The present study examines the potential of oxalate, tartrate, and citrate to desorb Cr from both hydroxy-Cr and hydroxy Al-Cr precipitates sorbed to montmorillonite. For all intercalated clays there was an initial very rapid dissolution, followed by a slow but sustained Cr release that more closely followed a parabolic rate law, the latter indicative of transport-controlled dissolution. The initial rapid dissolution persisted longer for the pure Cr clay ( approximately 48 h) than for the coprecipitated Al-Cr clay ( approximately 24 h). At the end of the 30 d reaction, however, most Cr remained sorbed to the montmorillonite in all systems. Citrate, for example, solubilised only approximately 10% of the total sorbed Cr from the pure Cr clays. Aluminum presence decreased Cr solubilisation rate due to Al accumulation at the polymer margins. Moreover, Al presence maintained the integrity of the intercalated polymers and prevented c-axis expansion beyond 1.4 nm, thus restricting the supply of organic ligand to the inter-layer region. Oxalate, tartrate, and citrate were shown to be effective chelators of sorbed Cr and these ligands may therefore play an important role in the mobilisation and cycling of this metal in soils and sediments.  相似文献   

6.
Lan Y  Li C  Mao J  Sun J 《Chemosphere》2008,71(4):781-787
The influence of clay minerals on the reduction of Cr6+ by citric acid was investigated at pH values 4.0, 4.5 and 5.0 at 25 degrees C. The results indicate that montmorillonite and illite greatly accelerate the reduction reactions at pH 4.0 and 4.5, but their effects are dramatically reduced at pH 5.0. The role of clay minerals in accelerating the reactions is in the order: illite>montmorillonite>kaolinite, which has a positive correlation with the amount of Mn2+ adsorbed on the surfaces of these minerals. With light, Fe(3+) also significantly increases reaction rates. Ethylenediaminetetraacetic acid (EDTA) greatly suppresses the acceleration of the reduction reactions by these minerals, indicating that EDTA competes with citric acid for Mn2+. Thus, the formation of complexes between Mn(2+) and citric acid could be a prerequisite for the acceleration of the reductions of Cr6+ by clay minerals. In addition, there is no relationship between the specific surface area of clay minerals and the reduction rate of Cr6+ by citric acid.  相似文献   

7.
The ability of a sodium montmorillonite (CLONa) and two commercial available organoclays having interlayer organic cations possessing different functional groups (CLO20A and CLO30B) was investigated for adsorbing two pesticides namely fenexamid (FEX) and pyrimethanyl (PMT). The two organoclays displayed a higher affinity with the pesticides than the unmodified clay, but the improvement in adsorption capacity varied according to the characteristics of the pesticide and the interlayer organic cation. FEX was adsorbed to a greater extent than PMT by both organoclays, which may be due to the higher hydrophobicity of FEX thereby indicating considerable hydrophobic interaction between the adsorbent/adsorbate systems. Our findings may find application in the removal of water-soluble pesticides from aquifers.  相似文献   

8.
Y. Soma  M. Soma 《Chemosphere》1989,18(9-10):1895-1902
Chlorophenols were adsorbed from gas phase on allophane, Na- and Fe(III)-ion exchanged montmorillonites at room temperature and the reaction on clay surfaces was followed by GC-MS analysis of extracts of the adsorbates. Besides chlorinated biphenyldiols and hydroxydiphenyl ethers, chlorinated hydroxydibenzofurans were formed on Fe(III)-montmorillonite.  相似文献   

9.
The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand-cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demonstrated.  相似文献   

10.
Jiang JQ  Zeng Z 《Chemosphere》2003,53(1):53-62
This paper builds on the preceding researches to study the effects of the type of clays (montmorillonites K10, KSF) and modifying conditions on the structure and adsorption behavior of resulting clay adsorbents. The raw clays were modified by polymeric Al/Fe species, hexadecyl-trimethylammonium (HDTMA) surfactant and a complex of polymeric Al/Fe-HDTMA. X-ray diffraction spectra was applied to analyze the structure of the raw and modified clays. After modification, the basal spacing of the clays varied, depending on the types of raw clay and modification conditions. Copper and phenol were selected as adsorbates for evaluating the adsorption performance of various clays, which was affected significantly by the types of raw clay and modification conditions. In general the inorganic contaminant (e.g., Cu) tend to be adsorbed by the polymeric Al/Fe modified clay and the organic impurities (e.g., phenol) will be preferably captured by the surfactant modified clay; both due to the specific surface properties resulting from introducing the modifiers. The complex modified clays possessed the ability of adsorbing both inorganic and organic contaminants. In addition, the d 0 0 1 spacing of modified KSF was greater than that of K10; the adsorption performance with modified KSF was thus greater than that with the modified K10. Finally, the ratio of modifiers to the clay (metal:surfactant:clay) has been observed to affect the adsorption performance; the optimal conditions have been defined.  相似文献   

11.
Subfractionation, characterization and photooxidation of crude oil resins   总被引:1,自引:0,他引:1  
Resins of five crude oils were obtained using SARA fractionation. The maltenic fraction of Blend Arabian Light, was further separated into six polar fractions. These fractions which are the constituents of the resins were analysed by FTIR spectroscopy. They appeared to be more oxidized, more aliphatic and less aromatic than asphaltenes. Photooxidation of resins showed that they are easily oxidizable and much more influenced by photooxidation than asphaltenes. The principal effect of photooxidation are: (i) increase of carbonyl group amounts and particularly formation of carboxylic groups, (ii) oxidation of sulfoxide in sulfone group, (iii) oxidation of alkyl chains and of aromatic rings (quinone structures).  相似文献   

