首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 742 毫秒
1.
The performance of the electrochemical oxidation process for efficient treatment of domestic wastewater loaded with organic matter was studied. The process was firstly evaluated in terms of its capability of producing an oxidant agent (H2O2) using amorphous carbon (or carbon felt) as cathode, whereas Ti/BDD electrode was used as anode. Relatively high concentrations of H2O2 (0.064 mM) was produced after 90 min of electrolysis time, at 4.0 A of current intensity and using amorphous carbon at the cathode. Factorial design and central composite design methodologies were successively used to define the optimal operating conditions to reach maximum removal of chemical oxygen demand (COD) and color. Current intensity and electrolysis time were found to influence the removal of COD and color. The contribution of current intensity on the removal of COD and color was around 59.1 and 58.8 %, respectively, whereas the contribution of treatment time on the removal of COD and color was around 23.2 and 22.9 %, respectively. The electrochemical treatment applied under 3.0 A of current intensity, during 120 min of electrolysis time and using Ti/BDD as anode, was found to be the optimal operating condition in terms of cost/effectiveness. Under these optimal conditions, the average removal rates of COD and color were 78.9?±?2 and 85.5?±?2 %, whereas 70 % of total organic carbon removal was achieved.  相似文献   

2.
The electrochemical abatement of the drug ibuprofen (2-(4-isobutylphenyl)propionic acid) from aqueous solution has been carried out by anodic oxidation. The electrolyses have been performed at constant current using a small, undivided cell equipped with a Pt or thin-film boron-doped diamond (BDD) anode and a carbon-felt cathode. The results have shown that ibuprofen has been destroyed under all the conditions tested, following pseudo-first-order kinetics; however, BDD enables higher removal rates than Pt, because the former produces greater quantity of ?OH. Using BDD anode, the pseudo-first-order rate constant increased with applied current and when NaCl replaced Na2SO4 as supporting electrolyte, while it is almost unaffected by ibuprofen concentration. Mineralization of ibuprofen aqueous solutions was followed by total organic carbon (TOC) measurements. After 8 h of electrolysis, TOC removal varied from 91 % to 96 % applying a current in the range of 50–500 mA. The reaction by-products were quantified by chromatographic techniques, and in particular, aliphatic acids (oxalic, glyoxylic, formic, acetic, and pyruvic) have been the main intermediates formed during the electrolyses. The absolute rate constant for the oxidative degradation of ibuprofen have also been determined, by competition kinetic method, as 6.41?×?109 M?1?s?1.  相似文献   

3.
In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H2O2 electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals (?OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by ?OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19?×?109 M?1 s?1. It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO2 and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.  相似文献   

4.
This paper compares the performance of 2D (plate) and 3D (mesh) boron-doped diamond (BDD) electrodes, fitted into a filter-press reactor, during the electrochemical incineration of indigo textile dye as a model organic compound in chloride medium. The electrolyses were carried out in the FM01-LC reactor at mean fluid velocities between 0.9?≤?u?≤?10.4 and 1.2?≤?u?≤?13.9 cm s?1 for the 2D BDD and the 3D BDD electrodes, respectively, at current densities of 5.63 and 15 mA cm?2. The oxidation of the organic matter was promoted, on the one hand, via the physisorbed hydroxyl radicals (BDD(OH)) formed from water oxidation at the BDD surface and, on the other hand, via active chlorine formed from the oxidation of chloride ions on BDD. The performance of 2D BDD and 3D BDD electrodes in terms of current efficiency, energy consumption, and charge passage during the treatments is discussed.  相似文献   

5.
The oxidative degradation of imidacloprid (ICP) has been carried out by electrochemical advanced oxidation processes (EAOPs), anodic oxidation, and electro-Fenton, in which hydroxyl radicals are generated electrocatalytically. Carbon-felt cathode and platinum or boron-doped diamond (BDD) anodes were used in electrolysis cell. To determine optimum operating conditions, the effects of applied current and catalyst concentration were investigated. The decay of ICP during the oxidative degradation was well fitted to pseudo-first-order reaction kinetics and absolute rate constant of the oxidation of ICP by hydroxyl radicals was found to be k abs(ICP)?=?1.23?×?109 L mol?1 s?1. The results showed that both anodic oxidation and electro-Fenton process with BDD anode exhibited high mineralization efficiency reaching 91 and 94 % total organic carbon (TOC) removal at 2 h, respectively. For Pt-EF process, mineralization efficiency was also obtained as 71 %. The degradation products of ICP were identified and a plausible general oxidation mechanism was proposed. Some of the main reaction intermediates such as 6-chloronicotinic acid, 6-chloronicotinaldehyde, and 6-hydroxynicotinic acid were determined by GC-MS analysis. Before complete mineralization, formic, acetic, oxalic, and glyoxylic acids were identified as end-products. The initial chlorine and organic nitrogen present in ICP were found to be converted to inorganic anions Cl?, NO3 ?, and NH4 +.  相似文献   

