首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 203 毫秒
1.
通过厌氧消化静态实验,研究了不同螯合剂存在条件下,产甲烷富集培养物对微量元素镍及其螯合物的生物吸收.结果表明,螯合剂的种类对厌氧消化有着一定影响.在乙酸钠浓度为85 mmol/L,硫化物浓度为1 mmol/L,消化温度为35℃,镍离子浓度为200 μmol/L时,氨三乙酸(NTA)的添加体系中甲烷产量最高,分别比柠檬酸...  相似文献   

2.
不同底物条件下金属离子螯合剂对厌氧消化的影响   总被引:1,自引:0,他引:1  
李秀芬  胡庆昊  陈坚 《环境科学》2009,30(6):1701-1704
借助气相色谱分析,研究了金属离子螯合剂在不同有机酸存在时对厌氧消化的影响.结果表明,螯合剂A的添加可以有 效提高不同有机酸的甲烷产量和产甲烷速率,促进有机酸向甲烷的转化. 当螯合剂A的添加量为10μmoI/L时,丁酸、丙酸和乙酸的甲烷产量分别增加了19.8%、133.0%和45.2%.产甲烷的延滞期也明显缩短,最高产甲烷速率提高了4倍多.丁酸厌氧氧消化的4~8d间,丁酸降解率达56%,同时,气相色谱未检测到乙酸的累积,说明丁酸转化为乙酸后,乙酸很快被产甲烷菌利用.螯合剂A对有机酸产甲烷的促进作用可从酶学上得到支持,以乙酸为例,添加10μmoI/L螯合剂A时,污泥(vss)中辅酶F420含量由空白实验的1.20μmoI/g提高到1.52μmoI/g.  相似文献   

3.
以厌氧颗粒污泥为受试生物、乙酸钠为底物,研究了2-丁烯醛废水的厌氧处理毒性及污泥胞外聚合物(EPS)的组成变化.结果表明,2-丁烯醛废水COD£850mg/L时,厌氧颗粒污泥的比产甲烷活性(SMA)几乎不受影响;当废水COD从2125mg/L提高到4249mg/L时,厌氧颗粒污泥的比产甲烷活性(SMA)从70.5mLCH4/(gVSS·d)降低至9.4mLCH4/(gVSS·d);COD为8499mg/L时,厌氧颗粒污泥的SMA仅为4.7mLCH4/(gVSS·d),且废水中有毒物质表现为杀菌性毒素.随着COD升高,EPS(TOC表征)、多聚糖、蛋白质含量呈现先降低后升高趋势.三维荧光光谱结果显示,不同COD条件下EPS荧光峰数量及位置相同,分别为类酪氨酸荧光峰peak A (λex/λem=275nm/305nm)、类色氨酸荧光峰Peak B (λex/λem=275nm/350nm)、辅酶F420贡献的荧光峰Peak C (λex/λem=415nm/470nm)及类富里酸荧光峰Peak D (λex/λem=335nm/450nm),其中荧光峰peak A和peak B峰强度较强.  相似文献   

4.
在中温(35℃)条件下,采用逐渐提高有机负荷的半连续进料方式,研究泔脚垃圾厌氧消化规律。在1gVS/(L.d)、1.25 gVS/(L.d)和1.5 gVS/(L.d)的有机负荷下,厌氧消化系统能够稳定运行,实现水解酸化阶段和产甲烷阶段的动态平衡,甲烷产率与日产气量的变化规律一致,pH、VFA、氨氮浓度分别保持在7.2和360mg/L1、500 mg/L左右。当有机负荷为1.5 gVS/(L.d),每克VS的甲烷产率和甲烷百分数出现最大值,分别为1.40 L/g7、1.37%,此时厌氧消化系统处于最佳运行状态。  相似文献   

