首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
以改性二次锶渣为吸附剂,研究了吸附时间、吸附剂投加量、磷初始浓度和pH值对废水中磷去除效果的影响。结果表明,当总磷浓度为10mg/L,pH为7、二次锶渣投加量为15g/L时,90min内就可使废水中磷的去除率达到95%以上,总磷浓度低于污水综合排放标准的一级标准;改性二次锶渣对磷的吸附符合Langmuir等温吸附模型及准二级动力学模型。  相似文献   

2.
改性甘蔗渣吸附废水中低浓度Cu2+的研究   总被引:1,自引:0,他引:1  
利用离子液氯化-1-己基-3-甲基咪唑对甘蔗渣进行改性,利用改性甘蔗渣吸附去除模拟废水中低浓度的Cu2+,并对比了较优条件下甘蔗渣改性前后的Cu2+吸附性能.结果表明,溶液pH、改性甘蔗渣投加量、吸附时间对改性甘蔗渣吸附Cu2+均有一定的影响,较佳的溶液pH为5.41、改性甘蔗渣投加量为0.30 g、吸附时间为130 min;吸附温度升高Cu2+吸附率反而降低,因此选择在室温下进行吸附反应为宜;在以上较优条件下,改性甘蔗渣和甘蔗渣的Cu2+吸附率分别为83.20%和53.83%,前者的Cu2+吸附率提高了30.35%.  相似文献   

3.
通过钡盐沉积改性制备改性硅藻土,并将其应用于吸附模拟废水中pb2+,分析了钡盐浓度、pH、改性硅藻土投加量、水样中pb2+初始浓度以及振荡时间对改性硅藻土吸附pb2+的影响,并对硅藻土的沉降性能和改性机制进行了初步的探讨.结果表明,选择0.20 mol/L钡盐改性硅藻土,在pH为7.0、投加量为2 g、水样中pb2+初...  相似文献   

4.
在静态条件下,研究了Ca2+在煤泥表面的吸附动力学.考察了不同Ca2+初始浓度的吸附实验,并对实验结果进行了动力学方程的拟合,结果表明,煤泥对Ca2+的吸附过程较好地符合准二级动力学方程.研究了初始Ca2+浓度、溶液pH值、振荡速度和煤泥质量对Ca2+吸附量的影响,实验结果表明:(1)煤泥对Ca2+吸附量随着Ca2+溶液浓度的增加而增大,Ca2+浓度大于3.828 mmol/L时,吸附鼍基本保持不变;(2)溶液pH<9时煤泥颗粒对Ca2+的吸附主要是静电吸附,pH>9时Ca2+在煤泥表面主要是沉淀吸附和一羟基吸附;(3)Ca2+在煤泥表面吸附的最佳振荡强度为150 r/min.  相似文献   

5.
农业秸秆富含纤维素、木质素等组分,是良好的吸附材料。采用麦秆作为吸附剂,其对浮油及溶解油具有良好吸附效果。选用麦秆为吸附剂,探究其对扑草净的吸附效果。主要考察麦秆粒径、投加量、振荡频率、扑草净初始质量浓度4种因素对吸附的影响,研究麦秆对扑草净的吸附等温线和吸附动力学过程,并采用正交实验对影响吸附的因素进行优化。结果表明:(1)麦秆可有效降低废水中扑草净浓度,在振荡频率150r/min、麦秆粒径250~500μm、投加量0.500 0g、吸附300min时,扑草净初始质量浓度由5.20mg/L降至3.22mg/L,去除率为38.08%。(2)单因素吸附平衡实验表明,随麦秆粒径增加(150~4 000μm),其比表面积减小,平衡吸附量随之减小,麦秆粒径150~250μm时平衡吸附量为0.192 0 mg/g,显著大于1 700~4 000μm时的平衡吸附量(0.059 3mg/g);随麦秆投加量增加(0.100 0~1.000 0g),去除率随之提高,平衡吸附量与之相反,0.100 0g投加量时平衡吸附量为0.222 0mg/g;随着振荡频率加剧,麦秆在水中扩散增强,与扑草净碰撞几率增加,振荡频率250r/min时平衡吸附量为0.191 0mg/g;随扑草净初始质量浓度增加(1.03~6.18mg/L),平衡吸附量随之增加,初始质量浓度为6.18mg/L,平衡吸附量为0.226 0mg/g。(3)分别以Henry型、Langmuir型、Freundlich型吸附等温式进行拟合,资料表明,以Henry型吸附等温式较适宜描述该吸附过程。(4)采用伪一级动力学方程、伪二级动力学方程、Elovich经验方程、颗粒内扩散方程分析吸附动力学过程,以伪二级动力学方程较符合。(5)在振荡频率为150r/min、初始质量浓度为2.00mg/L、麦秆粒径为250~500μm、投加量为0.700 0g时,扑草净最佳去除率为47.80%。  相似文献   