6.
This study describes a novel wastewater treatment technology suitable for small remote northern communities. The technology is based on an enhanced biodegradation of organic carbon through a combination of anaerobic methanogenic and microbial electrochemical (bioelectrochemical) degradation processes leading to biomethane production. The microbial electrochemical degradation is achieved in a membraneless flow-through bioanode–biocathode setup operating at an applied voltage below the water electrolysis threshold. Laboratory wastewater treatment tests conducted through a broad range of mesophilic and psychrophilic temperatures (5–23 °C) using synthetic wastewater showed a biochemical oxygen demand (BOD5) removal efficiency of 90–97% and an effluent BOD5 concentration as low as 7 mg L?1. An electricity consumption of 0.6 kWh kg?1 of chemical oxygen demand (COD) removed was observed. Low energy consumption coupled with enhanced methane production led to a net positive energy balance in the bioelectrochemical treatment system.  相似文献   

7.

Introduction

The degradation and mineralization of two triketone (TRK) herbicides, including sulcotrione and mesotrione, by the electro-Fenton process (electro-Fenton using Pt anode (EF-Pt), electro-Fenton with BDD anode (EF-BDD) and anodic oxidation with BDD anode) were investigated in acidic aqueous medium.

Methods

The reactivity of both herbicides toward hydroxyl radicals was found to depend on the electron-withdrawing effect of the aromatic chlorine or nitro substituents. The degradation of sulcotrione and mesotrione obeyed apparent first-order reaction kinetics, and their absolute rate constants with hydroxyl radicals at pH?3.0 were determined by the competitive kinetics method.

Results and discussion

The hydroxylation absolute rate constant (k abs) values of both TRK herbicides ranged from 8.20?×?108 (sulcotrione) to 1.01?×?109 (mesotrione) L?mol?1?s?1, whereas those of the TRK main cyclic or aromatic by-products, namely cyclohexane 1,3-dione , (2-chloro-4-methylsulphonyl) benzoic acid and 4-(methylsulphonyl)-2-nitrobenzoic acid, comprised between 5.90?×?108 and 3.29?×?109?L?mol?1?s?1. The efficiency of mineralization of aqueous solutions of both TRK herbicides was evaluated in terms of total organic carbon removal. Mineralization yields of about 97?C98% were reached in optimal conditions for a 6-h electro-Fenton treatment time.

Conclusions

The mineralization process steps involved the oxidative opening of the aromatic or cyclic TRK by-products, leading to the formation of short-chain carboxylic acids, and, then, of carbon dioxide and inorganic ions.  相似文献   

8.
Dairy wastewater is characterized by a high content of hardly biodegradable dissolved, colloidal, and suspended organic matter. This work firstly investigates the performance of two individual electrochemical treatments, namely electrocoagulation (EC) and electro-oxidation (EO), in order to finally assess the mineralization ability of a sequential EC/EO process. EC with an Al anode was employed as a primary pretreatment for the conditioning of 800 mL of wastewater. A complete reduction of turbidity, as well as 90 and 81 % of chemical oxygen demand (COD) and total organic carbon (TOC) removal, respectively, were achieved after 120 min of EC at 9.09 mA cm?2. For EO, two kinds of dimensionally stable anodes (DSA) electrodes (Ti/IrO2-Ta2O5 and Ti/IrO2-SnO2–Sb2O5) were prepared by the Pechini method, obtaining homogeneous coatings with uniform composition and high roughness. The ·OH formed at the DSA surface from H2O oxidation were not detected by electron spin resonance. However, their indirect determination by means of H2O2 measurements revealed that Ti/IrO2-SnO2–Sb2O5 is able to produce partially physisorbed radicals. Since the characterization of the wastewater revealed the presence of indole derivatives, preliminary bulk electrolyses were done in ultrapure water containing 1 mM indole in sulfate and/or chloride media. The performance of EO with the Ti/IrO2-Ta2O5 anode was evaluated from the TOC removal and the UV/Vis absorbance decay. The mineralization was very poor in 0.05 M Na2SO4, whereas it increased considerably at a greater Cl? content, meaning that the oxidation mediated by electrogenerated species such as Cl2, HClO, and/or ClO? competes and even predominates over the ·OH-mediated oxidation. The EO treatment of EC-pretreated dairy wastewater allowed obtaining a global 98 % TOC removal, decreasing from 1,062 to <30 mg L?1.  相似文献   

