首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 669 毫秒
1.
Many plant families have aromatic species that produce volatile compounds which they release when damaged, particularly after suffering herbivory. Monarda fistulosa (Lamiaceae) makes and stores volatile essential oils in peltate glandular trichomes on leaf and floral surfaces. This study examined the larvae of a specialist tortoise beetle, Physonota unipunctata, which feed on two M. fistulosa chemotypes and incorporate host compounds into fecal shields, structures related to defense. Comparisons of shield and host leaf chemistry showed differences between chemotypes and structures (leaves vs. shields). Thymol chemotype leaves and shields contained more of all compounds that differed than did carvacrol chemotypes, except for carvacrol. Shields had lower levels of most of the more volatile chemicals than leaves, but more than twice the amounts of the phenolic monoterpenes thymol and carvacrol and greater totals. Additional experiments measured the volatiles emitted from M. fistulosa in the absence and presence of P. unipunctata larvae and compared the flower and foliage chemistry of plants from these experiments. Flowers contained lower or equal amounts of most compounds and half the total amount, compared to leaves. Plants subjected to herbivory emitted higher levels of most volatiles and 12 times the total amount, versus controls with no larvae, including proportionally more of the low boiling point chemicals. Thus, chemical profiles of shields and volatile emissions are influenced by the amounts and volatilities of compounds present in the host plant. The implications of these results are explored for the chemical ecology of both the plant and the insect.  相似文献   

2.
Summary. Several species of the flea beetles genus Longitarsus are able to sequester pyrrolizidine alkaloids (PAs) from their host plants. In five Longitarsus species we compare the concentration of PAs present in their host plants belonging to the Asteraceae or Boraginaceae with those found in the beetles. To get an estimate of the intrapopulation variability, three samples of five beetles each and five individual plants were analyzed for each comparison. A strong intrapopulation variability could be detected both among plant and beetle samples. The total concentration found in the beetles varied strongly between species. The local host plant and its phenology influence the concentrations present in the beetles as evidenced in comparisons of a single beetle species from two different hosts and of one beetle species collected at the same site at different times of the year. In addition, different beetle species apparently vary in their capacity to sequester the alkaloids, at the lowest extreme the mean PA concentration in the beetles (0.034 μg PA/mg dry weight) was 1/30 of the mean concentration found in the plant leaves (L. aeruginosus from Eupatorium cannabinum), at the highest extreme (2.098 μg PA/mg dw) the concentration in the beetles was a 1000 fold higher than in the plant leaves (L. nasturtii from Symphytum officinale). The highest mean concentration found in the beetles was 3.446 μg/mg dw (L. exoletus from Cynoglossum officinale). The absolute concentrations found in the beetles are comparable to other insects which have been shown to be effectively defended against their potential predators. Received 22 June 1999; accepted 25 August 1999  相似文献   

3.
Summary. Metaphycus sp. nr. flavus (Encyrtidae: Hymenoptera) is a parasitoid species collected from the Mediterranean region which lays its eggs in the immature stages of several economically important soft scale insects (Hemiptera: Coccidae), including brown soft scale, Coccus hesperidum L. (= host insect). Preliminary tests suggested that the parasitoid is most successful in producing offspring when it oviposits in the younger stages of brown soft scale. In Y-olfactometer bioassays measuring wasp choices and residence times, naïve parasitoids were significantly more attracted to yucca leaves infested with 26, 27, or 28 d-old scale than to uninfested leaves, whereas leaves with older (29-30 d-old) scale were no more attractive than uninfested leaves. Parasitoids also spent significantly more time in the arm with yucca leaves infested with 26 d-old scale than in the arm with uninfested leaves. These results are consistent with observations of the parasitoids reproductive success on scale of different ages, whereby older scale are more likely to encapsulate the developing eggs of M. sp. nr. flavusfemales than are younger scale. Further bioassays determined that yucca leaves that had been infested with 26 d-old scale but from which the scale had been removed were as attractive as infested leaves. In contrast, infested yucca leaves from which scale had been removed and the leaves subsequently washed with distilled water were less attractive than infested leaves. Furthermore, the wash water containing scale residues was attractive to female wasps. In total, these results suggest that Metaphycussp. nr. flavus females utilize volatile, water soluble compounds produced by brown soft scale as cues to locate suitable hosts.  相似文献   

