首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Understanding adsorption processes of butyltins (BTs) such as monobutyltin (MBT) and dibutyltin (DBT) by black carbons is important for the evaluation of BT exposure risks to organisms and humans. However, relevant knowledge is scarce. In this study, the acidity constants pKa,1 = 2.3, pKa,2 = 3.5 and pKa,3 = 5.9 for MBT and pKa,1 = 3.0 and pKa,2 = 5.1 for DBT are estimated via potentiometric titration. Additionally, adsorption isotherms of BTs to a wheat charcoal were determined. The adsorption behavior was observed to be pH-dependent due to BT speciation and the pH-dependent surface charge of the charcoal. MBT adsorption to the charcoal decreases with increasing pH from 4 to 8, while the highest adsorption occurs at pH 6 for DBT. Adsorption of the BTs is successfully described in the pH range of 3-10 by using a newly developed pH-dependent Dual Langmuir model. The model has the potential to predict the interaction of BT species with charcoal, which can contribute to the risk assessments of BTs in the environment.  相似文献   

2.
油气开发过程含油废液中过高的盐含量是影响其生物处理效果不佳的一个重要因素。针对含油废液的特点,实验从油田废弃泥浆中筛选分离出一株高效嗜盐降解菌,该菌呈杆状,经BIOLOG鉴定系统与分子序列鉴定分析,该菌为芽孢杆菌Bacillus subtilis strain;研究了嗜盐菌的耐盐碱性及原油降解性能,结果表明,该菌适宜于碱性环境,适盐浓度范围为5 000~200 000 mg/L,7 d内对高盐含油模拟废水中原油的降解率高达60%,最佳降解条件为:菌液/培养液体积比1:12.5,pH=9,NaCl浓度范围为10 000~50 000 mg/L,最佳N源和P源分别为(NH22CO和K2HPO4·3H2O。嗜盐菌的研究为高盐含油废液的生物处理拓展了一条新的技术途径。  相似文献   

3.
The depsidone fumarprotocetraric acid as well as the depsides perlatolic and thamnolic acids are lichen secondary metabolites. Their first dissociation constants (pKa1) in methanol were determined to be 2.7 for perlatolic acid and 2.8 for fumarprotocetraric and thamnolic acids by UV spectroscopy. Lower pKa1 values are, so far, not known from lichen substances. Several lichens producing at least one of these compounds are known for their outstanding tolerance to acidic air pollution. This is demonstrated by evaluating published pH preferences for central European lichens. The low pKa1 values suggest that strong dissociation of the studied lichen substances is a prerequisite for the occurrence of lichens with these compounds on very acidic substrata, as protonated lichen substances of different chemical groups, but not their conjugated bases, are known to shuttle protons into the cytoplasm and thereby apparently damage lichens.  相似文献   

4.
Background, aim, and scope  Herbicide fate and its transport in soils and sediments greatly depend upon sorption–desorption processes. Quantitative determination of herbicide sorption–desorption is therefore essential for both the understanding of transport and the sorption equilibrium in the soil/sediment–water system; and it is also an important parameter for predicting herbicide fate using mathematical simulation models. The total soil/sediment organic carbon content and its qualitative characteristics are the most important factors affecting sorption–desorption of herbicides in soil or sediment. Since the acetochlor is one of the most frequently used herbicides in Slovakia to control annual grasses and certain annual broad-leaved weeds in maize and potatoes, and posses various negative health effects on human beings, our aim in this study was to investigate acetochlor sorption and desorption in various soil/sediment samples from Slovakia. The main soil/sediment characteristics governing acetochlor sorption–desorption were also identified. Materials and methods  The sorption–desorption of acetochlor, using the batch equilibration method, was studied on eight surface soils, one subsurface soil and five sediments collected from the Laborec River and three water reservoirs. Soils and sediments were characterized by commonly used methods for their total organic carbon content, distribution of humus components, pH, grain-size distribution, and smectite content, and for calcium carbonate content. The effect of soil/sediment characteristics on acetochlor sorption–desorption was examined by simple correlation analysis. Results  Sorption of acetochlor was expressed as the distribution coefficient (K d). K d values slightly decreased as the initial acetochlor concentration increased. These values indicated that acetochlor was moderately sorbed by soils and sediments. Highly significant correlations between the K d values and the organic carbon content were observed at both initial concentrations. However, sorption of acetochlor was most closely correlated to the humic acid carbon, and less to the fulvic acid carbon. The total organic carbon content was found to also significantly influence acetochlor desorption. Discussion  Since the strong linear relationship between the K d values of acetochlor and the organic carbon content was already released, the corresponding K oc values were calculated. Considerable variation in the K oc values suggested that other soil/sediment parameters besides the total soil organic carbon content could be involved in acetochlor sorption. This was revealed by a significant correlation between the K oc values and the ratio of humic acid carbon to fulvic acid carbon (CHA/CFA). Conclusions  When comparing acetochlor sorption in a range of soils and sediments, different K d values which are strongly correlated to the total organic carbon content were found. Concerning the humus fractions, the humic acid carbon content was strongly correlated to the K d values, and it is therefore a better predictor of the acetochlor sorption than the total organic carbon content. Variation in the K oc values was attributed to the differences in distribution of humus components between soils and sediments. Desorption of acetochlor was significantly influenced by total organic carbon content, with a greater organic carbon content reducing desorption. Recommendations and perspectives  This study examined the sorption–desorption processes of acetochlor in soils and sediments. The obtained sorption data are important for qualitative assessment of acetochlor mobility in natural solids, but further studies must be carried out to understand its environmental fate and transport more thoroughly. Although, the total organic carbon content, the humus fractions of the organic matter and the CHA/CFA ratio were sufficient predictors of the acetochlor sorption–desorption. Further investigations of the structural and chemical characteristics of humic substances derived from different origins are necessary to more preciously explain differences in acetochlor sorption in the soils and sediments observed in this study.  相似文献   