9.
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8?±?0.1)?×?109 M?1 s?1 by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.  相似文献   

10.
In this work, the efficiency of electrochemical oxidation (EO) was investigated for removing a dye mixture containing Novacron Yellow (NY) and Remazol Red (RR) in aqueous solutions using platinum supported on titanium (Ti/Pt) as anode. Different current densities (20, 40 and 60 mA cm?2) and temperatures (25, 40 and 60 °C) were studied during electrochemical treatment. After that, the EO of each of these dyes was separately investigated. The EO of each of these dyes was performed, varying only the current density and keeping the same temperature (25 °C). The elimination of colour was monitored by UV-visible spectroscopy, and the degradation of organic compounds was analysed by means of chemical oxygen demand (COD). Data obtained from the analysis of the dye mixture showed that the EO process was effective in colour removal, in which more than 90 % was removed. In the case of COD removal, the application of a current density greater than 40 mA cm?2 favoured the oxygen evolution reaction, and no complete oxidation was achieved. Regarding the analysis of individual anodic oxidation dyes, it was appreciated that the data for the NY were very close to the results obtained for the oxidation of the dye mixture while the RR dye achieved higher colour removal but lower COD elimination. These results suggest that the oxidation efficiency is dependent on the nature of the organic molecule, and it was confirmed by the intermediates identified. Figure
Chemical structures of a NY and b RR  相似文献   

11.
This paper focuses on the influence of the current density treatment of a concentrated 1-butyl-3-methylimidazolium chloride (BMImCl) solution on an electrochemical reactor with a boron-doped diamond (BDD) anode. The decrease in the total organic carbon (TOC) and the BMImCl concentration demonstrate the capability of BDD in oxidizing ionic liquids (ILs) and further mineralizing (to CO2 and NO3 ?) more rapidly at higher current densities in spite of the reduced current efficiency of the process. Moreover, the presence of Cl? led to the formation of oxychlorinated anions (mostly ClO3 ? and ClO4 ?) and, in combination with the ammonia generated in the cathode from the nitrate reduction, chloramines, more intensely at higher current density. Finally, the analysis of the intermediates formed revealed no apparent influence of the current density on the BMImCl degradation mechanism. The current density presents therefore a complex influence on the IL treatment process that is discussed throughout this paper.  相似文献   

12.
This study is focused on the effective removal of recalcitrant pollutants hexaclorocyclohexanes (HCHs, isomers α, β, γ, and δ) and chlorobenzenes (CBs) present in a real groundwater coming from a landfill of an old lindane factory. Groundwater is characterized by a total organic carbon (TOC) content of 9 mg L?1, pH0?=?7, conductivity?=?3.7 mS cm?1, high salt concentration (SO42?, HCO3?, Cl?), and ferrous iron in solution. The experiments were performed using a BDD anode and a carbon felt (CF) cathode at the natural groundwater pH and without addition of supporting electrolyte. The complete depletion of the four HCH isomers and a mineralization degree of 90% were reached at 4-h electrolysis with a current intensity of 400 mA, the residual TOC (0.8 mg L?1) corresponding mainly to formic acid. A parallel series reaction pathway was proposed: HCHs and CBs are transformed into chlorinated and hydroxylated intermediates that are rapidly oxidized to non-toxic carboxylic acids and/or mineralized, leading to a rapid decrease in solution pH.  相似文献   

13.
A Fenton oxidation system employing zero-valent iron (whose source was swarf, a residue of metallurgical industries, in powder form) and hydrogen peroxide for the treatment of an aqueous solution with six pesticides was developed, and the effect of the iron metal content, pH, and hydrogen peroxide concentration was evaluated. The characterization of the aqueous solution resulted in: pH 5.6, 105 mg L?1 of dissolved organic carbon, and 44.6 NTU turbidity. In addition, the characterization of the swarf by FAAS and ICP-MS showed 98.43?±?7.40 % of zero-valent iron. The removal was strongly affected by the content of iron metal, pH, and hydrogen peroxide concentration. The best degradation conditions were 2.0 g swarf, pH 2.0, and 5 mmol L?1 H2O2. At the end of the treatment, the pesticide degradation ranged from 60 to 100 %, leading to 55 % mineralization. Besides, all hydrogen peroxide was consumed and the determination of total dissolved iron resulted in 2 mg L?1. Thus, the advantages of this system are rapid degradation (up to 20 min), high-degradation rates, simple handling, and low cost.
Figure
A Fenton oxidation system employing Fe0 (in which the source of Fe0 was swarf, a residue in powder form of metallurgical industries) and H2O2 for the degradation of synthetic wastewater comprising six pesticides was developed, and the effect of the amount of Fe0, pH, and H2O2 concentration was evaluated.  相似文献   

