首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Abstract: Determining population viability of rare insects depends on precise, unbiased estimates of population size and other demographic parameters. We used data on the endangered St. Francis' satyr butterfly (Neonympha mitchellii francisci) to evaluate 2 approaches (mark–recapture and transect counts) for population analysis of rare butterflies. Mark–recapture analysis provided by far the greatest amount of demographic information, including estimates (and standard errors) of population size, detection, survival, and recruitment probabilities. Mark–recapture analysis can also be used to estimate dispersal and temporal variation in rates, although we did not do this here. Models of seasonal flight phenologies derived from transect counts (Insect Count Analyzer) provided an index of population size and estimates of survival and statistical uncertainty. Pollard–Yates population indices derived from transect counts did not provide estimates of demographic parameters. This index may be highly biased if detection and survival probabilities vary spatially and temporally. In terms of statistical performance, mark–recapture and Pollard–Yates indices were least variable. Mark–recapture estimates were less likely to fail than Insect Count Analyzer, but mark–recapture estimates became less precise as sampling intensity decreased. In general, count‐based approaches are less costly and less likely to cause harm to rare insects than mark–recapture. The optimal monitoring approach must reconcile these trade‐offs. Thus, mark–recapture should be favored when demographic estimates are needed, when financial resources enable frequent sampling, and when marking does not harm the insect populations. The optimal sampling strategy may use 2 sampling methods together in 1 overall sampling plan: limited mark–recapture sampling to estimate survival and detection probabilities and frequent but less expensive transect counts.  相似文献   

2.
Many populations of animals are fluid in both space and time, making estimation of numbers difficult. Much attention has been devoted to estimation of bias in detection of animals that are present at the time of survey. However, an equally important problem is estimation of population size when all animals are not present on all survey occasions. Here, we showcase use of the superpopulation approach to capture-recapture modeling for estimating populations where group membership is asynchronous, and where considerable overlap in group membership among sampling occasions may occur. We estimate total population size of long-legged wading bird (Great Egret and White Ibis) breeding colonies from aerial observations of individually identifiable nests at various times in the nesting season. Initiation and termination of nests were analogous to entry and departure from a population. Estimates using the superpopulation approach were 47-382% larger than peak aerial counts of the same colonies. Our results indicate that the use of the superpopulation approach to model nesting asynchrony provides a considerably less biased and more efficient estimate of nesting activity than traditional methods. We suggest that this approach may also be used to derive population estimates in a variety of situations where group membership is fluid.  相似文献   

3.
The paper deals with sampling from a finite population that is distributed over space and has a highly uneven spatial distribution. It suggests a sampling design that allocates a portion of the sample units that are well spread over the population and sequentially selects the remaining units in sub-areas that appear to be of more interest according to the study variable values observed during the survey. In order to estimate the population mean while using this sampling design, a computationally intense estimator, obtained via the Rao–Blackwell approach, is proposed and a resampling method is used that makes the inference computationally feasible. The whole sampling strategy is evaluated through several Monte Carlo experiments.  相似文献   

4.
Chandler RB  Royle JA  King DI 《Ecology》2011,92(7):1429-1435
Few species are distributed uniformly in space, and populations of mobile organisms are rarely closed with respect to movement, yet many models of density rely upon these assumptions. We present a hierarchical model allowing inference about the density of unmarked populations subject to temporary emigration and imperfect detection. The model can be fit to data collected using a variety of standard survey methods such as repeated point counts in which removal sampling, double-observer sampling, or distance sampling is used during each count. Simulation studies demonstrated that parameter estimators are unbiased when temporary emigration is either "completely random" or is determined by the size and location of home ranges relative to survey points. We also applied the model to repeated removal sampling data collected on Chestnut-sided Warblers (Dendroica pensylvancia) in the White Mountain National Forest, U.S.A. The density estimate from our model, 1.09 birds/ha, was similar to an estimate of 1.11 birds/ha produced by an intensive spot-mapping effort. Our model is also applicable when processes other than temporary emigration affect the probability of being available for detection, such as in studies using cue counts. Functions to implement the model have been added to the R package unmarked.  相似文献   