6.
丙烯酸改性壳聚糖磁性颗粒处理模拟废水中氨氮   总被引:2,自引:0,他引:2  
以去除水产养殖废水中的氨氮,寻找安全快速高效的吸附剂为目的。以壳聚糖为原料制备丙烯酸改性壳聚糖磁性颗粒,采用单因素及正交实验方法优化制备条件,研究振荡吸附条件对吸附量的影响,进行吸附等温模型和吸附动力学研究。结果表明,最佳制备条件,丙烯酸4 mL、磁流体0.75 g、过硫酸铵1 g、戊二醛1.5 mL;最佳吸附条件,废水pH值5~9、吸附剂浓度3 g/L、吸附时间10 min;吸附过程符合二级动力学模型,以化学吸附为主;液膜扩散为限速步骤;氨氮最大吸附量为77.16 mg/g,远高于其他传统吸附剂。研究表明,丙烯酸改性壳聚糖磁性颗粒对模拟水产养殖废水的氨氮去除效果显著,具有很好的应用前景。  相似文献   

7.
核桃壳炭化吸附废水中Cr(Ⅵ)的性能研究   总被引:4,自引:0,他引:4  
采用氯化锌活化法制备生物质废物硬壳活性炭,工艺条件为:核桃壳与氯化锌溶液质量比为1∶1.5、氯化锌溶液质量分数50%、炭化温度300℃、炭化时间90 min、活化温度600℃、活化时间60 min。对产品比表面积、孔径和表征进行了分析,并探讨了该核桃壳活性炭吸附废水中六价铬的pH值、废水初始浓度、吸附时间、振动转速等影响因素。结果表明:制得的活性炭碘吸附值为1 038.33 mg/g,比表面积为645.36 m2/g,平均孔半径为1.37 nm。当活性炭用量为0.1 g,废水pH=3,吸附接触时间为1 h,取100 mL浓度为50 mg/L的含Cr6+废水时,处理吸附量可达48.57 mg/g。活性炭最大饱和吸附值为80.24 mg/g。吸附符合Langmuir等温模式,吸附等温方程式为Ce/Qe=0.0083+0.0121Ce。  相似文献   

8.
石飞  刘红  刘鲁建  董俊 《环境工程学报》2014,(11):4806-4812
以4A和13X分子筛为吸附材料,考察了分子筛投加量、废水pH值、Pb2+初始浓度和吸附时间对去除率的影响。结果表明,4A和13X分子筛投加量为0.16 g/L,废水pH为5,Pb2+初始浓度为30 mg/L时,吸附10 min后Pb2+去除率达到95%以上。通过吸附等温线和吸附动力学方程拟合,4A和13X分子筛对Pb2+的吸附过程均符合Langmuir吸附模型和Lagergren二级速率方程,计算出的饱和吸附容量Q0分别为714.3 mg/g和684.9 mg/g,二级反应速率常数k2分别为8.9×10-4g/(mg·s)和7.1×10-5g/(mg·s)。4A分子筛沉降性能较好,适宜回收;经过4次吸附-解吸仍保持88.7%的Pb2+去除率和493.2 mg/g的吸附容量,经解吸后的浓缩液中富含铅离子720.3 mg/L,富集倍数3.78,加入Na2S生成硫化物沉淀能够达到回收金属铅的目的。  相似文献   