4.
Although there are many examples of the role of volatile infochemicals in interactions between trophic levels of insect communities, surprisingly little is known of volatile interactions between species within the third trophic level. Recently it was found that Leptopilina heterotoma, an endoparasitoid that attacks Drosophila larvae, avoids one type of patches (decaying stinkhorn mushrooms) when parasitoids of another species (L. clavipes) are present on these patches. L. heterotoma is able to smell the presence of L. clavipes from a distance (Fig. 1). In this paper we investigate the source of the odour that induces avoidance behaviour, by varying the host species and parasitoid species present on stinkhorn mushrooms, and by using another type of patch (sap-fluxes of wounded trees). L. heterotoma was found to avoid stinkhorn patches with conspecific as well as heterospecific parasitoids (Fig. 2). Hosts had to be present in the patch to elicit avoidance, but avoidance behaviour was also found with another host species present in the patch (Fig. 3). No avoidance behaviour was found with sap-flux patches with hosts and parasitoids on them (Fig. 4). Avoidance of stinkhorn patches only occurred when the parasitoids present on the patch were able to contact hosts (Figs. 5 and 6). The exact source of the odour that elicits avoidance is still unclear, so that one can only speculate on the function of the signal. However, there is a clear benefit to the receiver, because it is able to avoid superior competitors. Avoidance can lead to non-aggregated parasitoid distributions. The importance of avoidance behaviour for population dynamics and stability of parasitoid-host systems is discussed.  相似文献   

5.
Summary The present study aimed to test the possible function of the aphid alarm pheromone (E)--farnesene (EBF) as a host finding kairomone for aphid primary parasitoids. Extracts of volatile emissions of undisturbed aphids and of aphids under parasitoid attack were obtained by air entrainment. Extracts of cornicle secretions were gained by disturbing aphids and taking their secretions into solution. Extracts were compared by gas chromatography. Only air entrainments of aphids under attack and solvent extracts of cornicle secretions contained the alarm pheromone. In Y-tube olfactometer bioassays, femaleA. uzbekistanicus were attracted to aphid groups under attack of parasitoids, presumably by released EBF. High concentrations of synthetic EBF (1.4 µg to 5.7 µg) also attractedA. uzbekistanicus females. Females with oviposition experience reacted more readily to lower concentrations of EBF than females without experience. In experiments designed as Petri-dish bioassays, the test animals could contact filter paper discs that were treated with solutions containing EBF. Behavioural effects like antennation or stinging attack were not observed. With computer video analysis of parasitoid movements, some effects onA. uzbekistanicus behaviour were detected, again indicating attraction to EBF.As the volatile aphid alarm pheromone attractedA. uzbekistanicus females, it can be concluded that this chemical stimulus acts as a host finding kairomone for this parasitoid species. However, its effect over long distances seems to be limited due to the relatively high concentrations required for reactions. Of two other parasitoid species examined (P. volucre andL. testaceipes) onlyP. volucre was also significantly attracted to the volatile EBF in the Y-tube olfactometer.  相似文献   

6.
Summary. We investigated the volatile emissions of Manchurian ash seedlings, Fraxinus mandshurica, in response to feeding by the emerald ash borer, Agrilus planipennis, and to exogenous application of methyl jasmonate (MeJA). Feeding damage by adult A. planipennis and MeJA treatment increased volatile emissions compared to unexposed controls. Although the same compounds were emitted from plants damaged by beetles and treated with MeJA, quantitative differences were found in the amounts of emissions for individual compounds. Adult virgin female A. planipennis were similarly attracted to volatiles from plants damaged by beetles and those treated with MeJA in olfactometer bioassays; males did not respond significantly to the same volatiles. Coupled gas chromatographic-electroantennogram detection (GC-EAD) revealed at least 16 antennally-active compounds from F. mandshurica, including: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, (Z)-3-hexen-1-yl acetate, hexyl acetate, (E)-β-ocimene, linalool, 4,8-dimethyl-1,3,7-nonatriene, and E,E-α-farnesene. Electroantennogram (EAG) dose–response curves using synthetic compounds revealed that females had a stronger EAG response to linalool than males; and male responses were greater to: hexanal, (E)-2-hexenal, (Z)-3-hexen-1-ol, 3-methyl-butylaldoxime, 2-methyl-butylaldoxime, and hexyl acetate. These results suggest that females may use induced volatiles in long-range host finding, while their role for males is unclear. If attraction of females to these volatiles in an olfactometer is upheld by field experiments, host plant volatiles may find practical application in detection and monitoring of A. planipennis populations.  相似文献   