5.
The metal ion binding characteristics of particulate matter obtained from column experiments on the anaerobic digestion of solid waste were studied using a titrimetric approach. The experimental set-up allowed us to study the dynamics of particle bound ligand concentrations during digestion processes typically found in landfills.We developed a continuous titration method by simultaneously using a Cd-sensitive and pH electrode and combining metal and acid/base titrations. This technique allows for a more precise determination of pKa-log KM pairs for each ligand than metal titrations alone. The results were compared with titration methods using differential pulse anodic stripping voltammetry (DPASV) and atomic absorption spectroscopy (AAS) with longer equilibration times in order to further characterize ligand properties such as reaction kinetics, the electrochemical lability of the respective complex during DPASV, the distinction between metal adsorption to particulate matter and metal complexation by soluble ligands adhered to particles, reversibility of the binding process by competition studies, and resistance against purging with nitrogen gas.The properties of seven major metal binding ligands were identified and assignments to the most likely functional groups were made. The most important ligand properties are for ligand A: pKa ≈ 9.2, log Kcd ≈ 7.0 fast reaction kinetics (mercapto groups); ligand B: pKa = 4.8, log KCd ≈ 6.0, slow reaction kinetics (chelates with 3 or 4 carboxylic groups); ligand C: pKa ≈ 6.0, log KCd ≈ 13.0, irreversible metal binding at basic pH-values (uptake inside bacterial cells); ligand D: pKa = 7.7, log KCd = 4.0, runs parallel to N content of particulate matter with digestion time (primary amines neighboring oxo groups); ligand E: pKa ≈ 12.0, log KCd = 9.0, runs parallel to P content of particulate matter (phosphate); ligand F:pKa > 9.0, log KCdf = pKa + 0.4, runs parallel to N content of particulate matter (primary amines neighboring SH groups); and ligand G: pKa ≤ 4.8, log KPb ≈ 4.3, strong Pb2+ ligand, even at low pH-values.Metal ions were found to be irreversibly bound by ligand C at low heavy-metal concentratins, whereas at higher concentrations the binding is reversible and can be predicted using the mass of the digestion process (methanogenic phase). All other ligands have their concentration maximum in the transition phase between acetogenic and methanogenic phase.  相似文献   

6.
The octanol–air partition coefficients (KOA) for PBB15, PBB26, PBB31, PBB49, PBB103 and PBB153 were determined as a function of temperature using a gas chromatographic retention time technique with 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (p,p′-DDT) as a reference substance. The internal energies of phase change from octanol to air (ΔOAU) were calculated for the six compounds and were in the range from 74 to 116 kJ mol−1. Simple regression equations of log KOA versus relative retention times (RRTs) on gas chromatography (GC), and log KOA versus molecular connectivity indexes (MCI) were obtained, for which the correlation coefficients (r2) were greater than 0.985 at 283.15 K and 298.15 K. Thus the KOA values of the remaining PBBs can be predicted by using their RRTs and MCI according to these relationships.  相似文献   