5.
This paper reviews design-based estimators for two- and three-stage sampling designs to estimate the mean of finite populations. This theory is then extended to spatial populations with continuous, infinite populations of sampling units at the latter stages. We then assume that the spatial pattern is the result of a spatial stochastic process, so the sampling variance of the estimators can be predicted from the variogram. A realistic cost function is then developed, based on several factors including laboratory analysis, time of fieldwork, and numbers of samples. Simulated annealing is used to find designs with minimum sampling variance for a fixed budget. The theory is illustrated with a real-world problem dealing with the volume of contaminated bed sediments in a network of watercourses. Primary sampling units are watercourses, secondary units are transects perpendicular to the axis of the watercourse, and tertiary units are points. Optimal designs had one point per transect, from one to three transects per watercourse, and the number of watercourses varied depending on the budget. However, if laboratory costs are reduced by grouping all samples within a watercourse into one composite sample, it appeared to be efficient to sample more transects within a watercourse.  相似文献   

6.
A probabilistic sampling approach for design-unbiased estimation of area-related quantitative characteristics of spatially dispersed population units is proposed. The developed field protocol includes a fixed number of 3 units per sampling location and is based on partial triangulations over their natural neighbors to derive the individual inclusion probabilities. The performance of the proposed design is tested in comparison to fixed area sample plots in a simulation with two forest stands. Evaluation is based on a general approach for areal sampling in which all characteristics of the resulting population of possible samples is derived analytically by means of a complete tessellation of the areal sampling frame. The example simulation shows promising results. Expected errors under this design are comparable to sample plots including a much greater number of trees per plot.  相似文献   

7.
Gray BR  Burlew MM 《Ecology》2007,88(9):2364-2372
Ecologists commonly use grouped or clustered count data to estimate temporal trends in counts, abundance indices, or abundance. For example, the U.S. Breeding Bird Survey data represent multiple counts of birds from within each of multiple, spatially defined routes. Despite a reliance on grouped counts, analytical methods for prospectively estimating precision of trend estimates or statistical power to detect trends that explicitly acknowledge the characteristics of grouped count data are undescribed. These characteristics include the fact that the sampling variance is an increasing function of the mean, and that sampling and group-level variance estimates are generally estimated on different scales (the sampling and log scales, respectively). We address these issues for repeated sampling of a single population using an analytical approach that has the flavor of a generalized linear mixed model, specifically that of a negative binomial-distributed count variable with random group effects. The count mean, including grand intercept, trend, and random group effects, is modeled linearly on the log scale, while sampling variance of the mean is estimated on the log scale via the delta method. Results compared favorably with those derived using Monte Carlo simulations. For example, at trend = 5% per temporal unit, differences in standard errors and in power were modest relative to those estimated by simulation (< or = /11/% and < or = /16/%, respectively), with relative differences among power estimates decreasing to < or = /7/% when power estimated by simulations was > or = 0.50. Similar findings were obtained using data from nine surveys of fingernail clams in the Mississippi River. The proposed method is suggested (1) where simulations are not practical and relative precision or power is desired, or (2) when multiple precision or power calculations are required and where the accuracy of a fraction of those calculations will be confirmed using simulations.  相似文献   

8.
Bacteriological water quality status in terms of total coliform and faecal coliform count was studied on both--east and west banks of river Yamuna in Delhi. Membrane filtration technique was adopted for enumeration of total coliform and faecal coliform count in the river water sample collected on monthly basis for 2 years--2002 and 2003. The study reveals the impact of diverse anthropogenic activities as well as the monsoon effect on the bacterial population of river Yamuna in Delhi stretch. Microbial population contributed mainly through human activities prevailed in the entire stretch of Yamuna river with reduction in bacterial counts during monsoon period due to flushing effect. Bacteriological assessment does not provide an integrated effect of pollution but only indicate the water quality at the time of sampling. Hence, this parameter is time and space specific.  相似文献   