7.
Summary During foraging, natural enemies of herbivores may employ volatile allelochemicals that originate from an interaction of the herbivore and its host plant. The composition of allelochemical blends emitted by herbivore-infested plants is known to be affected by both the herbivore and the plant. Our chemical data add new evidence to the recent notion that the plants are more important than the herbivore in affecting the composition of the volatile blends. Blends emitted by apple leaves infested with spider mites of 2 different species,T. urticae andP. ulmi, differed less in composition (principally quantitative differences for some compounds) than blends emitted by leaves of two apple cultivars infested by the same spider-mite species,T. urticae (many quantitative and a few qualitative differences). Comparison between three plant species — apple, cucumber and Lima bean — reveals even larger differences between volatile blends emitted upon spider-mite damage (many quantitative differences and several qualitative differences).  相似文献   

8.
Summary. As Salicaceous plants produce new leaves for a prolonged period of time, they expose a wide range of differentially aged leaves to herbivores during the growing season. In this work, I show that young leaves of three Salicaceous species, Populus tremula L., Salix phylicifolia L. and S. pentandra L., contain more nitrogen than conspecific old leaves. In P. tremula and S. pentandra young leaves also contained more low-molecular weight secondary compounds, phenolic glucosides. Leaves of S. phylicifolia did not contain phenolic glucosides in detectable amounts. Furthermore, in P. tremula and S. pentandra young leaves contained less polymeric digestability-reducing phenolics, condensed tannins, than old leaves. In S. phylicifolia, higher concentrations of condensed tannins were found in young leaves. In laboratory feeding trials with six leaf beetle species, young leaves of the studied plants were invariably preferred in all tested herbivore × host species combinations. In particular, it is remarkable that three leaf beetle species with known different overall relationships to phenolic glucosides equally preferred more glucoside-containing young S. pentandra leaves over conspecific old ones. Four beetle species were found to prefer young leaves of S. phylicifolia despite the higher content of condensed tannins in young leaves. These results indicate that the general preference of leaf beetles for young leaves of Salicaceous plants probably does not primarily result from variable distribution of secondary compounds. Apparently, the preference for young leaves is fundamentally due to variation in leaf nutritive traits, such as nitrogen content. Received 9 February 2001.  相似文献   

9.
Two wild subspecies of snapdragon, Antirrhinum majus, subspecies pseudomajus and striatum, differ in floral color and can be visually discriminated by insect visitors. The extent to which olfactory cues derived from floral scents contribute to discrimination between snapdragon subspecies is however unknown. We tested whether these two subspecies differ in floral scent and whether these olfactory differences are used by bumblebees (Bombus terrestris) to discriminate between them. We grew individuals of both subspecies, collected from a total of seven wild populations, under controlled conditions. We quantified the volatile organic compounds (VOCs) emitted by the flowers using gas-chromatography/mass-spectrometry/flame-ionization-detection. We studied antennal detection of VOCs by bumblebees, by means of electroantennogram study (EAG). We also performed behavioral experiments in a Y-maze to determine the innate response of bumblebees to the main floral VOCs emitted by our snapdragon subspecies. The floral scent of Antirrhinum majus pseudomajus contained three volatile benzenoids absent in the floral scent of Antirrhinum majus striatum. One of them, acetophenone, contributed over 69% of the absolute emissions of A. majus pseudomajus. These benzenoids elicited a significantly higher EAG response compared with other VOCs. In the Y-maze, bumblebees were significantly less attracted by acetophenone, suggesting an aversive effect of this VOC. Our findings indicate that bumblebees are able to discriminate between the two Antirrhinum majus subspecies. Differences in flower scent between these subspecies and olfactory bumblebee preferences are discussed in the light of biochemical constraints on VOCs synthesis and of the role of flower scent in the evolutionary ecology of A. majus.  相似文献   