5.
为提高厨余垃圾厌氧消化性能和促进沼渣资源化利用,以底物降解效能和产甲烷量最大化为目标,分别考察不同进料总固体(TS)含量(含固率)(12%、15%、18%、25%、28%、33%)和有机负荷〔8.5、10.5、13.5 g/(L·d),以挥发性固体(VS)计〕条件下厨余垃圾的中温厌氧消化特性,并对最优进料参数下沼渣特性和资源利用潜力进行分析. 结果表明:进料TS含量是影响厨余垃圾厌氧消化效能的重要因素,调节进料TS含量至25%时可获得最大累计产甲烷量(16.81 L)和最高单位容积负荷累计产甲烷量(42.01 L/L),挥发性固体降解率达72.29%,系统运行稳定. 在进料TS含量为25%的条件下,系统累计产甲烷量随有机负荷的增加呈先升高后降低的趋势,有机负荷为10.5 g/(L·d)时,系统累计产甲烷量和挥发性固体降解率最高,分别为24.04 L和79.64%,未产生酸抑制现象. 厌氧消化过程中产生的副产物沼渣中有机质和总养分含量较高,电导率和重金属含量较低,pH适宜,满足《有机肥料》(NY 525—2021)和《绿化用有机基质》(GB/T 33891—2017)的要求. 研究显示:当进料TS含量为25%、有机负荷为10.5 g/(L·d)时,厌氧消化系统运行效能最优;沼渣营养成分较高、生物毒性较低,具有较大资源化利用潜力,后续经脱水处理并提高腐熟程度后可进行应用.   相似文献   

6.
研究了在高有机负荷(30 g VS/L,VS为挥发性固体含量)下生物炭缓解餐厨垃圾厌氧消化酸化,促进产甲烷的效应及机制。结果表明:碱性多孔生物炭在最优添加量下(1 g/g VS),反应20 d时,累积产甲烷量达到312.40 mL/(g·VS),与对照组相比提升了101.7%,同时产甲烷停滞期缩短62%。并在酸化最严重时挥发性脂肪酸(VFA)含量降低1151.28 mg/L。研究结果表明:生物炭的多孔结构是促进挥发性脂肪酸分解的关键因素,碱度和营养物质可以起到促进作用。高通量测序结果表明:最佳添加量下甲烷丝菌属(Methanothrix)、拟杆菌(Bacteroidales)、梭菌(Clostridiales)的相对丰度分别由26.12%、43.08%和9.95%提高到46.05%、56.25%和12.20%。生物炭缓解餐厨垃圾消化酸化的机制是为微生物提供反应场所,增强了微生物间的电子传递,提高了厌氧微生物的呼吸速率。  相似文献   

7.
提出利用餐厨垃圾轻物质生产富氢合成气,并将富氢合成气生物甲烷化与现有餐厨垃圾厌氧消化单元耦合的工艺路线,为评估其可行性,考察了耦合系统的长期运行性能,并分析了该系统提升现有甲烷(CH4)产量的潜力。结果表明:在餐厨垃圾有机负荷(以挥发性固体质量计)为0.5~2.0 g/(L·d)、富氢合成气流量为0~5.28 L/d条件下,餐厨垃圾厌氧消化与富氢合成气生物甲烷化均能保持稳定运行,且沼气提纯效果明显,尤其在餐厨垃圾有机负荷为0.5,1.0 g/(L·d)时,产品气中CH4的平均含量分别高达96.4%和86.6%;提高富氢合成气生物甲烷化速率以及优化调控反应体系的pH值、有效碱度和有机酸积累量有助于进一步提高该耦合系统的处理能力和运行稳定性;以300 t/d餐厨垃圾处理厂为例,该耦合系统预计能提高94.5%的CH4产量,后续有必要结合成本效益分析,进一步评估该耦合工艺的工业化应用潜力。  相似文献   

8.
为考察外源添加物——膨润土对鸡粪厌氧消化特性的影响,在中温〔(35±1)℃〕条件下,采用L8(23)正交试验设计,考察了膨润土添加量(w,以干基计,下同)、鸡粪VS(挥发性固体)添加量、厌氧消化污泥接种量对鸡粪厌氧消化过程中产气、pH、氨氮形态、EC(电导率)等的影响. 结果表明:添加1.5%和3.0%的膨润土均能显著提高鸡粪VS产CH4量,并且在高鸡粪添加量情况下达到极显著水平(P<0.01);当膨润土添加量为3.0%、厌氧消化污泥接种量为20%时,VS累积产CH4量达到301.92 mL/g,比对照组(160.76 mL/g)提高了87.80%;当鸡粪VS添加量相同时,添加1.5%和3.0%的膨润土均能极显著地降低消化料液的ρ(TAN)(TAN为总氨氮)(P<0.01),并且可以减少鸡粪厌氧消化过程中ρ(FAN)(FAN为游离氨)的剧烈变化;添加膨润土还能极显著地降低鸡粪厌氧消化料液的EC. 研究显示,添加膨润土有利于缓解鸡粪厌氧消化过程中氨氮抑制,提高系统稳定性,并可显著改善厌氧消化整体性能.   相似文献   