9.
Abstract: Often abundance of rare species cannot be estimated with conventional design‐based methods, so we illustrate with a population of blue whales (Balaenoptera musculus) a spatial model‐based method to estimate abundance. We analyzed data from line‐transect surveys of blue whales off the coast of Chile, where the population was hunted to low levels. Field protocols allowed deviation from planned track lines to collect identification photographs and tissue samples for genetic analyses, which resulted in an ad hoc sampling design with increased effort in areas of higher densities. Thus, we used spatial modeling methods to estimate abundance. Spatial models are increasingly being used to analyze data from surveys of marine, aquatic, and terrestrial species, but estimation of uncertainty from such models is often problematic. We developed a new, broadly applicable variance estimator that showed there were likely 303 whales (95% CI 176–625) in the study area. The survey did not span the whales' entire range, so this is a minimum estimate. We estimated current minimum abundance relative to pre‐exploitation abundance (i.e., status) with a population dynamics model that incorporated our minimum abundance estimate, likely population growth rates from a meta‐analysis of rates of increase in large baleen whales, and two alternative assumptions about historic catches. From this model, we estimated that the population was at a minimum of 9.5% (95% CI 4.9–18.0%) of pre‐exploitation levels in 1998 under one catch assumption and 7.2% (CI 3.7–13.7%) of pre‐exploitation levels under the other. Thus, although Chilean blue whales are probably still at a small fraction of pre‐exploitation abundance, even these minimum abundance estimates demonstrate that their status is better than that of Antarctic blue whales, which are still <1% of pre‐exploitation population size. We anticipate our methods will be broadly applicable in aquatic and terrestrial surveys for rarely encountered species, especially when the surveys are intended to maximize encounter rates and estimate abundance.  相似文献   

10.
We developed a method to estimate population abundance from simultaneous counts of unmarked individuals over multiple sites. We considered that at each sampling occasion, individuals in a population could be detected at 1 of the survey sites or remain undetected and used either multinomial or binomial simultaneous-count models to estimate abundance, the latter being equivalent to an N-mixture model with one site. We tested model performance with simulations over a range of detection probabilities, population sizes, growth rates, number of years, sampling occasions, and sites. We then applied our method to 3 critically endangered vulture species in Cambodia to demonstrate the real-world applicability of the model and to provide the first abundance estimates for these species in Cambodia. Our new approach works best when existing methods are expected to perform poorly (i.e., few sites and large variation in abundance among sites) and if individuals may move among sites between sampling occasions. The approach performed better when there were >8 sampling occasions and net probability of detection was high (>0.5). We believe our approach will be useful in particular for simultaneous surveys at aggregation sites, such as roosts. The method complements existing approaches for estimating abundance of unmarked individuals and is the first method designed specifically for simultaneous counts.  相似文献   

11.
We introduce a novel method to extract a sample from a finite population where units with desired characteristics are over-represented. The approach is both sequential and adaptive and allows, via suitable compositions of predictive and objective functions, to target specific subsets of the population. We consider the problem of estimation and conjecture the validity of a modified Horvitz–Thompson estimator capable to account for the imbalance induced by the targeting procedure. After discussing how to apply the method to the sampling of geographically distributed units, we investigate its potential via simulations.  相似文献   

12.
Abstract: The effectiveness of rare plant conservation will increase when life history, demographic, and genetic data are considered simultaneously. Inbreeding depression is a widely recognized genetic concern in rare plant conservation, and the mixing of genetically diverse populations in restoration efforts is a common remedy. Nevertheless, if populations with unrecognized intraspecific chromosome variation are crossed, progeny fitness losses will range from partial to complete sterility, and reintroductions and population augmentation of rare plants may fail. To assess the current state of cytological knowledge of threatened and endangered plants in the continental United States, we searched available resources for chromosome counts. We also reviewed recovery plans to discern whether recovery criteria potentially place listed species at risk by requiring reintroductions or population augmentation in the absence of cytological information. Over half the plants lacked a chromosome count, and when a taxon did have a count it generally originated from a sampling intensity too limited to detect intraspecific chromosome variation. Despite limited past cytological sampling, we found 11 plants with documented intraspecific cytological variation, while 8 others were ambiguous for intraspecific chromosome variation. Nevertheless, only one recovery plan addressed the chromosome differences. Inadequate within‐species cytological characterization, incomplete sampling among listed taxa, and the prevalence of interspecific and intraspecific chromosome variation in listed genera, suggests that other rare plants are likely to have intraspecific chromosome variation. Nearly 90% of all recovery plans called for reintroductions or population augmentation as part of recovery criteria despite the dearth of cytological knowledge. We recommend screening rare plants for intraspecific chromosome variation before reintroductions or population augmentation projects are undertaken to safeguard against inadvertent mixtures of incompatible cytotypes.  相似文献   