14.
The most efficient system of horizontal subsurface flow constructed wetlands (HSSFCW) for removing dissolved organic carbon (DOC) in the presence of chlorothalonil pesticide (CLT) present in synthetic domestic wastewater was determined using the macrophyte Phragmites australis. Two concentrations of CLT (85 and 385 μg L?1) and one concentration of glucose (20 mg L?1) were evaluated in four pilot scale horizontal surface flow constructed wetlands coupled with two sizes of silica gravel, igneous gravel, fine chalky gravel (3.18–6.35 mm), coarse gravel (12.70–25.40 mm) and two water surface heights (20 and 40 cm). For a month, wetlands were acclimated with domestic wastewater. Some groups of bacteria were also identified in the biofilm attached to the gravel. In each treatment periodic samplings were conducted in the influent and effluent. Chlorothalonil was quantified by gas chromatography (GC-ECD m), DOC by an organic carbon analyzer and bacterial groups using conventional microbiology in accordance with Standard Methods. The largest removals of DOC (85.82%–85.31%) were found when using fine gravel (3.18–6.35 mm) and the lower layer of water (20 cm). The bacterial groups quantified in the biofilm were total heterotrophic, revivable heterotrophic, Pseudomonas and total coliforms. The results of this study indicate that fine grain gravel (3.18–6.35 mm) and both water levels (20 to 40 cm) can be used in the removal of organic matter and for the treatment of agricultural effluents contaminated with organo-chloride pesticides like CLT in HSSFCW.  相似文献   

15.
The anodic degradation of 1,4-benzoquinone (BQ), one of the most toxic xenobiotic, was investigated by electrochemical oxidation at boron-doped diamond anode. The electrolyses have been performed in a single-compartment flow cell in galvanostatic conditions. The influence of applied current (0.5–2 A), BQ concentration (1–2 g dm?3), temperature (20–45 °C) and flow rate (100–300 dm3 h?1) has been studied. BQ decay kinetic, the evolution of its oxidation intermediates and the mineralization of the aqueous solutions were monitored during the electrolysis by high-performance liquid chromatograph (HPLC) and chemical oxygen demand (COD) measurements. The results obtained show that the use of diamond anode leads to total mineralization of BQ in any experimental conditions due to the production of oxidant hydroxyl radicals electrogenerated from water discharge. The decay kinetics of BQ removal follows a pseudo-first-order reaction, and the rate constant increases with rising current density. The COD removal rate was favoured by increasing of applied current, recirculating flow rate and it is almost unaffected by solution temperature.  相似文献   

16.
The efficiency of the anaerobic treatment of cheese whey (CW) at mesophilic conditions was investigated. In addition, the applicability of electrochemical oxidation as an advanced post-treatment for the complete removal of chemical oxygen demand (COD) from the anaerobically treated cheese whey was evaluated. The diluted cheese whey, having a pH of 6.5 and a total COD of 6 g/L, was first treated in a 600-L, pilot-scale up-flow anaerobic sludge blanket (UASB) reactor. The UASB process, which was operated for 87 days at mesophilic conditions (32?±?2 °C) at a hydraulic retention time (HRT) of 3 days, led to a COD removal efficiency between 66 and 97 %, while the particulate matter of the wastewater was effectively removed by entrapment in the sludge blanket of the reactor. When the anaerobic reactor effluent was post-treated over a boron-doped diamond (BDD) anode at 9 and 18 A and in the presence of NaCl as the supporting electrolyte, complete removal of COD was attained after 3–4 h of reaction. During electrochemical experiments, three groups of organochlorinated compounds, namely trihalomethanes (THMs), haloacetonitriles (HANs), and haloketons (HKs), as well as 1,2-dichloroethane (DCA) and chloropicrin were identified as by-products of the process; these, alongside free chlorine, are thought to increase the matrix ecotoxicity to Artemia salina.  相似文献   