9.
以柠檬酸对荞麦壳进行化学改性,改性后荞麦壳吸附剂对Cu2+的吸附量增加。研究了不同pH、吸附剂投入量、浓度和时间对吸附效果的影响。在pH值为5.5,Cu2+初始浓度50 mg/L,吸附剂投入量为1 g,吸附时间为120 min的条件下,Cu2+的吸附量达到较大值。通过用改性荞麦壳吸附剂对Cu2+的热力学吸附过程的分析,结果表明,改性荞麦壳吸附剂符合Langmuir吸附等温模式,改性荞麦壳吸附剂对Cu2+的吸附存在化学吸附,改性荞麦壳的最大吸附量可以达2.26 mg/g。研究改性荞麦壳吸附剂吸附Cu2+的动力学特性,吸附动力学行为可用准二级速率方程进行很好的描述,准二级吸附速率常数随温度升高而增大。准一级速率方程和颗粒扩散模型可以较好地描述吸附初始阶段,Cu2+浓度较高,颗粒内扩散;吸附后期,Cu2+浓度较低,受到颗粒外扩散的控制。总之,整个吸附过程可能是多种动力学机理共同作用的结果。  相似文献   

10.
微波强化有机改性膨润土对磷的吸附特性研究   总被引:5,自引:2,他引:3  
利用十六烷基三甲基溴化铵(CTMAB)在微波辐射条件下对浙江临安膨润土进行改性,制得有机改性膨润土,利用其含磷模拟废水进行处理,考察了不同的工艺条件如有机改性剂用量、微波辐射强度、辐照时间、吸附时间、改性膨润土投加量、pH值对废水中磷去除效果的影响。结果表明:在有机改性剂用量为3 mmol/g,微波辐照强度为96 W/g,微波辐照时间8 min为最佳制备条件。改性膨润土用量为12 mg/L,反应时间为15 min,溶液pH为7及常温条件下,改性膨润土对浓度为50 mg/L的含磷废水去除率达到97.3%,吸附符合Freundlich吸附等温方程。  相似文献   

11.
Concentrations of different chlorinated compounds were measured in mussels incubated in two polluted watercourses, a river (the River Kymijoki) and a lake (Lake Vanaja) for four weeks in summer 1995. The sum concentrations of polychlorinated phenols (PCP) and biphenyls (PCB) were both about 1 μg/g lipid weight (lw) in Lake Vanaja mussels, while in the River Kymijoki mussels PCPs were non-detectable and PCBs were measured 120 ng/g lIw. The concentrations of toxic polychlorinated dibenzo-p-dioxin (PCDD) and dibenzofuran (PCDF) congeners ranged between <17 and 370 pg/g Iw in Lake Vanaja mussels and between <38 and 11,000 pg/g lw in the River Kymijoki mussels. Polychlorinated diphenyl ethers (PCDE) were detected in the mussels incubated in the River Kymijoki (0.4–1.1 ng/g Iw), but not in those incubated in Lake Vanaja. Polychlorinated phenoxyanisoles (PCPA) were measured 33 ng/g lw and polychlorinated phenoxyphenols (PCPP) 300 ng/g lw in the mussels incubated in the River Kymijoki. PCPAs were also detected in reference samples, which were sediment and pike from the River Kymijoki and Baltic salmon, seal and white-tailed sea eagle.  相似文献   

12.
Abstract

The purpose of this study was to determine radionuclide and trace element concentrations in bottom‐feeding fish (catfish, carp, and suckers) collected from the confluences of some of the major canyons that cross Los Alamos National Laboratory (LANL) lands with the Rio Grande (RG) and the potential radiological doses from the ingestion of these fish. Samples of muscle and bone (and viscera in some cases) were analyzed for 3H, 90Sr, 137Cs, totU, 238Pu, 239,240Pu, and 241Am and Ag, As, Ba, Be, Cr, Cd, Cu, Hg, Ni, Pb, Sb, Se, and Tl. Most radionuclides, with the exception of 90Sr, in the muscle plus bone portions of fish collected from LANL canyons/RG were not significantly (p<0.05) higher from fish collected upstream (San Ildefonso/background) of LANL. Strontium‐90 in fish muscle plus bone tissue significantly (p<0.05) increases in concentration starting from Los Alamos Canyon, the most upstream confluence (fish contained 3.4E‐02 pCi g‐1 [126E‐02 Bq kg‐1]), to Frijoles Canyon, the most downstream confluence (fish contained 14E‐02 pCi g‐1 [518E‐02 Bq kg‐1]). The differences in 90Sr concentrations in fish collected downstream and upstream (background) of LANL, however, were very small. Based on the average concentrations (±2SD) of radionuclides in fish tissue from the four LANL confluences, the committed effective dose equivalent from the ingestion of 46 lb (21 kg) (maximum ingestion rate per person per year) of fish muscle plus bone, after the subtraction of background, was 0.1 ± 0.1 mrem y‐1 (1.0 ± 1.0 μSv y‐1), and was far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem y‐1 (1000 μSv y‐1). Of the trace elements that were found above the limits of detection (Ba, Cu, and Hg) in fish muscle collected from the confluences of canyons that cross LANL and the RG, none were in significantly higher (p<0.05) concentrations than in muscle of fish collected from background locations.  相似文献   