10.
Summary. Stem volatile extracts from ten trees that are sympatric with the western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae) were assayed by gas chromatographic-electroantennographic detection analysis (GC-EAD). The extracts were from the primary host, ponderosa pine, Pinus ponderosa Dougl. ex Laws. (Pinaceae); two nonhost angiosperms, California black oak, Quercus kelloggii Newb. (Fagaceae), and quaking aspen, Populus tremuloides Michx. (Salicaceae); and seven nonhost conifers, white fir, Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. (Pinaceae), incense cedar, Calocedrus decurrens (Torr.) Florin (Cupressaceae), Sierra lodgepole pine, P. contorta murrayana Grev. & Balf. (Pinaceae), Jeffrey pine, P. jeffreyi Grev. & Balf. (Pinaceae), sugar pine, P. lambertiana Dougl. (Pinaceae), Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco (Pinaceae), and mountain hemlock, Tsuga mertensiana (Bong.) Carr. (Pinaceae). Sixty-four compounds were identified from the ten trees, 42 of which elicited antennal responses in D. brevicomis, usually in both sexes. In addition, several synthetic compounds, including a number of the antennally-active compounds from the extracted trees and some bark beetle pheromone components, elicited antennal responses in a manner similar to that observed with the extracts. Of the antennally-active compounds known to be present in trees sympatric with D. brevicomis, only geraniol was unique to its host. Four antennally-active compounds were found in the host and in other conifers; five compounds were found only in nonhost conifers; eight compounds were found in either or both of the nonhost angiosperms; eight compounds were found in either or both of the angiosperms and in nonhost conifers, but not in the host; and 19 were found in both the host and in angiosperms and/or nonhost conifers. Several bark beetle pheromone components were found in the stem volatile extracts. Conophthorin was identified from both nonhost angiosperms; exo-brevicomin was identified in A. concolor; verbenone was identified from a number of nonhost conifers; and chalcogran was identified from P. tremuloides. The number of nonhost volatile chemicals that D. brevicomis encounters and is capable of detecting, and the diversity of sources from which they emanate, highlight the complexity of the olfactory environment in which D. brevicomis forages. This provides a basis for further work related to chemically-mediated aspects of foraging in this insect and perhaps other coniferophagous bark beetles, and highlights the need to consider foraging context in the design and implementation of semiochemical-based management tactics for tree protection.  相似文献   

11.
The aim of this study was to investigate the potential utility of Allium cepa L. as a bioindicator organism for measuring copper bioaccumulation and toxicity in laboratory conditions. Onions were exposed to increasing concentrations of the metal (0, 0.1, 0.5, 1, 5 and 10 μg mL?1) for 7 days. Root and leaf development were chosen as biological endpoints, while bioaccumulation was evaluated in roots, bulbs and leaves. Copper caused inhibition of root elongation with increasing effects at the higher doses, growth being reduced by almost 60% at 0.1 μg mL?1 and up to 95% at 10 μg mL?1. The elongation of leaves was significantly lower only in specimens exposed at 0.5 μg mL?1, but a total absence of newly formed tissues was observed at 10 μg mL?1. A marked bioaccumulation of copper was measured in roots, with values increasing up to almost four orders of magnitude compared to controls; only slight or even no significant differences were observed for copper levels in leaves and bulbs of treated A. cepa. Multiple linear correlations revealed a significant inverse relationship between copper concentrations and tissue length in both the roots and leaves, evidencing a sensitive responsiveness of this biological model. The overall results suggest the suitability of A. cepa as a robust species for easy and simple ecotoxicological bioassays to test the toxic effects and bioavailability of environmental pollutants, especially trace metals.  相似文献   

12.
Galerucella placida Baly (Coleoptera: Chrysomelidae) is a potential biocontrol agent of the rice-field weed Polygonum orientale L. (Polygonaceae). The volatile organic compound (VOC) profiles from undamaged and mechanically damaged plants, and from plants 12- and 36-h following continuous feeding of female G. placida adults and 2nd instar larvae were identified and quantified by GC–MS and GC-FID analyses. Twenty-four and 21 compounds were identified in volatiles of undamaged and insect feeding plants, respectively; whereas 22 compounds were detected in volatiles of mechanically damaged plants. Decanal and 1-dodecanol were unique to undamaged plants, and linalool was detected in volatiles of undamaged and mechanically damaged plants, but not in volatiles of insect damaged plants. However, the beetles are not attracted by none of these volatile components, when tested individually in Y-shaped glass tube olfactometer bioassays. In all plants, methyl jasmonate was predominant. 1-Undecanol was the least amount in undamaged plants, and plants 12-h after feeding by G. placida adults and larvae; whereas 1-tridecanol was the least abundant in plants 36-h after feeding by G. placida adults and larvae, and mechanically damaged plants. The beetles showed significant preference to the whole volatile blends from plants 12-h after feeding by larvae and plants 36-h after feeding by either larvae or adults compared to those of undamaged plants. Further, G. placida responded to individual synthetic compounds, 3-hexanol, 1-octen-3-ol, nonanal, and geraniol at 7, 1.38, 3.75 and 4.5 µg/25 µL CH2Cl2, respectively, and provide a basis for attraction of the potential biocontrol agent in the field.  相似文献   