17.
Different advanced oxidation processes (AOPs) were applied to the treatment of a real cotton-textile dyeing wastewater as a pre-oxidation step to enhance the biodegradability of the recalcitrant compounds, which can be further oxidized using a biological process. Tests were conducted on a lab-scale prototype using artificial solar radiation and at pilot scale with compound parabolic collectors using natural solar radiation. The cotton-textile dyeing wastewater presents a lilac color, with a maximum absorbance peak at 641 nm, alkaline pH (pH?=?8.2), moderate organic content (DOC?=?152 mg C L?1, COD?=?684 mg O2 L?1) and low-moderate biodegradability (40 % after 28 days in Zahn–Wellens test). All the tested processes contributed to an effective decolorization and mineralization, but the most efficient process was the solar-photo-Fenton with an optimum catalyst concentration of 60 mg Fe2+ L?1, leading to 98.5 % decolorization and 85.5 % mineralization after less than 0.1 and 5.8 kJUV L?1, respectively. In order to achieve a final wastewater with a COD below 250 mg O2 L?1 (discharge limit into water bodies imposed by the Portuguese Legislation-Portaria no. 423/97 of 25 June 1997), considering the combination of a solar-photo-Fenton reaction with a biological process, the phototreatment energy required is 0.5 kJUV L?1, consuming 7.5 mM hydrogen peroxide, resulting in 58.4 % of mineralization $ \left({t}_{30\mathrm{W}}=3.2\ \min; \overline{T}=30.7\ {}^{\circ}\mathrm{C};\overline{\mathrm{pH}}=2.80;{\overline{\mathrm{UV}}}_{G,n}={13\ \mathrm{W}\ \mathrm{m}}^{-2}\right). $   相似文献   

18.
The effect of varying inorganic (chloride, nitrate, sulfate, and phosphate) and organic (represented by humic acid) solutes on the removal of aqueous micropollutant bisphenol A (BPA; 8.8 μM; 2 mg/L) with the oxidizing agents hydrogen peroxide (HP; 0.25 mM) and persulfate (PS; 0.25 mM) activated using zero-valent aluminum (ZVA) nanoparticles (1 g/L) was investigated at a pH of 3. In the absence of the solutes, the PS/ZVA treatment system was superior to the HP/ZVA system in terms of BPA removal rates and kinetics. Further, the HP/ZVA process was not affected by nitrate (50 mg/L) addition, whereas chloride (250 mg/L) exhibited no effect on the PS/ZVA process. The negative effect of inorganic anions on BPA removal generally speaking increased with increasing charge in the following order: NO3? (no inhibition)?<?Cl? (250 mg/L)?=?SO42??<?PO43? for HP/ZVA and Cl? (250 mg/L; no inhibition)?<?NO3??<?SO42??<?PO43? for PS/ZVA. Upon addition of 20 mg/L humic acid representing natural organic matter, BPA removals decreased from 72 and 100% in the absence of solutes to 24 and 57% for HP/ZVA and PS/ZVA treatments, respectively. The solute mixture containing all inorganic and organic solutes together partly suppressed the inhibitory effects of phosphate and humic acid on BPA removals decreasing to 46 and 43% after HP/ZVA and PS/ZVA treatments, respectively. Dissolved organic carbon removals were obtained in the range of 30 and 47% (the HP/ZVA process), as well as 47 and 57% (the PS/ZVA process) for the experiments in the presence of 20 mg/L humic acid and solute mixture, respectively. The relative Vibrio fischeri photoluminescence inhibition decreased particularly for the PS/ZVA treatment system, which exhibited a higher treatment performance than the HP/ZVA treatment system.  相似文献   

19.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

20.
Boron-doped diamond (BDD) is playing an important role in environmental electrochemistry and has been successfully applied to the degradation of various bio-refractory organic pollutants. However, the review concerning recent progress in this research area is still very limited. This mini-review updated recent advances on the removal of three kinds of bio-refractory wastewaters including pharmaceuticals, pesticides, and dyes using BDD electrode. It summarized the important parameters in three electrochemical oxidation processes, i.e., anodic oxidation (AO), electro-Fenton (EF), and photoelectro-Fenton (PEF) and compared their different degradation mechanisms and behaviors. As an attractive improvement of PEF, solar photoelectro-Fenton using sunlight as UV/vis source presented cost-effectiveness, in which the energy consumption for enrofloxacin removal was 0.246 kWh/(g TOC), which was much lower than that of 0.743 and 0.467 kWh/(g TOC) by AO and EF under similar conditions. Finally the existing problems and future prospects in research were suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号