13.
Book review     
The Pesticide Manual ‐ A World Compendium, 8th Edition, C.R. Worthing, Editor and S.B. Walker, Assistant Editor, British Crop Protection Council, BCPC Publications Sales, Bear Farm, Binfield, Bracknell, Berkshire RG12 5QE, England. 1987, 1100 pp., UK £50; Overseas £56. ISBN 0–948404–01–9.  相似文献   

14.
We reported previously that trichodiene, a volatile trichothecene derivative, was produced by a Stachybotrys isolate, also known to produce highly cytotoxic, non-volatile, macrocyclic trichothecenes (satrotoxins). We investigated the relationship between the production of trichodiene and various non-volatile trichothecenes for several molds. Volatile metabolites were concentrated by adsorption on Tenax TA and analyzed by GC/MS, while non-volatile metabolites were separated by HPLC, derivatized and analyzed by GC/MS. Stachybotrys chartarum isolates producing macrocyclic trichothecenes secreted significantly larger amounts of trichodiene and other sesquiterpenes than isolates which only produced simple trichothecenes. The amounts of secreted trichodiene were relatively small in all cases. With the exception of Memnoniella, which excreted small amounts of sesquiterpenes, the other isolates produced varying amounts of sesquiterpenes, including trichodiene, as well as simple tricothecenes, no detectable trichodiene, but large amounts of griseofulvin derivatives. In Stachybotrys there is apparently a correlation between trichodiene and macrocyclic trichothecene production. In the remaining isolates, there was no simple relationship between trichodiene and non-volatile trichothecene synthesis. Trichodiene is produced in larger amounts by Stachybotrys isolates, which also produce satratoxins, but it will be difficult to utilize this metabolite to detect toxic isolates in buildings due to the relatively small amounts excreted.  相似文献   

15.
Abstract

The pH‐disappearance rate profiles were determined at ca. 25°C for 24 insecticides at 4 or 5 pH values over the range 4.5 to 8.0 in sterile phosphate buffers prepared in water‐ethanol (99: 1 v/v). Half‐lives measured at pH 8 were generally smaller than at lower pH values. Changes in half lives between pH 8.0 and 4.5 were largest (>1000x) for the aryl carbamates, carbofuran and carbaryl, the oxime carbamate, oxamyl, and the organophosphorus insecticide, trichlorfon. In contrast, half lives of phorate, terbufos, heptachlor, fensulfothion and aldicarb were affected only slightly by pH changes. Under the experimental conditions described half lives at pH8 varied from 1–2 days for trichlorfon and oxamyl to >1 year for fensulfothion and cyper‐methrin. Insecticide persistence on alumina (acid, neutral and basic), mineral soils amended with aluminum sulfate or calcium hydroxide to different pH values and four natural soils of different pH was examined. No correlation was observed between the measured pH of these solids and the rate of disappearance of selected insecticides applied to them. These observations demonstrate the difficulty of extrapolating the pH dependent disappearance behaviour observed in homogeneous solution to partially solid heterogeneous systems such as soil.  相似文献   

16.
Abstract

The active ingredients in commercial formulations of malathion, oxamyl, carbaryl, diazinon, and chlorpyrifos diluted to “spray tank”; concentrations with buffered distilled or natural water of pH 4–9 were stable for at least 24 hr. Formulations of trichlorfon were not stable at pH 7 or above but disappearance rates were slower than for the pure chemical in homogeneous solution. Cupric ion was observed to be an effective catalyst for the hydrolysis of a variety of pure organophosphorus insecticides but did not catalyze hydrolysis of the active ingredients of the formulations examined. Increasing the dilution of the formulation increased the susceptibility of malathion, oxamyl, and carbaryl to hydrolysis.  相似文献   

