首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 593 毫秒
1.
以2005~2008年山东某作为饮用水水源地的水库三个监测站位水质的调查数据为依据,对该水库水体富营养化现状进行了评价。研究了水库水体中主要氮营养盐的季节性分布规律及其形态组成。结果表明,该水库水体处于中富营养状态。水库水体中总氮含量年均值都在10.75~17.37mg/L之间,平均值为12.70mg/L。总氮为主要污染物质,并随季节变化明显,枯水期浓度高于丰水期。该水库水体溶解态无机氮(DIN)是总氮的主要存在形式,而其中又以硝酸盐氮(NO3--N)为主,平均占到DIN的80%以上。氮素污染多以还原态氨氮(NH4+-N)的形式排入水体,经过硝化作用,NH4+-N氧化成亚硝酸盐氮(NO2--N),然后再氧化成稳定的NO3-N,并且消耗掉水体中大量的氧。入库河流水体中的NO3--N主要来自农田径流、上游城市污水、城市径流以及库区村,NH4+-N的来源主要是城市污水、工业废水以及少量的生活垃圾。  相似文献   

2.
硝化动力学研究进展   总被引:1,自引:0,他引:1  
硝化反应包括NH4^+氧化为NO2^-和NO2^-氧化为NO3^-两步,其中NH4^+到NO2^-的氧化不是唯一的限制步骤;已发现叠氮化钠(NaN,)能有效的抑制亚硝酸盐氧化;丙烯基硫脲(ATU)抑制氨氧化反应。用呼吸仪的综合参数——细菌最大氧吸收速率(OUUmax/X)来描绘好氧氨氧化菌和亚硝酸盐氧化菌的比生长速率具有准确性和唯一性,并得到了较多学者一致认可。浓度较高的氨氮和亚硝态氮分别抑制氨氧化反应和亚硝酸盐氧化反应,用抑制性动力学方程来分别描述高浓度氨氮浓度和亚硝态氮浓度对氨氧化反应和亚硝酸盐氧化反应的影响;对比氨氧化动力学和亚硝酸盐氧化动力学参数值与一步硝化动力学参数值可以看出,参数值差异较大;因此,要准确地描述NH4^+氧化为NO3^-的动力学模型,必须将氨氧化与亚硝酸盐氧化反应独立出来,将NH4^+氧化为NO2^-和NO3^-氧化为NO3^-这两步综合在一个反应动力学公式里是错误的。  相似文献   

3.
太湖流域典型河流沉积物的反硝化作用   总被引:8,自引:4,他引:4  
用15N同位素配对法对太湖流域江苏和上海境内主要河流沉积物的反硝化作用及其影响因素进行研究.结果表明,河流沉积物反硝化作用具有显著空间差异.25℃时,河流总反硝化速率Dtot在0~4.03mmol.m-.2d-1之间;10℃时,Dtot在0~2.27mmol.m-.2d-1之间,平均值分别为0.79mmol.m-.2d-1和0.26mmol.m-.2d-1.相关性分析显示,沉积物的反硝化作用与沉积物氮含量和实验过程中的耗氧速率(SOD)呈显著相关关系(p<0.01).以总反硝化速率大小为依据将沉积物分成4组后的相关分析表明,反硝化速率与原位上覆水中的NO3--N含量之间亦存在显著的相关关系(p<0.05),预示着反硝化作用对水体氮负荷起到的氮汇作用.  相似文献   

4.
利用UAFB反应器富集培养了厌氧氨氧化细菌,并在此基础上考察水力停留时间(HRT)对厌氧氨氧化系统处理效果的影响。结果表明:HRT对厌氧氨氧化系统影响较大,当HRT为4 h时,系统出水NH4+-N、NO2--N去除率降至65%~60%,出水浓度则分别为15 mg/L、20 mg/L,表明过短HRT会导致含氮污染物去除不完全;HRT为6 h时,系统中NH4+-N去除率均在95%以上,出水NH4+-N≈1 mg/L。系统中NO2--N去除率均在92%以上,出水NO2--N≤5 mg/L;当HRT继续延长至10 h,去除效果无明显变化,出水NH4+-N≈1 mg/L,NO2--N≤5 mg/L,NO3--N平均5.6 mg/L。因此,在该研究中HRT为6 h效果最佳,总氮容积去除负荷为0.57 kg/(m3·d),厌氧氨氧化(ANAMMOX)反应器氨氮去除量、亚硝态氮去除量和硝态氮生成量之比为1∶1.19∶0.39。  相似文献   