13.
Summary. Larvae of the turnip sawfly, Athalia rosae L. (Hymenoptera: Tenthredinidae), sequester glucosinolates of their host plants, namely members of the Brassicaceae family, in their haemolymph. Therefore, they need to circumvent myrosinase activities of the plant tissue which normally hydrolyse the glucosinolates after plant damage. Effects of varying levels of glucosinolates and myrosinases on the performance of A. rosae were investigated using homozygous lines of Brassica juncea (L.) with either (1) low glucosinolate (lowGS) and low myrosinase (lowMR), (2) high glucosinolate (highGS) and high myrosinase (highMR), or (3) high glucosinolate (highGS) and low myrosinase (lowMR) levels. To insure that the given quantities remained as constant as possible, newly hatched larvae were enclosed on the second-youngest leaf of a plant, and were offered a new plant of comparable physiological age (6-leaf-stage) every day. The performance of A. rosae was little affected by leaf quality. Body masses of eonymphs and adults were on average lowest on the highGS/highMR-line, but these differences were rarely significant. The pupal developmental times of females and males were longest on the highGS/lowMR-line in only one of two replicate experiments. All other performance traits (developmental times of larvae, egg numbers, adult longevity) were not significantly different. Glucosinolates, sequestered by the larvae, are carried through the pupal stage. The glucosinolate concentration measured in adult insects reflected the level of the host plant line, without showing any obvious costs for sequestration. Obviously, A. rosae is highly tolerant to variation in the glucosinolate-myrosinase system of its host. In addition, induced changes of glucosinolate concentrations and myrosinase activities caused by 24 h-feeding of groups of three small larvae were analysed in the second-youngest leaves. In contrast to the patterns most herbivores evoke on Brassicaceae, namely an increase of both glucosinolate concentration and myrosinase activity, we detected a significant decrease of both traits in all three lines where the respective trait was originally high in the plants. Although glucosinolate levels dropped in the highGS lines about 50%, these still contained higher concentrations than the lowGS line. Whereas the activity of soluble myrosinases remained highest in the highMR line, even after a decrease to almost 30% due to feeding, the levels of insoluble myrosinases converged after feeding in lowMR and highMR lines. Levels of the signalling molecule salicylic acid slightly decreased on average after feeding, whereas jasmonic acid was below the detection threshold in almost all samples. The concentration of several molecules varies strongly in plant tissue with age and can change due to induction by herbivore feeding. Therefore, if performance of an insect species is measured on plants with specific traits, the variability in these traits needs to be carefully controlled in experiments.  相似文献   

14.
Social parasites exploit the socially managed resources of social insect colonies in order to maximise their own fitness. The inquilines are among the most specialised social parasites, because they are dependent on being fully integrated into their host's colony throughout their lives. They are usually relatives of their host and so share ancestral characteristics (Emery's rule). Closely related inquiline-host combinations offer a rare opportunity to study trade-offs in natural selection. This is because ancestral adaptations to a free-living state (e.g. the production of a worker caste) become redundant and may be replaced by novel, parasitic traits as the inquiline becomes more specialised. The dynamics of such processes are, however, unknown as virtually all extant inquiline social parasites have completely lost their worker caste. An exception is Acromyrmex insinuator, an incipient permanent social parasite of the leaf-cutting ant Acromyrmex echinatior. In the present study, we document the size distribution of parasite and host workers and infer how selection has acted on A. insinuator to reduce, but not eliminate, its investment in a worker caste. We show that the antibiotic producing metapleural glands of these parasite workers are significantly smaller than in their host counterparts and we deduce that the metapleural gland size in the host represents the ancestral state. We further show experimentally that social parasite workers are more vulnerable to the general insect pathogenic fungus Metarhizium than are host workers. Our findings suggest that costly disease resistance mechanisms are likely to have been lost early in inquiline evolution, possibly because active selection for maintaining these traits became less when parasite workers had evolved the ability to exploit the collective immune system of their host societies.  相似文献   