17.
Organochlorine compounds in a three-step terrestrial food chain   总被引:1,自引:0,他引:1  
The concentrations of 15 organochlorine chemicals (PCBs and pesticides) were studied in a Central European oak wood food chain system: Great tit (Parus major), caterpillars (Tortrix viridana, Operophtera brumata, Erannis defoliaria), and oak-leaves (Quercus robur). Juvenile tits receive organochlorines from the mother via egg transfer and, eventually to a greater extent, from the caterpillar food source during nestling period. The concentrations of PCB 153 (2,2′,4,4′,5,5′-hexachlorobiphenyl, the most abundant in this study) was found in leaf material at ca. 1 ng/g, in caterpillars 10 ng/g, and in bird eggs 170 ng/g on an average and on a dry mass basis.  相似文献   

18.
Abstract

This paper summarizes radionuclide concentrations (3H, 90Sr, 137Cs, 238Pu, 239,240Pu, 241Am, and totU) in muscle and bone tissue of mule deer (Odocoileus hemionus) and Rocky Mountain elk (Cervus elaphus) collected from Los Alamos National Laboratory (LANL), Los Alamos, New Mexico, lands from 1991 through 1998. Also, the committed effective dose equivalent (CEDE) and the risk of excess cancer fatalities (RECF) to people who ingest muscle and bone from deer and elk collected from LANL lands were estimated. Most radionuclide concentrations in muscle and bone from individual deer (n = 11) and elk (n = 22) collected from LANL lands were either at less than detectable quantities (where the analytical result was smaller than two counting uncertainties) and/or within upper (95%) level background (BG) concentrations. As a group, most radionuclides in muscle and bone of deer and elk from LANL lands were not significantly higher (p<0.10) than in similar tissues from deer (n = 3) and elk (n = 7) collected from BG locations. Also, elk that had been radio collared and tracked for two years and spent an average time of 50% on LANL lands were not significantly different in most radionuclides from road kill elk that have been collected as part of the environmental surveillance program. Overall, the upper (95%) level net CEDEs (the CEDE plus two sigma for each radioisotope minus background) at the most conservative ingestion rate (50 lbs of muscle and 13 lbs of bone) were as follows: deer muscle = 0.22 mrem y‐1 (2.2 μSv y‐1), deer bone = 3.8 mrem y‐1 (38 μSv y‐1), elk muscle = 0.12 mrem y‐1 (1.2 μSv y‐1), and elk bone = 1.7 mrem y‐1 (17 μSv y‐1). All CEDEs were far below the International Commission on Radiological Protection guideline of 100 mrem y‐1 (1000 μSv y‐1), and the highest muscle plus bone net CEDE corresponded to a RECF of 2E‐06, which is far below the Environmental Protection Agency upper level guideline of 1E‐04.  相似文献   

19.
Abstract

One of the dominant tree species growing within and around the eastern portion of Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis). Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food—the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3H, 137Cs, 90Sr, totU, 238Pu, 239, 240Pu, and241 Am in soils (0‐ to 12‐in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (3) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 μSv); this is far below the International Commission on Radiological Protection (all pathway) permissible dose limit of 100 mrem (1000 μSv). Soil‐to‐nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables.  相似文献   

20.
Degradation and sorption/desorption are important processes affecting the leaching of pesticides through soil. This research characterized the degradation and sorption of imidacloprid (1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine) in Drummer (silty clay loam) and Exeter (sandy loam) surface soils and their corresponding subsurface soils using sequential extraction methods over 400 days. By the end of the incubation, approximately 55% of imidacloprid applied at a rate of 1.0 mg kg?1 degraded in the Exeter sandy loam surface and subsurface soils, compared to 40% of applied imidacloprid within 300 days in Drummer surface and subsurface soils. At the 0.1 mg kg?1 application rate, dissipation was slower for all four soils. Water-extractable imidacloprid in Exeter surface soil decreased from 98% of applied at day 1 to > 70% of the imidacloprid remaining after 400 d, as compared to 55% in the Drummer surface soil at day 1 and 12% at day 400. These data suggest that imidacloprid was bioavailable to degrading soil microorganisms and sorption/desorption was not the limiting factor for biodegradation. In subsurface soils > 40% of 14C-benzoic acid was mineralized over 21 days, demonstrating an active microbial community. In contrast, cumulative 14CO2 was less than 1.5% of applied 14C-imidacloprid in all soils over 400 d. Qualitative differences in the microbial communities appear to limit the degradation of imidacloprid in the subsurface soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号