首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了实现味精生产过程中产生的废活性炭的循环利用,提出了在通保护气体(氮气)的情况下管式电阻炉加热的方法。本研究考察了物料的质量,再生温度和再生时间对再生活性炭的吸附性能和得率的影响。结果表明,在物料质量为10 g、再生温度为800℃、再生时间为15 min时,再生活性炭的亚甲基蓝的值为180 mg/g,得率为67.23%。再生活性炭的比表面积1 015 m2/g,总孔体积1.05 m L/g,平均孔径4.47 nm。考察了再生次数对活性炭吸附性能的影响。对废活性炭和再生活性炭进行扫描电镜分析,再生活性炭的表面杂质明显减少,孔隙数量明显增多。  相似文献   

2.
通过微波加热的方式对用于扑热息痛废水的吸附的活性炭进行再生处理。考察了再生温度和再生时间两个因素对活性炭吸附性能和得率的影响。在最佳微波再生条件(温度为600℃,微波再生时间为15 min)下结果表明,活性炭在的亚甲基蓝吸附值和得率分别为187.5 mg/g和41.82%。对最佳条件下再生得到的活性炭进行孔结构表征,结果为,比表面积达947.9 m2/g,总孔体积为0.97 m L/g。中孔的比例占到71.18%说明活性炭主要以中孔为主。同时对废活性炭和再生活性炭进行了扫描电镜分析,结果表明,通过微波再生后的活性炭表面杂质明显减少。  相似文献   

3.
提出用微波加热-二氧化碳活化法再生乙酸乙烯合成用触媒载体废活性炭工艺.采用条件实验法研究了活化时间、二氧化碳流量和微波功率对活性炭碘吸附值,亚甲基蓝吸附值和再生得率的影响,得到微波辐射加热二氧化碳活化再生乙酸乙烯用触媒载体废活性炭的最佳工艺条件为活化时间25 min,二氧化碳流量0.2 L/min,微波功率700 W.在此条件下制得的活性炭碘吸附值为1158.02 mg/g、亚甲基蓝吸附值为240 mg/g、得率为74.19%.并对活性炭进行了比表面积的测定和孔结构的分析,活性炭的比表面积为1308.13 m2/g,总孔容为0.76 mL/g.  相似文献   

4.
提出用微波加热一二氧化碳活化法再生乙酸乙烯合成用触媒载体废活性炭工艺。采用条件实验法研究了活化时间、二氧化碳流量和微波功率对活性炭碘吸附值,亚甲基蓝吸附值和再生得率的影响,得到微波辐射加热二氧化碳活化再生乙酸乙烯用触媒载体废活性炭的最佳工艺条件为活化时间25min,二氧化碳流量0.2L/min,微波功率700w。在此条件下制得的活性炭碘吸附值为1158.02mg/g、亚甲基蓝吸附值为240mv,/g、得率为74.19%。并对活性炭进行了比表面积的测定和孔结构的分析,活性炭的比表面积为1308.13m^2/g,总孔容为0.76mL/g。  相似文献   

5.
水枝锦活性炭对孔雀石绿的吸附性能研究   总被引:2,自引:1,他引:1  
以水枝锦为原料,采用磷酸活化法制备成水枝锦活性炭,通过静态实验研究其对孔雀石绿的吸附性能.考察了水枝锦活性炭投加量、接触时间、pH和孔雀石绿初始浓度对孔雀石绿吸附效果的影响.结果表明,在温度为723 K、活化时间为1 h条件下,水枝锦活性炭得率为36.7%,比表面积为1 223m2/g;在298K、孔雀石绿初始质量浓度为250mg/L、接触270min条件下,水枝锦活性炭的最佳投加量为0.5 g/L,适宜pH为7~12;吸附量随温度的升高而增大,提高温度有利于吸附的进行;水枝锦活性炭静态吸附孔雀石绿的动力学行为符合伪二级动力学方程.静态吸附动力学研究为投加粉状活性炭的吸附池的设计和污水处理装置的运行提供基础信息,对于去除水中孔雀石绿技术的应用具有重要的实际意义.  相似文献   

6.
采用CO2物理活化法将废弃的夏威夷坚果壳制备成高品质活性炭。实验研究测定了活化温度、活化时间、CO2流量等因素对活性炭的吸附性能和产率的影响。通过响应曲面法得到实验优化工艺条件:活化温度766℃、活化时间36 min、CO2流量186 m L/min,所制备的活性炭亚甲基蓝值和产率分别为186 mg/g,71.35%。衡量活性炭品质的关键性参数BET比表面积、孔容和平均孔径分别为1 267 m2/g,0.97 m L/g和4.13 nm。此外通过扫描电镜对比炭化料和活性炭分析发现,活性炭表面具有大量无规则孔隙。  相似文献   