12.
The availability of Cd, Cr, Cu, Ni, Mn, Pb and Zn present in the finest size particles of urban soils is studied by comparing the concentrations in the clay fraction with those extracted from the whole soil by either single-extraction or sequential extraction method. Many metals are preferentially present in the finest particles as compared to coarser fractions. This is true for most metals studied, except Mn and, perhaps, Cd. Those metals present in the clay fraction are often in easily bio-accessible forms, especially Cu, Pb and Zn. The results suggest that bio-accessible forms of these three metals are distributed among the three sequential fractions, and even the fraction considered as ‘residual’ is also bio-accessible to a significant extent. The statistical analysis shows some distinctions among metals that are compared to the ‘urban’, ‘natural’, or intermediate behaviour of the various metals as proposed earlier in the literature.  相似文献   

13.
Abstract

The formation of the insecticide methidathion (S-[(5-methoxy-2-oxo-1,3,4-thiadiazol-3(2H)-yl)methyl] O,O-dimethyl phosphorodithioate) complexes with inorganic cation-saturated (Mg2+, Ca2+, Cu2+, and Ni2+) montmorillonites was investigated. The nature and structure of the complexes was determined by X-ray diffraction and infrared spectroscopy. The arrangement of the pesticide molecule in the interlayer space was also considered from ab initio calculations using simpler related molecules. The insecticide methidathion penetrated the interlayer spaces of the homoionic clay samples. The ligand–cation interactions in these complexes depend on the nature and characteristics of the saturating cations. Mechanisms involving water bridges and direct coordination with the exchange cation were proposed for the adsorption of methidathion by inorganic cation-saturated montmorillonites. The effect of the inorganic cations on the sorption of the cationic surfactant tetradecyltrimethylammonium bromide (TDTMA) by montmorillonite was also studied and the subsequent sorption of methidathion in TDTMA+-Montmorillonite determined. Van der Waals bonds constitute the methidathion adsorption mechanism by montmorillonite saturated with TDTMA+. The arrangements of methidathion and of the cationic surfactant molecules in the montmorillonite interlayer space were demostrated.  相似文献   

14.
Environmental Science and Pollution Research - The aim of this study was to determine the essential element (Zn, Ca, K, Fe, Na, and Mg), essential trace element (Co, Mn, Cr, and Cu), and...  相似文献   

15.
Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

16.
蒙脱石矿物是土壤中比表面积大、分布很广的一种粘土矿物,也是土壤中主要的活性组份之一。本文系统地评述了农药分子在蒙脱石层间域中的吸附、脱附、氧化还原、催化降解等反应机理,并指出它们的环境化学行为对环境的影响和意义  相似文献   

17.

Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

18.
Jiang JQ  Cooper C  Ouki S 《Chemosphere》2002,47(7):711-716
This study concerns with the development of modified montmorillonites as adsorbents for water treatment. Polymeric aluminium and iron intercalated forms of montmorillonites have been prepared in the absence and presence of an alkylammonium cationic surfactant (Hexdecyl-trimethyl-ammonium bromide, HDTMA). Montmorillonites intercalated with polymeric Al, Fe, Fe/Al (2:1 Fe to Al ratio in solution), possess large N2 Brunauer-Emmett-Teller (BET) surface areas. XRD data also shows trace amounts of illite and plagioclase within the clay materials. Montmorillonites intercalated with HDTMA, polymeric Fe/HDTMA, polymeric Al/HDTMA and polymeric Fe/Al/HDTMA (1:1 metal to surfactant molar ratio in solution) undergo some losses of N2 BET surface areas. Preliminary adsorption studies on phenol have shown that polymeric Al/HDTMA- and HDTMA-only-modified montmorillonites possess a good affinity for phenol, whereas the polymeric Al/Fe modified- and starting montmorillonites have little affinity for phenol adsorption.  相似文献   

19.
The influence of soil and sediment composition on sorption and photodegradation of the herbicide napropamide [N,N-diethyl-2-(1-naphthyloxy)propionamide] was investigated. Five soils and one sediment were selected for this study and the clay fractions were obtained by sedimentation. Sorption-desorption was studied by batch equilibration technique and photolysis in a photoreactor emitting within 300-450 nm wavelength with a maximum at 365 nm. Sorption increased with clay content and was not related to organic matter content. High irreversibility of sorption was related to the greater montmorillonite content. The presence of soil or sediment reduced photolysis rate due to screen effect and this process did not depend on solid composition but on particle size distribution.  相似文献   

20.
The concentration and loading distribution of trace metals (Cu, Zn, Pb, Co, Ni, Cr, and Mn) and major elements (Al, Ca, Fe, and Mg) in different particle size fractions (2000-280, 280-100, 100-50, 50-10, 10-2, and <2 μm) of surface soils from highly urbanized areas in Hong Kong were studied. The enrichment of Pb, Cu, and Zn in the urban soils was strongly influenced by anthropogenic activities, and Pb accumulated in fine particles was mainly derived from past vehicular emissions as shown by Pb isotopic signatures. Trace metals primarily accumulated in clay, fine silt, and very fine sand fractions, and might pose potential health risks via the inhalation of resuspended soil particles in the air (PM10 or PM2.5), and ingestion of adhered soils through the hand-to-mouth pathway. The mobility, bioavailability, and human bioaccessibility of Pb and Zn in bulk soils correlated significantly with metal concentrations in fine silt and/or very fine sand fractions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号