5.
三峡水库主要入库河流氮营养盐特征及其来源分析   总被引:47,自引:29,他引:18  
以2004~2005年的三峡水库3条主要入库河流(长江、嘉陵江、乌江)中的水文、水质的调查数据为依据,研究了三峡水库入库河流中主要的水文变化特征、氮营养盐的季节性分布规律及其形态组成.结果表明,3条入库河流的流量、流速呈现季节性变化,三峡水库入库河流的主要水文特征值已处于水华暴发的危险范围内,很容易发生水华.3条入库河流中总氮含量年均值都在1.55~2.15 mg/L之间,总体偏高,乌江武隆断面的总氮浓度最高,嘉陵江北碚断面次之,长江朱沱断面最低,并且3条河流丰水期水体中总氮含量均高于枯水期,说明非点源对氮污染影响较大;溶解态无机氮(DIN)是总氮的主要存在形式,而其中又以硝酸盐氮(NO3--N)为主,平均占到DIN的70%以上.氮素污染多以还原态氨氮(NH4 -N)的形式排入水体,经过硝化作用,NH4 -N氧化成亚硝酸盐氮(NO2--N),然后再氧化成稳定的NO3--N,并且消耗掉水体中大量的氧.入库河流水体中的NO3--N主要来自农田径流、城市污水、城市径流以及淹没土壤的释放,NH4 -N的来源主要是城市污水、工业废水以及少量的生活垃圾和船舶废水.  相似文献   

6.
厌氧氨氧化电子受体的研究   总被引:1,自引:0,他引:1  
在无机条件下,以该课题组已经培养出来的厌氧氨氧化污泥作为接种污泥,分别以硫酸盐、硝酸盐和亚硝酸盐为电子受体来研究氨的氧化反应。从去除速率的角度来看,以NO2--N、NO3--N和SO42--S为电子受体的反应器,分别在运行的第24.5天、40天和31天时达到0.030 0 kg/(m.3d)NH4+-N去除速率,则氧化氨的能力由大到小依次是:亚硝酸盐>硫酸盐>硝酸盐;从标准吉布斯自由能变化来看,3种反应都是可以发生的;以亚硝酸盐为电子受体的反应过程是一个消耗酸度的生物过程,而以硫酸盐为电子受体的反应过程是一个消耗碱度的生物过程。  相似文献   

7.
HRT及氮素负荷对厌氧氨氧化系统的影响   总被引:9,自引:1,他引:8  
为了考察水力停留时间(HRT)、氮素负荷(NH4+-N和NO2--N)对厌氧氨氧化系统处理效果的影响,通过启动试验、HRT影响试验、NH4+-N负荷试验、NO2--N负荷试验,以好氧硝化污泥、厌氧污泥、花园土壤渗出液为接种污泥,历经114d培养厌氧氨氧化反应器成功启动.结果表明:①系统HRT过短会导致含氮污染物去除不完全,HRT过长则污泥可能已经解体,取HRT为10d是合理的;②厌氧氨氧化系统HRT、微生物总量确定的情况下,系统NH4+-N氧化能力也随之确定,以污泥负荷描述厌氧氨氧化系统NH4+-N氧化能力较为恰当,控制进水NH4+-N污泥负荷小于0.009g.g-1.d-1;③高NO2--N负荷对厌氧氨氧化系统中NH4+-N氧化步骤不产生明显抑制影响,但当NO2--N负荷大于14g.m-3.d-1后,会对厌氧氨氧化系统中NO2--N还原步骤产生抑制,所以控制进水NO2--N容积负荷小于14g.m-3.d-1或折合为污泥负荷0.018g.g-.1d-1是合适的.本研究对厌氧氨氧化系统的设计、运行、管理控制有重要参考意义.  相似文献   