7.
研究了颗粒活性炭(GAC)对苯酚的吸附能力,确定GAC的吸附平衡时间,探讨超声波再生吸附苯酚活性炭的影响因素。实验结果表明:6 h后GAC吸附100 mL浓度为250 mg/L的苯酚水样达到平衡,最大平衡吸附量为16.24 mg/g,去除率为70.5%。再生条件为再生液温度30℃,超声再生时间20 min,解析液为0.25 mol/L氢氧化钠溶液,此时GAC再生效果为86.1%。  相似文献   

8.
草酸钾活化法制备榴莲壳活性炭及其表征   总被引:1,自引:0,他引:1  
以榴莲壳为原料,选择K2C2O4为活化剂,在自制氛围气中进行化学活化制备活性炭。考察了活化剂/原料浸渍比、活化温度与活化时间对活性炭的碘和亚甲基蓝吸附值及得率的影响。结果表明,制备榴莲壳活性炭的理想条件为:活化剂/原料浸渍比1.5∶1、活化温度800℃和活化时间120 min;此时活性炭的SBET(BET比表面积)、总孔容和微孔孔容分别为1 195 m2/g、0.60 cm3/g和0.41 cm3/g。利用比表面和孔隙度分析仪、场发射扫描电镜(FE-SEM)和傅立叶红外光谱法(FT-IR)对活性炭的孔结构特征、微观形貌和表面官能团进行了表征。FE-SEM观测结果显示榴莲壳活性炭孔隙结构发达,且含有丰富的中孔。  相似文献   

9.
为了解决喜旱莲子草入侵带来的环境污染和生态破坏问题,探索了综合利用其制备价廉、质优活性炭的可能性、在正交实验的基础上,对实验结果进行了单因素方差分析,结果表明,控制因素对活性炭得率和碘吸附值的影响大小均依次为:炭化温度>炭化时间>浸渍时间>浸渍比,且前三者有显著影响、极差分析表明最佳制备工艺组合为:浸溃比4∶1、浸渍时间6h、炭化温度873 K和炭化时间1h.在最佳制备条件下制得的喜旱莲子草基活性炭得率和碘吸附值为:37.44%和752.36 mg/g;其比表面积、总孔体积、平均孔径和中孔率分别为:1 100.720 m2/g、0.610 cm3/g、2.216 nm、72.00%.红外光谱分析表明,活性炭形成了大量表面官能团,主要有以下几种:羧基、酚基、醚基等、正交实试和物理特性表征均表明,喜旱莲子草是良好的中孔活性炭制备原料.  相似文献   

10.
磷酸活化植物基活性炭对水溶液中铅的吸附   总被引:3,自引:1,他引:2  
以棉秆与互花米草为原料,采用磷酸活化法制备了低成本的植物基活性炭,通过静态实验研究了其对重金属铅的吸附性能。结果表明,在活化温度为500℃、活化时间为2 h条件下,制备的棉秆和互花米草活性炭比表面积为1 570m2/g和856 m2/g,含氧酸官能团含量分别为1.43 mmol/g和1.27 mmol/g。在25℃下,两种活性炭对重金属铅的Langmuir最大吸附量分别为119 mg/g和111 mg/g,吸附最佳pH为4.3,吸附平衡符合Freundlich方程,离子交换在吸附过程中发挥了重要作用。  相似文献   

11.
核桃壳炭化吸附废水中Cr(Ⅵ)的性能研究   总被引:4,自引:0,他引:4  
采用氯化锌活化法制备生物质废物硬壳活性炭,工艺条件为:核桃壳与氯化锌溶液质量比为1∶1.5、氯化锌溶液质量分数50%、炭化温度300℃、炭化时间90 min、活化温度600℃、活化时间60 min。对产品比表面积、孔径和表征进行了分析,并探讨了该核桃壳活性炭吸附废水中六价铬的pH值、废水初始浓度、吸附时间、振动转速等影响因素。结果表明:制得的活性炭碘吸附值为1 038.33 mg/g,比表面积为645.36 m2/g,平均孔半径为1.37 nm。当活性炭用量为0.1 g,废水pH=3,吸附接触时间为1 h,取100 mL浓度为50 mg/L的含Cr6+废水时,处理吸附量可达48.57 mg/g。活性炭最大饱和吸附值为80.24 mg/g。吸附符合Langmuir等温模式,吸附等温方程式为Ce/Qe=0.0083+0.0121Ce。  相似文献   