15.
Summary Chemicals present on the surface of cabbage (Brassica oleracea L.) leaves were extracted by dipping these leaves for 3 s in dichloromethane followed by a 3 s dip in methanol. When offered in dual choice bioassays using green paper cards as a substrate, the methanol extract stimulated oviposition activity byPieris brassicae L. (Lepidoptera: Pieridae) females. The oviposition stimulant was isolated using medium pressure liquid chromatography, reversed-phase HPLC, ion-pair HPLC and ion exchange chromatography. Using1H-NMR spectroscopy, the stimulant could be identified as glucobrassicin (3-indolyl-methyl-glucosinolate). When pure glucobrassicin was offered at a dose identical to that in the crude methanol extract, butterflies did not discriminate between these two substrates in a dual choice test. It is argued that a high sensitivity for indole glucosinolates as host recognition factors may confer an adaptive value for these specialist crucifer feeders. The nutritional significance of their precursor tryptophan and the non-volatile nature of the aglycones formed upon enzymic hydrolysis in damaged tissues are proposed as properties of indole glucosinolates that contribute to this possible adaptive advantage.  相似文献   

16.
Summary Gregarious nymphs of the desert locust,Schistocerca gregaria (Forsk.) (Orthoptera: Acrididae) were more attracted to volatiles from mechanically damaged food plants used for rearing than to either the undamaged or damaged food plants not used as diet in Y-tube olfactometer assays. Comparative analysis of the volatile emissions from plants used for rearing and food plants not used for rearing,e.g. Sorghum bicolor, Pennisetum clandestinum, Schouwia thebaica, wheat (Triticum sp., var. Nyangumi),Zygophyllum simplex, Heliotropium undulatum andTribulus terrestris was carried out by GC, GC-EAD and GC-MS. Significant quantitative and qualitative differences were found in the volatile emissions and olfactory responses of nymphs in GC-EAD assays. Up to 33 compounds were identified in volatiles of the plants of which 9 evoked EAGs. EAG-active components included common green leaf compounds (E)-2-pentenal, (E)-2-hexenal, 4-methyl-3-pentenal, (E)-3-hexenyl acetate, (Z)-3-hexenyl acetate, (Z)-2-hexenyl acetate, (Z)-3-hexen-1-ol and (Z)-2-hexen-1-ol. (Z)-3-Hexenyl butyrate and (Z)-3-hexenyl isovalerate were detected in stimulatory amounts only in the volatiles ofS. thebaica. (E, Z)-2,6-Nonadienal was detected as a component in the volatiles ofT. terrestris and was highly stimulatory. In EAG assays with seven common green leaf volatiles, (Z)-3-hexenyl acetate was most stimulatory while hexanal was the least. No significant differences were recorded between antennal responses of males and females to the tested compounds. These results are discussed with regard to current hypotheses on host plant recognition through detection of their airborne volatiles and the learning behaviour by nymphs ofS. gregaria.  相似文献   

17.
In most social insect species, individuals recognize and behave aggressively towards non-nestmate conspecifics to maintain colony integrity. However, introduced populations of the invasive Argentine ant, Linepithema humile, exhibit pronounced variation in intraspecific aggression denoting diversity in nestmate recognition behavior, which possibly shapes their social structure and the varying levels of unicoloniality observed among these populations. One approach to better understand differential aggression behaviors towards conspecifics and recognition cue perception and response in L. humile is to examine variation in nestmate discrimination capability among genetically distinct colonies under different social contexts. Consequently, we investigated the dynamics of queen and worker recognition in southeastern US L. humile queenless and queenright colonies by measuring rates of non-nestmate worker and queen adoption and intercolony genetic similarity. Aggression levels between colony pairs differed and were associated with non-nestmate worker, but not queen adoption. Adoption of queens and workers was a function of host colony origin, while colony queen number affected adoption of queens, but not workers, with queens more readily accepted by queenless hosts. Fecundity of adopted non-nestmate queens was comparable to that of rejected non-nestmate and host colony queens, suggesting that queen fecundity did not affect adoption decisions. Genetic similarity between colonies ranged from 30 to 77% alleles shared, with more genetically similar colonies showing lower levels of intraspecific aggression. Non-nestmate queens and workers that were more genetically similar to host colony workers were more likely to be adopted. We provide the first evidence for the role of L. humile colony queen number on queen discrimination and suggest an effect of resident queens on worker conspecific acceptance thresholds. Our findings indicate a role for genetically based cues in L. humile nestmate recognition. However, subtle discrimination capability seems to be influenced by the social context, as demonstrated by more frequent recognition errors in queenless colonies.  相似文献   