8.
有机物对厌氧氨氧化系统的冲击影响   总被引:5,自引:0,他引:5       下载免费PDF全文
接种稳定运行300余天的厌氧氨氧化污泥,通过批次试验,研究了不同浓度乙酸钠和不同种类有机物对厌氧氨氧化系统的冲击影响.结果表明:在初始NO2--N浓度为35mg/L左右,乙酸钠浓度为0~200mg/L时,乙酸钠的冲击不会抑制厌氧氨氧化菌的活性,且一定程度上促进厌氧氨氧化反应的进行,最大比氨氧化速率与乙酸钠浓度呈正相关性;不同有机物对厌氧氨氧化系统的促进作用不同,氨氧化速率从高到低依次为乙酸钠、蛋白胨、葡萄糖和淀粉;反硝化作用伴随整个反应过程,但硝态氮还原速率[0.0155~0.0442mgN/(L?min)]小于氨氧化速率[0.1090~0.1498mgN/(L?min)],因此厌氧氨氧化菌在系统中一直占主导地位.在有机物的冲击下,厌氧氨氧化反应可协同反硝化反应去除系统中的总氮,提高系统总氮的去除率,从而改善出水水质.  相似文献   

9.
对高水力负荷条件下丧失硝化功能的膜生物反应器进行恢复实验,将水力停留时间(HRT)从原来的5h延长到正常条件下可以实现完全硝化的10h后,在进水NH4+-N浓度为500mg.L-1的条件下反应器可去除99%的NH4+-N,但NO2--N出现严重积累,在60d的实验过程中NO2--N平均出水浓度为425mg.L-1.荧光原位杂交分析结果表明,氨氧化菌(AOBs)在总菌中的比例与恢复实验前没有变化,分别为12.9%(恢复实验期)和9.75%(恢复实验前),但氨氧化杆菌(Nitrosomonas)在AOBs中的比例从80%降低到40%;亚硝酸盐氧化细菌(NOBs)在总菌中的比例下降一半(从5.64%下降至2.84%),并以慢生型的Nitrospira为主.高NO2-含量和高胞外物浓度(497.1mg.L-1)可能是导致亚硝酸盐氧化功能难以恢复的主要原因.  相似文献   

10.
一种未见报道过的厌氧氨氧化微生物的鉴定及其活性分析   总被引:9,自引:3,他引:9  
采用完全混合连续流反应器,以硝化污泥为种泥进行厌养氨氧化微生物的富集培养,在培养的第40 d就具有了明显的厌氧氨氧化活性,在200d时活性达到2160 mg·g-1·d-1(NH4 -N,以VSS计).采用分子生物学手段对培养得到的微生物进行鉴定,确定其为一种尚未被报道的可进行厌氧氨氧化反应的细菌.实验证明培养得到的厌氧氨氧化微生物是以NO2--N为电子受体进行反应,NO3--N不能直接被该厌氧氨氧化微生物利用;反应的适宜pH范围为7~8左右;无机碳源对其厌氧氨氧化活性有很大的影响,在缺少无机碳源时活性几乎被完全抑制.  相似文献   

11.
The spatial distribution and diversity of archaeal and bacterial ammonia oxidizers (AOA and AOB) were evaluated targeting amoA genes in the gradient of a littoral buffer zone which has been identified as a hot spot for N cycling. Here we found high spatial heterogeneity in the nitrification rate and abundance of ammonia oxidizers in the five sampling sites. The bacterial amoA gene was numerically dominant in most of the surface soil but decreased dramatically in deep layers. Higher nitrification potentials were detected in two sites near the land/water interface at 4.4-6.1 μg NO2--N/(g dry weight soil·hr), while only 1.0-1.7 μg NO2--N/(g dry weight soil·hr) was measured at other sites. The potential nitrification rates were proportional to the amoA gene abundance for AOB, but with no significant correlation with AOA. The NH4 + concentration was the most determinative parameter for the abundance of AOB and potential nitrification rates in this study. Higher richness in the surface layer was found in the analysis of biodiversity. Phylogenetic analysis revealed that most of the bacterial amoA sequences in surface soil were affiliated with the genus of Nitrosopira while the archaeal sequences were almost equally affiliated with Candidatus ‘Nitrososphaera gargensis’ and Candidatus ‘Nitrosocaldus yellowstonii’. The spatial distribution of AOA and AOB indicated that bacteria may play a more important role in nitrification in the littoral buffer zone of a N-rich lake.  相似文献   