13.
Efficiency of composite sampling for estimating a lognormal distribution   总被引:1,自引:0,他引:1  
In many environmental studies measuring the amount of a contaminant in a sampling unit is expensive. In such cases, composite sampling is often used to reduce data collection cost. However, composite sampling is known to be beneficial for estimating the mean of a population, but not necessarily for estimating the variance or other parameters. As some applications, for example, Monte Carlo risk assessment, require an estimate of the entire distribution, and as the lognormal model is commonly used in environmental risk assessment, in this paper we investigate efficiency of composite sampling for estimating a lognormal distribution. In particular, we examine the magnitude of savings in the number of measurements over simple random sampling, and the nature of its dependence on composite size and the parameters of the distribution utilizing simulation and asymptotic calculations.  相似文献   

14.
Abstract: Use of the phylogenetic species concept in defining conservation units is based on the assumption that the fixation of a particular character state in a population is diagnostic of a long history of reproductive isolation. In practice, diagnosis is usually based on the character states of a small sample of individuals rather than the states of the entire population. Unfortunately, when sample sizes are small, samples in which all individuals share one character state can easily be drawn from populations that are actually polymorphic. I describe statistical methods for examining how much confidence can be placed in the diagnosis of a conservation unit, given the operative sample size. The methods estimate the probability of drawing a sample in which all individuals show the same state, if individuals with unsampled ( hidden) states actually exist in the population at some hypothetical frequency (e.g., 0.05). I considered finite and infinite population-size models. The infinite population-size model suggests that in order to reject with 95% confidence the hypothesis that 5% of individuals carry hidden character states, a sample of 59 individuals is necessary. Finite population-size models give slightly smaller critical sample sizes for diagnosis with 95% confidence. I describe methods for including the effect of uncertainty in estimating population size when calculating critical sample size, and I discuss extensions to multiple characters and the impact of spatial structuring of character states. My results suggest that confident diagnosis requires sample sizes much larger than those commonly used when the phylogenetic species concept is applied to defining conservation units.  相似文献   

15.
The recent increased availability of information about the micro-geographic positions of population units in environmental surveys has led to important developments in spatial sampling methodologies and, as a result, has improved the estimation accuracy. In real data, however, information about the location of units is often affected by inaccuracy about their exact spatial positions, and these non-sampling errors can affect the estimation procedure. This paper aims to investigate the effects of positional errors on total estimation through a Monte-Carlo simulation study based on real populations of trees. Starting from perfect positioning, we examine two typical types of coarsening that frequently impact two different species of trees. The simulation results show that the exploitation of spatial information to estimate population totals continues to be relevant in the context of environmental surveys, even in the presence of inaccuracies.  相似文献   

16.
Habitat association studies investigate the relationships between habitat characteristics and animal usage of study regions. These studies are often conducted in conjunction with surveys designed primarily to estimate population totals. This paper shows that habitat association studies may proceed from surveys using adaptive cluster sampling. The manner in which units appear in the sample turns out not be relevant to the habitat association study, which proceeds as though the units came from a simple random sample. However, it is also shown that the information about the habitat association parameters is greater than one would expect from a simple random sample of the same general size.  相似文献   