9.
为研究厌氧消化液的不同投加方式对AOA-SBR(厌氧/好氧/缺氧序批式反应器)系统处理效果的影响,在温度为20.0 ℃、生活污水与厌氧消化液体积比为24∶1、污泥中AOB(氨氧化菌)所占比例为7.34%条件下,考察了不投加、厌氧阶段开始一次性投加、好氧阶段开始一次性投加和好氧阶段分次投加等6种厌氧消化液投加方式(分别记为SBR-a、SBR-b、SBR-c、SBR-d、SBR-e、SBR-f)下AOA-SBR系统中SCODCr(溶解性化学需氧量)、PO43--P、NH4+-N的处理特性. 结果表明:厌氧消化液的投加方式对SCODCr的去除基本没有影响,但厌氧消化液的投加使系统中PLR(PO43--P进水容积负荷)提高了104.88%,导致除SBR-a外各试验组出水ρ(PO43--P)均大于2.0 mg/L,为AOA-SBR处理生活污水与厌氧消化液联合废水的主要限制因素. SBR-b~SBR-f的SNPR(比亚硝酸盐生成速率)均高于SBR-a,表明厌氧消化液的添加有助于稳定污水短程硝化. 研究显示,厌氧开始阶段一次投加厌氧消化液(SBR-b)对系统脱氮效果影响最小,为最佳进水方式,此时SAUR(比氨氧化速率)为0.168 0 g/(g·d),SNPR(比亚硝酸盐产生速率)为0.136 3 g/(g·d),SND(同步硝化反硝化)作用率为26.64%.   相似文献   

10.
采用晚期垃圾渗滤液对UASB反应器中无机环境培养条件下厌氧氨氧化菌进行驯化,探讨基质浓度和水力停留时间对系统运行性能的影响,通过批式试验分别对基质和垃圾渗滤液抑制厌氧氨氧化动力学进行测定并建立相应的动力学模型.结果表明,经过75d的运行,系统逐渐适应垃圾渗滤液并实现高效脱氮.基质的去除量随进水基质浓度的升高呈先升高后降低的变化趋势.随着HRT的延长,进水基质及渗滤液浓度逐渐升高,系统脱氮效果降低.厌氧氨氧化基质抑制的阈值是NH4+-N浓度为489.03mg/L和NO2--N浓度为192.36mg/L.当以铵盐为抑制剂时,Vmax(NH4+-N)为0.1893mg/(mg·d),半饱和常数为39.39mg/L,抑制动力学常数为3482.27mg/L.当以亚硝酸盐为抑制剂时,Vmax(NO2--N)为0.246mg/(mg·d),半饱和常数为43.19mg/L,抑制动力学常数为701.15mg/L.厌氧氨氧化受垃圾渗滤液影响尤为显著,垃圾渗滤液条件下厌氧氨氧化活性被完全抑制的浓度为1450.69mg/L (以COD计) .  相似文献   

11.
为评估农牧废弃物多元物料混合厌氧发酵对产甲烷性能的协同促进作用,研究了中温(37±1)℃和固体质量分数为12%时,牛粪、蔬菜废弃物和玉米秸秆混合原料的厌氧消化产甲烷性能,最后应用修正的Gompertz方程分析甲烷生产的动力学过程.结果表明:3种物料混合厌氧发酵发生了明显的协同促进作用,协同效应作用值为34.85%~70.39%,贡献效果显著(P<0.05);当牛粪、蔬菜废弃物和玉米秸秆VS混合比例为50:20:30时,甲烷产率、累计甲烷产量和VS降解率达到最大值,分别为286.0mL/g VS、20713mL和65.6%,比单一牛粪、蔬菜废弃物以及玉米秸秆厌氧消化甲烷产量分别提高了32.9%、229.9%和82.0%.修正的Gompertz方程能较好反映物料厌氧消化产甲烷过程,拟合结果的R2均大于0.99,牛粪、蔬菜废弃物和玉米秸秆VS比例为50:20:30时具有最大产甲烷速率17.34mL/(d×g)和较短的迟滞时间2.97d.该研究结果可为农牧废弃物多元混合物料厌氧消化产沼气工程提供参考.  相似文献   