12.
氨氧化菌混培物在O2/微量NO2下的氨氧化动力学   总被引:1,自引:0,他引:1  
运用序批式试验,在无分子氧条件下,确定了好氧氨氧化菌的NO2型氨氧化动力学方程,得到了最大氨氧化速率[qNO2,max=0.144 mg·(mg·h)-1]、二氧化氮半饱和常数(kNO2=0.821 μmol·L-1)和二氧化氮抑制性常数(ki=1.721 μmol·L-1).在微量NO2气体中添加2% O2氧气后,氨氧化速率明显提高,最大氨氧化速率发生在体积分数2% O2和50×10-6 NO2的条件下,达到0.198  mg·(mg·h)-1.在21% O2和微量NO2条件下,氨氧化速率继续大幅度提高;在21% O2和100×10-6 NO2时氨氧化速率达到0.477  mg·(mg·h)-1,比无NO2空气曝气条件下氨氧化速率高3倍.提出了NO2表观强化氨氧化函数的概念,建立了在O2和微量NO2混合气体下的氨氧化动力学方程,利用2% O2和微量NO2条件下的实验结果验证了动力学方程,讨论了NO2强化氨氧化的机理.  相似文献   

13.
两种土壤增效剂对稻田氨挥发排放的影响   总被引:7,自引:4,他引:3  
硝化抑制剂和生物炭是农田土壤管理常用的土壤增效剂.其中,硝化抑制剂可以增加作物产量提高氮素利用率,而生物炭是生物质资源利用的一种新方式,且具有一定的吸附特性.以减少稻田氨挥发带来的氮素损失及环境污染问题为目的,在原状土柱模拟试验条件下,以单施化肥处理(CN)为对照,研究了生物炭(B)添加、硝化抑制剂(CP)添加及复合添加处理(BCP)对田面水p H、田面水铵态氮浓度、水稻产量及氨挥发损失的影响.结果表明,两种增效剂施用对水稻产量无显著影响,硝化抑制剂添加有增加水稻产量的趋势.两种土壤增效剂添加均显著增加了稻田氨挥发损失,损失量占施氮量的25%~35%.其中,肥期(施肥后7 d内)氨挥发损失占总损失的86%~91%,是氨挥发损失的主要时期.与CN处理相比,CP处理明显提高了田面水NH_4~+-N浓度和氨挥发损失,基肥期、穗肥期和非肥期增加效应明显,氨挥发增幅分别为138%、48%和78%,全生育期氨挥发总损失量增加59%.生物炭添加对稻田氨挥发损失也有明显的促进效应,且具有阶段性特征,前期(基肥期和蘖肥期)的增加效应高于后期(穗肥期和穗肥后),田面水NH_4~+-N浓度和p H也表现出相同的趋势.两者配施添加处理显现出了正交互作用,氨挥发损失量大于单施处理,与化肥处理差异显著.结果说明,生物炭添加不能解决硝化抑制剂添加引起的铵态氮浓度升高和氨挥发损失增加的问题,对于硝化抑制剂添加引起的氨挥发损失增加的问题需要继续研究.  相似文献   

14.
为了深入研究硝化污泥中AOB/NOB(A/N)对其硝化特性的影响,在两个SBR反应器中,通过控制单一基质,并结合影响因素控制和定期排泥,各自经过80个周期的运行,成功实现了AOB、NOB活性污泥的优化培养.依据Monod方程理论确定出AOB、NOB活性污泥中的丰度比约为1:1.不同A/N硝化特性的研究表明:亚硝化率、氨氧化速率、亚硝酸盐氧化速率以及好氧速率均受硝化污泥中A/N的影响,想要实现短程硝化的稳定运行必须使得A/N接近于1:0;氨氧化速率与硝化污泥中AOB的数量并不存在显著的正比关系;常规的生活污水硝化工艺中,A/N应不低于1:2;结合好氧速率的在线监测,当好氧速率趋于稳定时,指示短程硝化的启动已经接近完成.  相似文献   