17.
Abstract:  Noninvasive genetic methods can be used to estimate animal abundances and offer several advantages over conventional methods. Few attempts have been made, however, to evaluate the accuracy and precision of the estimates. We compared four methods of estimating population size based on fecal sampling. Two methods used rarefaction indices and two were based on capture-mark-recapture (CMR) estimators, one combining genetic and field data. Volunteer hunters and others collected 1904 fecal samples over 2 consecutive years in a large area containing a well-studied population of brown bears ( Ursus arctos ). On our 49,000-km2 study area in south-central Sweden, population size estimates ranged from 378 to 572 bears in 2001 and 273 to 433 bears in 2002, depending on the method of estimation used. The estimates from the best model in the program MARK appeared to be the most accurate, based on the minimum population size estimate from radio-marked bears in a subsection of our sampling area. In addition, MARK models included heterogeneity and temporal variation in detection probabilities, which appeared to be present in our samples. All methods, though, incorrectly suggested a biased sex ratio, probably because of sex differences in detection probabilities and low overall detection probabilities. The population size of elusive animals can be estimated reliably over large areas with noninvasive genetic methods, but we stress the importance of an adequate and well-distributed sampling effort. In cases of biased sampling, calibration with independent estimates may be necessary. We recommend that this noninvasive genetic approach, using the MARK models, be used in the future in areas where sufficient numbers of volunteers can be mobilized.  相似文献   

18.
Sampling from partially rank-ordered sets   总被引:1,自引:0,他引:1  
In this paper we introduce a new sampling design. The proposed design is similar to a ranked set sampling (RSS) design with a clear difference that rankers are allowed to declare any two or more units are tied in ranks whenever the units can not be ranked with high confidence. These units are replaced in judgment subsets. The fully measured units are then selected from these partially ordered judgment subsets. Based on this sampling scheme, we develop unbiased estimators for the population mean and variance. We show that the proposed sampling procedure has some advantages over standard ranked set sampling.  相似文献   

19.
Classical sampling methods can be used to estimate the mean of a finite or infinite population. Block kriging also estimates the mean, but of an infinite population in a continuous spatial domain. In this paper, I consider a finite population version of block kriging (FPBK) for plot-based sampling. The data are assumed to come from a spatial stochastic process. Minimizing mean-squared-prediction errors yields best linear unbiased predictions that are a finite population version of block kriging. FPBK has versions comparable to simple random sampling and stratified sampling, and includes the general linear model. This method has been tested for several years for moose surveys in Alaska, and an example is given where results are compared to stratified random sampling. In general, assuming a spatial model gives three main advantages over classical sampling: (1) FPBK is usually more precise than simple or stratified random sampling, (2) FPBK allows small area estimation, and (3) FPBK allows nonrandom sampling designs.  相似文献   

20.
Noninvasive genetic sampling has been embraced by wildlife managers and ecologists, especially those charged with monitoring rare and elusive species over large areas. Challenges arise when desired population measures are not directly attainable from genetic data and when monitoring targets trans-border populations. Norwegian management authorities count individual brown bears (Ursus arctos) using noninvasive genetic sampling but express management goals in the annual number of bear reproductions (females that produce cubs), a measure that is not directly available from genetic data. We combine noninvasive genetic sampling data with information obtained from a long-term intensive monitoring study in neighboring Sweden to estimate the number of annual reproductions by females detected within Norway. Most female brown bears in Norway occur near the border with neighboring countries (Sweden, Finland, and Russia) and their potential reproduction can therefore only partially be credited to Norway. Our model includes a simulation-based method that corrects census data to account for this. We estimated that 4.3 and 5.7 reproductions can be credited to females detected with noninvasive genetic sampling in Norway in 2008 and 2009, respectively. These numbers fall substantially short of the national target (15 annual reproductions). Ignoring the potential for home ranges to extend beyond Norway's borders leads to an increase in the estimate of the number of reproductions by -30%. Our study shows that combining noninvasive genetic sampling with information obtained from traditional intensive/invasive monitoring can help answer contemporary management questions in the currency desired by managers and policy makers. Furthermore, combining methodologies and thereby accounting for space use increases the accuracy of the information on which decisions are based. It is important that the information derived from multiple approaches is applicable to the same focal population and that predictions are cross-validated. When monitoring and management are constrained to administrative units, census data should be adjusted by discounting portions of individual space utilization that extend beyond the focal jurisdiction. Our simulation-based approach for making such an adjustment may be useful in other situations where management authorities target portions of trans-border populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号