12.
为探究氨氮浓度对鸡粪中高温甲烷发酵的影响,采用固定水力停留时间(HRT,20d),提高进料总固体浓度(TS,5%、7.5%和10%)的方式增加氨氮浓度,通过265d的长期甲烷发酵试验,比较了不同氨氮浓度条件下鸡粪中高温甲烷发酵效果和污泥的比产甲烷活性.结果显示,TS由5%增至10%,中高温反应器中氨氮浓度由2.1~2.5g/L增至6.1~6.5g/L,对应的比产甲烷活性分别降低了44%和100%,中温反应器中挥发性脂肪酸由0.4g/L增至7.6g/L,甲烷产率由253mL/gTS降至203mL/gTS;高温反应器中挥发性脂肪酸由0.4g/L增至26.1g/L,甲烷产率由181mL/gTS降至18mL/gTS.氨氮浓度对高温甲烷发酵系统的抑制作用更加明显.  相似文献   

13.
以聚丙烯(PP)微塑料为研究对象,考察不同浓度PP微塑料对污泥厌氧消化产CH4和产酸效能的作用影响,同时采用荧光定量PCR方法定量检测了乙酸激酶(AK)和mcrA基因在不同PP微塑料作用下的丰度变化.结果表明,PP微塑料对污泥厌氧消化产CH4和产酸效能具有促进影响,CH4和乙酸累计产量随PP微塑料投加量的增大而升高,当PP微塑料投加量为0.2g/g VSS时,CH4和乙酸累计产量与空白对照相比分别提高148.2%和15.2%,达227.1mL/g VSS和1291.2mg/L.相应地,mcrA基因丰度随之提高98.2%,表明PP微塑料对产甲烷菌的生长和繁殖具有促进作用,进而强化污泥厌氧消化产CH4效能.  相似文献   

14.
厌氧消化是垃圾渗滤液处理的重要技术,常规厌氧工艺在处理过程中存在微生物易流失和出水水质较差等问题。采用厌氧膜生物反应器在中温条件下处理垃圾渗滤液,考察了废水降解性能和膜过滤性能。连续100 d的反应器运行实验表明:在水力停留时间为10 d,COD容积负荷平均为5.63 kg/(m3·d)的条件下,系统运行稳定,平均COD去除率达到92%,膜出水总挥发性脂肪酸浓度低于200 mg/L,pH稳定在7.95左右。在膜通量为6 L/(m2·h)下,连续62 d内的膜压增长缓慢,未出现明显的膜污染。批次产甲烷试验结果表明:渗滤液产甲烷潜能达到305 mL/g TS,与连续运行实验296 mL/g TS的产气效果接近,沼气中甲烷浓度可高达70%~80%。产气达到90%和95%的潜能分别用时2.5,3.1 d,说明反应器有进一步缩短水力停留时间的可能性。反应器驯化的厌氧活性污泥对乙酸有较好的耐受性,在乙酸浓度为10000 mg/L时,产气迟滞期仅为1.4 d。综合来看,长期运行厌氧膜生物反应器处理垃圾渗滤液具有较好的COD去除效果、运行稳定性和膜过滤性。  相似文献   

15.
为探明废铁屑(RSI)对中温厌氧消化特性的影响,利用RSI为外源添加剂研究其投加对剩余污泥厌氧消化水解酸化、产气效率以及污泥表面形态的影响.结果表明:①剩余污泥酸化水解产物VFAs的主要成分是乙酸,其含量随RSI投加量的增加呈先升后降的趋势.②RSI投加量适中(不超过20 g/L)时可促进乙、丁酸型发酵,抑制丙酸型发酵,进而提高剩余污泥厌氧消化效率.③当RSI投加量分别为0、1、5、10、20和30 g/L时,累积甲烷产率分别为135.4、141.9、159.2、178.9、209.3和180.7 mL/g(以VS计),甲烷含量分别为51.2%~56.4%、53.9%~58.6%、58.1%~62.5%、59.5%~68.3%、61.1%~71.2%和51.9%~61.4%.RSI最佳投加量为20 g/L,与空白组相比,累积甲烷产率和甲烷含量分别提升了54.6%和23.0%.④结合扫描电镜-X射线能谱(SEM-EDX)分析方法发现,在厌氧消化过程中微生物可促进RSI的溶解,且随RSI投加量的增加,消化污泥表面的铁元素含量也随之增加.⑤RSI的投加会提高蛋白酶和纤维素酶的活性,但若投加量过高则会产生负面效应.研究显示,外源添加剂RSI投加量适中(不超过20 g/L)时可促进剩余污泥厌氧消化效率.   相似文献   