15.
Nitrifying biomass on ring-shaped carriers was modified to nitritating one in a relatively short period of time (37 days) by limiting the air supply, changing the aeration regime, shortening the hydraulic retention time and increasing free ammonia (FA) concentration in the moving-bed biofilm reactor (MBBR). The most efficient strategy for the development and maintenance of nitritating biofilm was found to be the inhibition of nitrifying activity by higher FA concentrations (up to 6.5 mg/L) in the process. Reject water from sludge treatment from the Tallinn Wastewater Treatment Plant was used as substrate in the MBBR. The performance of high-surfaced biocarriers taken from the nitritating activity MBBR was further studied in batch tests to investigate nitritation and nitrification kinetics with various FA concentrations and temperatures. The maximum nitrite accumulation ratio (96.6%) expressed as the percentage of NO2??-N/NOx??-N was achieved for FA concentration of 70 mg/L at 36°C. Under the same conditions the specific nitrite oxidation rate achieved was 30 times lower than the specific nitrite formation rate. It was demonstrated that in the biofilm system, inhibition by FA combined with the optimization of the main control parameters is a good strategy to achieve nitritating activity and suppress nitrification.  相似文献   

16.
介绍了化肥行业中污水的处理工艺,利用活性污泥在适宜的环境下(即曝气时)可去除COD,硝化茵可把氨氮氧化为NO2^-、NO3^-,以及在缺氧时(即推流时)反硝化菌可把NO2^-、NO3^-转化为N2,去除污染物,使处理后的污水出水水质达标排放。工程表明:处理后的污水出水水质能够达到《合成氨工业水污染物排放标准》GB13458—2001要求。  相似文献   

17.
氮氧化物气体的产生及其对厌氧氨氧化的影响研究   总被引:1,自引:0,他引:1  
硝化、反硝化生物脱氮反应,因产生N2O温室气体,开始引发一些环保工作者的关注。新开发的厌氧氨氧化工艺在生物脱氮方面具有无可比拟的优越性。在其脱氮的3种反应途径中,也可能产生NO、NO2和N2O微量气体。文章对目前厌氧氨氧化反应中,这3种微量气体的产生情况进行了综述,并总结了这3种气体对厌氧氨氧化反应的影响。提出考察厌氧氨氧化过程中温室气体的排放情况和如何减少或控制温室气体的排放将成为厌氧氨氧化工艺应用中重要的研究方向之一。  相似文献   

18.
异养硝化、厌氧氨氧化及古菌氨氧化与新的氮循环   总被引:7,自引:1,他引:6  
自然界中氮循环与微生物的作用密不可分.在过去的几年里,随着异养硝化、厌氧氨氧化和古菌氨氧化过程的发现,人们对氮循环的认识发生了明显的变化.就异养硝化菌、厌氧氨氧化菌和氨氧化古菌的发现、生化机理及分子生物学等方面进行综述,旨在为今后人们重新认识和构建新的氮循环提供有用信息,并对这些新型微生物今后在污水生物脱氨处理中的应用提出了一些展望和设想.指出今后在污水生物处理系统中,可通过富集异养硝化菌强化同步硝化反硝化、富集厌氧氨氧化菌实现单级自养脱氟、富集氨氧化古菌提高低溶解氧下的脱氮效率.  相似文献   

19.
几种生物脱氮新工艺的比较   总被引:2,自引:0,他引:2  
目前已经发现了2种微生物脱氮新途径:一是根据好氧氨氧化菌具有反硝化能力,从而在一定条件下反硝化脱氮;二是在功能微生物的作用下,亚硝酸盐与氨离子一起厌氧氨氧化,并且发现了厌氧氨氧化菌与好氧氨氧化菌或甲烷菌能协同耦合在一种有利的微生态环境中.基于以上新途径提出了几种生物脱氮新工艺,包括了:SHARON、ANAMMOX、SHARON-ANAMMOX、CANON、OLAND、NOX工艺、需氧反氨化工艺(Aerobic deammonification)、甲烷化与厌氧氨氧化耦合工艺.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号