18.
Summary. Host plant volatiles which attract insect herbivores for egg-laying are of principal interest with respect to insect ecology and evolution. Direct applications concern population monitoring and control through behavioural manipulation. Identification of behaviourally active plant secondary metabolites is essential also for plant breeding for insect resistance. Grapevine moth females Lobesia botrana are attracted by upwind flight to green grape berries Vitis vinifera. The headspace of grape berries was collected on air filters. A solvent extract of these filters, released from a sprayer, attracted females in the wind tunnel. The results demonstrate that volatile cues mediate attraction of grapevine moth females to grape berries, and that headspace collections capture the essence of this odour signal. The air filter extracts were examined by gas chromatography coupled with electroantennographic detection, and the compounds eliciting a consistent antennal response in L. botrana females were identified by mass spectrometry. The headspace collection apparatus was calibrated for collection efficiency of the active compounds. Their recovery rate ranged from 35 % for methyl salicylate to 83 % for (E,E)-α-farnesene. A synthetic ten-component blend was then formulated. The blend consisted of compounds eliciting an antennal response, formulated in a blend ratio corrected for differences in collection efficiency. Subsequent wind tunnel tests showed that female attraction to this synthetic ten-component blend was not significantly different from attraction to grape berries, or to headspace collections of the same berries. At a release rate of 35 ng/h of the most abundant compound (E)-β-caryophyllene, 20 % of the test females approached the source of sprayed headspace collections and the ten-component synthetic blend, respectively. In comparison, 100 g of green berries, releasing the main compound (E)-β-caryophyllene at a rate of ca. 4.7 ng/h, attracted 10 % of the females by upwind flight followed by source contact.  相似文献   

19.
Summary. Larvae of Trichoplusia ni Hübner (Lepidoptera: Noctuidae) that ingested latex from Asclepias curassavica L. (Asclepiadaceae) often regurgitated and convulsed with spasms before becoming immobile and unresponsive. Some larvae required over a day to recover sufficiently to feed. Latices from four other plant species in three families were all deterrent, but none caused detectable poisoning. The toxicity of A. curassavica latex was evidently due to cardenolides because pure cardenolides had similar effects when ingested by T. ni. Other species of noctuid caterpillars (Rachiplusia ou Guenée, Anagrapha falcifera Kirby, and Autographa precationis Guenée) sometimes also suffered spasms and temporary immobility when fed A. curassavica latex. A more distantly related noctuid, Spodoptera ornithogalli, was deterred by the latex, but showed no overt physiological responses at the dosage tested. T. ni larvae failed to develop on intact leaves of A. curassavica, on leaves with latex canals deactivated by midrib severance, and on excised leaves. Similarly, larvae reared on excised A. syriaca L. leaves to the final instar died when transferred to A. curassavica leaves with either intact or severed midribs. The final instar larvae sometimes suffered from spasms and immobility even when confined on leaves with depressurized canal systems. Evidently, cardenolides stored outside the latex system suffice to poison larvae. We conclude that cardenolides in A. curassavica have potent physiological effects on some generalist caterpillars and that the presence of these compounds both inside and outside laticifers effectively protects the plant. Received 30 June 1999; accepted 18 October 1999  相似文献   

20.
Acacia longifolia, a highly invasive species that invades coastal ecosystems in Mediterranean areas, produces significant impacts at different scales. Abundant foliage and thick canopies create a dense atmosphere that led us to hypothesise that the release of volatile organic compounds (VOCs) could play a role in the reduction of biodiversity observed in invaded areas. Therefore, we suggested that VOCs emitted by A. longifolia could exert inhibitory effects on physiological and biochemical parameters of native species. Using glass chamber bioassays, we evaluated the effect of aerial contact between VOCs from different plant parts of A. longifolia material and some native species. Volatile chemical composition was further analysed using GC-MS. Our results indicated that VOCs produced a notably reduction of seed germination. Furthermore, volatiles from leaves and flowers significantly decreased root length, shoot length and biomass for all species. Proline and malondialdehyde content did not significantly increase after contact with VOCs. Finally, chemical profile of VOCs from flowers, leaves and litter was significantly different, both qualitatively and quantitatively. As far as we know, our results constitute the first evidence of phytotoxicity induced by VOCs from A. longifolia, suggesting that flowers and leaves could influence its surrounding environment through VOCs release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号