16.
为明晰猪粪厌氧消化过程中抗生素对于反应体系的影响,对3种典型抗生素处理组下猪粪厌氧消化产气潜能、代谢路径及产物进行研究。四环素和磺胺嘧啶处理组的甲烷回收潜能更高,四环素处理组的最大累积甲烷产量可达到60.92~67.00 mL/g TS,磺胺嘧啶处理组可达到55.88~62.13 mL/g TS,均高于对照组58.15 mL/g TS;而土霉素处理组的甲烷产量为42.27~50.43 mL/g TS,仅有16%~19%的COD转化为CH4。土霉素处理下,水解过程受促进,而产甲烷过程受到抑制。3类抗生素处理均会促进厌氧消化系统中厌氧微生物对溶解性蛋白质的转化,而抑制溶解性多糖的转化;进一步对发酵液中的溶解性有机物(dissolved organic matter,DOM)成分进行分析,发现土霉素处理组中富里酸和腐植酸类代谢产物相对于其他组更少。结果表明:不同种类抗生素对于厌氧发酵系统中厌氧微生物代谢降解产物与路径产生较大影响,进而影响有机物的能源转化及污染物处理效率。  相似文献   

17.
酸-碱预处理促进剩余污泥厌氧消化的研究   总被引:10,自引:5,他引:5  
袁光环  周兴求  伍健东 《环境科学》2012,33(6):1918-1922
为提高剩余污泥的厌氧消化效率,投加酸和碱对污泥进行预处理,对比分析了不同预处理方式(单独碱处理、酸-碱处理和碱-酸处理)对污泥水解酸化的影响,并研究了各种预处理方式对后续厌氧消化产甲烷效率的影响.结果表明,单独碱处理的溶解性化学需氧量(SCOD)溶出量比酸碱联合处理要大16%左右,预处理第8 d,达到5 406.1 mg.L-1.采用先酸(pH 4.0,4d)后碱(pH 10.0,4 d)预处理,在污泥水解酸化过程中,乙酸产量及其占总短链脂肪酸(SCFAs)的质量分数均高于其他预处理方式,其乙酸产量(以COD/VSS计)可达到74.4 mg.g-1,占总SCFAs的60.5%.酸-碱预处理后污泥混合液的C∶N比值为25左右,C∶P比值在35~40之间,这比单独碱处理和碱-酸处理后的C∶N和C∶P比值更有利于后续厌氧消化.通过对比研究发现,酸-碱预处理后,厌氧消化到第15 d,酸-碱预处理污泥的累积甲烷产量(CH4/VSS加入)达到136.1 mL.g-1,分别是空白对照、碱-酸预处理和单独碱预处理方式的2.5、1.7和1.6倍,厌氧消化效率最高.经过8 d酸-碱预处理和15 d的厌氧消化,挥发性悬浮固体(VSS)总去除率达到60.9%,污泥减量效果比其他预处理要好.很显然,酸-碱预处理方式更有利于污泥厌氧消化及污泥减量化.  相似文献   

18.
为提高城市污泥厌氧消化产甲烷效率,除适量添加餐厨垃圾以提高有机质外,还在污泥中加入了机械加工企业产生的废铁屑,中温(39±1) ℃下厌氧消化30 d,同时与加入等量纯铁粉对比,考察废铁屑和纯铁粉的产甲烷效率。结果表明:废铁屑组和纯铁粉组的累积产甲烷量分别达到340.33,336.52 mL/g,分别比不外加任何铁元素的空白组提高了54%、52%;上述两组在厌氧消化第10天产生的挥发性有机酸达到最大,分别为11051,10800 mg/L,比空白组高出16%、12%。消化第1天,废铁屑组和纯铁粉组的H2组分比空白组提高了24%、12%;到第25天时,两组的CH4组分分别比空白组提高了35%、30%。表明废铁屑中多孔的FeOOH导致微生物絮体松散,使得废铁屑厌氧消化的产甲烷效果优于铁粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号