12.
活性炭和沸石对氨氮的吸附特性及生物再生   总被引:5,自引:1,他引:4  
采用活性炭和沸石作为吸附材料,分别考察了这两种吸附材料对水体中氨氮的吸附特性及其生物再生性能。实验结果表明,活性炭和沸石对水体中氨氮的等温吸附符合Freundlich等温式,其拟合度分别为0.9783和0.9303;静态吸附结果表明活性炭和沸石均具有较好的氨氮吸附性能,24 h内沸石对氨氮的吸附能力为1.27 mg/g,高于活性炭的0.53 mg/g;动态吸附中沸石达到吸附饱和的时间为96 h,较活性炭达到吸附饱和的时间长,沸石显示出作为氨氮吸附剂的优越性;活性炭和沸石经过96 h的生物再生后吸附性能获得一定程度的再生,出水中氨氮浓度比未进行生物再生前分别降低17.31 mg/L和8.32 mg/L,且都在表面形成了稳定的生物膜。  相似文献   

13.
以氯化锌为活化剂,用羊骨为原料,利用化学活化法制备羊骨基活性炭。通过正交实验和单因素实验相结合得出最优工艺条件为:氯化锌溶液浓度0.05 g/100 mL、活化温度350℃、活化时间10 min、浸渍时间为36 h。在此最佳工艺条件下羊骨基活性炭的碘吸附量为407.35 mg/g,得率为62%;用此工艺制备的羊骨基活性炭等温曲线类型属于多层吸附;BET比表面积为59 m2/g,总孔容为0.1945 cm3/g,孔径分布落在1.31~20 nm之间,为中孔结构;羊骨基活性炭SEM图可看出,颗粒呈不规则状,结构疏松。  相似文献   

14.
活性炭被广泛应用于水处理领域,然而吸附饱和后难以分离和再生的缺点却限制了其应用。本研究采用化学共沉淀法将铁氧化物和活性炭进行复合,制备出同时具有磁分离性能和较强的吸附性能的磁性活性炭复合材料,并对制备的复合材料进行表征,考察其对水中甲基橙的吸附性能。结果表明,制备的磁性活性炭的比表面积为666.72 m2/g,平均孔径为3.16 nm,具有良好的磁性能,在外加磁场下能快速地从溶液中分离出来且磁性能相对稳定,铁氧化物对活性炭吸附性能的影响不大。在温度为25℃、p H为5、吸附剂用量为3 g/L的情况下,吸附3 h后,该磁性活性炭对甲基橙的吸附率可达99.1%,预示着该磁性活性炭在水处理方面具有潜在的应用前景。  相似文献   

15.
以棉秆为原料,以KOH为活化剂,制备了高比表面棉秆基生物质活性炭。分析了制得的活性炭的元素组成、表面官能团、吸附能力等物化性能,探讨了浸渍比,活化温度,活化时间等工艺参数对制备活性炭得率、表面官能团、碘值、亚甲基蓝值等性能的影响,并通过静态吸附实验比较了不同条件下制备活性炭对2,4-二硝基苯酚的吸附性能,探讨了典型炭样品对2,4-二硝基苯酚的等温吸附特性。结果表明,KOH活化棉秆基生物质活性炭的表面物化性质随浸渍比、活化温度等工艺参数变化而变化,活化适宜条件为浸渍比1:3、活化温度800℃、活化时间90 min,在此条件下制得的炭样的碘值为1 251 mg/g,亚甲基蓝吸附值为478 mg/g,分别是国家一级品标准的1.25倍与3.54倍;对2,4-二硝基苯酚的Langmuir最大吸附量为747 mg/g,与Freundlich模型相比,Langmuir模型能较好地描述2,4-二硝基苯酚在炭样上的吸附行为,表明制备活性炭样品表面吸附位的能量分布较为均一。  相似文献   

16.
竹材加工剩余物制备竹活性炭及其对Pb^2+的吸附性能   总被引:3,自引:1,他引:2  
利用竹材加工剩余物竹蔸、竹节和竹枝制备竹炭,再以H3PO4为活化剂,在活化温度为700 ℃和不同的H3PO4浓度下进行活化制备竹活性炭,测定了吸附性能最强的竹活性炭在不同吸附时间和Pb2+初始浓度下对Pb2+的吸附率,并进行了结构表征.结果表明,当H3PO4溶液质量分数为45%时,所制备的竹活性炭吸附性能最强,其中竹蔸活性炭的Pb2+吸附性能接近于商品活性炭;竹蔸活性炭吸附Pb2+的吸附时间在120~180 min为佳;根据Langmuir最大吸附量计算公式求得竹蔸活性炭最大吸附量为91.1 mg/g.竹枝炭、竹节炭与竹篼炭的孔隙度分别为0.656、0.698和0.740,竹枝活性炭、竹节活性炭与竹篼活性炭的孔隙度分别为0.690、0.715和0.755;竹篼炭和竹篼活性炭比表面积分别为110.354、462.069 m2/g,孔容分别为0.090、0.235 cm3/g,平均孔径分别为31.552、20.368 .  相似文献   

17.
利用饮料厂废弃杏核壳制备活性炭,对含Cr(Ⅵ)废水进行吸附实验研究,达到废物资源化的目的。介绍了活性炭制备过程,用电镜观察活性炭的形貌,并测得碘吸附值为1 354 mg/g。研究杏核壳活性炭吸附含Cr(Ⅵ)废水结果显示,当吸附时间为3 h、溶液pH为3、吸附温度25℃时,活性炭饱和吸附量达12.5 mg/g,有效去除废水中Cr(Ⅵ)。杏核壳活性炭吸附Cr(Ⅵ)符合Langmuir吸附模型(R2 =0.9944)和Freundlich模型(R2 =0.9462)。对Cr(Ⅵ)的动态去除率可达99.68%。  相似文献   

18.
微波紫外耦合辐射降解间硝基苯磺酸钠及活性炭再生   总被引:1,自引:0,他引:1  
郑双  郑彤  王鹏 《环境工程学报》2015,9(3):1238-1246
针对活性炭吸附法处理污水所面临的吸附剂物耗大及其所形成的危险废弃物处置难题,采用微波紫外耦合辐射技术对活性炭无害化再生。以活性炭吸附电镀废水中的间硝基苯磺酸钠(3-NBSA)为研究对象,考察了p H对活性炭吸附3-NBSA效果的影响,研究了活性炭的吸附动力学和吸附等温线,最后探讨了微波功率、微波辐照时间、空气流量及再生次数对活性炭再生效果和再生损耗率的影响。实验结果表明,p H在2~8范围内对活性炭吸附效果影响不大,活性炭吸附动力学符合准二级动力学模型,等温吸附特性可用Freundlich等温方程式来描述。活性炭再生实验的最佳工艺条件:微波功率为500W,微波辐照时间为10 min,空气流量为0.024 m3/h。最佳工艺条件下活性炭的再生率达到99.62%,且连续再生5次后仍能达到90.02%。实验表明,在微波紫外耦合辐射作用下比只在微波作用下,活性炭的再生效果和3-NBSA的降解效果更好。  相似文献   

19.
以制浆厂污泥为原料,采用ZnCl2法、H2SO4法和KOH法3种化学活化法制备活性炭吸附剂,并对产物吸附苯酚性能的影响因素进行比较分析.结果表明,采用ZnCl2法和H2SO4法制备的活性炭吸附剂的效果明显优于KOH法,ZnCl2法为最佳制备方法,在其最佳制备条件下(ZnCl2浓度3 mol/L,活化温度800℃,活化时间30 min,升温速率20℃/min)制得的活性炭比表面积可达到500.98 m2/g,得率为46.9%,对苯酚的去除率为70.4%.采用ZnCl2法和H2SO4法在最佳制备条件下可以制备孔径分布较宽,中孔结构发达的活性炭.  相似文献   

20.
活性炭吸附回收高含量油气的研究   总被引:18,自引:2,他引:18  
利用3种活性炭吸附分离汽油蒸汽和空气的混合气,研究了其吸附回收油气的动力学、热力学性能.活性炭ACl、AC3在20℃时的吸附容量分别为0.295 g/g、0.189 g/g,30 ℃时为0.284 g/g、0.165 g/g.活性炭吸附高含量油气时,吸附热高,如吸附油气摩尔分数为0.3 mol/mol时,吸附床温升达50~60 ℃.活性炭导热系数为0.15~0.20 W/m·℃,吸附过程可视为绝热吸附.建立了活性炭吸附油气热效应估算式,可用来评价活性炭吸附容量、进料油气摩尔分数、油气回收率与活性炭温升的关系.活性炭解吸宜先采取真空解吸,在解吸后期适当加入微量微热空气吹扫而深度脱附.解吸操作压力应低于1 kPa,解吸时间可控制在60 min内,热空气温度宜控制在50℃以下.油气吸附分离方法将主要用作其他分离方法的深度处理,以确保油气回收设备尾气达标排放.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号