7.
The migration behavior of the actinyl ions U(VI)O22+, Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0–9.4) and concentration (0.4 μM–40 μM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85 ± 0.01 Å for the adsorbed and 1.82 ± 0.01 Å for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45 ± 0.02 Å. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46 ± 0.01 Å. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05 ± 0.03 Å and 3 to 6 oxygen backscatterers (O-eq2) at 3.31 ± 0.02 Å. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.  相似文献   

8.
To study the pH preference of epiphytic lichens, the bark pH of Fraxinus, Tilia, Quercus and Ulmus trees in an urban environment was measured using a flat surface electrode. The total number of trees was 253. A survey was made of the lichens in a 40 × 40 cm quadrat surrounding the pH measurement point. Our data analysis using multivariate and univariate statistical techniques indicates that the tree species is the most important factor influencing lichen colonisation, and that bark pH alone is of less importance. We hypothesize that the changed pollution climate, with strong decreases in both sulphur dioxide and ammonia concentrations over the past two decades and a concomitant general increase in bark pH, has made epiphytes less sensitive to pH.  相似文献   

9.
Results from a 1-year daily rainwater sampling program, employing both wet and bulk deposition samplers with replicate samples, from 1994 to 1995 in Hong Kong are presented and analysed. Analyte concentrations were found to vary over a wide range of several orders of magnitude, with [H+] for example, from 0.16 to 208.9 μeq dm-3. Diurnal pH values less than 3.83 were measured on five occasions. A significant correlation between pH and lognormal windspeed has been found. This is taken to indicate the minor importance of long-range transport in determining rainwater acidity, since local pollutant emissions accumulate and react under conditions of atmospheric stability in the sub-tropical climate. The H+ wet deposition flux onto a polythene surface was 90 meq m-2 yr-1 during 1994–1995 at City University. Dry deposition exerts a neutralizing influence upon the acidity from this wet deposition. Although paired t-tests indicated significant differences between the bulk versus wet deposition datasets for cations, but not anions, the dataset means consequently showed such large standard deviations that t-tests indicated no significant differences. In rainwater, the charges from SO2-4 and NO-3 anions seldom balance the proton charges, implying that they are also derived from solubilization of primary and secondary airborne Ca2+, Mg2+ and NH+4 particulate matter in rainwater. Use of the [SO2-4]/[NO-3] ratios in rainwater in fingerprinting pollutant origins has drawbacks, but is generally indicative of a predominantly regional contribution of these secondary pollutants to rainwater. Bulk deposition pH in Hong Kong would be in the region of 4.1 if basic Ca2+ compounds alone did not neutralize acidity. The regional rainout pH, inferred after exhaustive below-cloud scavenging, is about 5. The temporal trends in Hong Kong rainwater acidity are blurred.  相似文献   

10.
The pH-dependent transport of eight selected ionizable pharmaceuticals was investigated by using saturated column experiments. Seventy-eight different breakthrough curves on a natural sandy aquifer material were produced and compared for three different pH levels at otherwise constant conditions. The experimentally obtained KOC data were compared with calculated KOC values derived from two different log KOW-log KOC correlation approaches. A significant pH-dependence on sorption was observed for all compounds with pKa in the considered pH range. Strong retardation was measured for several compounds despite their hydrophilic character. Besides an overall underestimation of KOC, the comparison between calculated and measured values only yields meaningful results for the acidic and neutral compounds. Basic compounds retarded much stronger than expected, particularly at low pH when their cationic species dominated. This is caused by additional ionic interactions, such as cation exchange processes, which are insufficiently considered in the applied KOC correlations.  相似文献   

11.
Rejection characteristics of chromate, arsenate, and perchlorate were examined for one reverse osmosis (RO, LFC-1), two nanofiltration (NF, ESNA, and MX07), and one ultrafiltration (UF and GM) membranes that are commercially available. A bench-scale cross-flow flat-sheet filtration system was employed to determine the toxic ion rejection and the membrane flux. Both model and natural waters were used to prepare chromate, arsenate, and perchlorate solutions (approximately 100 μg L−1 for each anion) in mixtures in the presence of other salts (KCl, K2SO4, and CaCl2); and at varying pH conditions (4, 6, 8, and 10) and solution conductivities (30, 60, and 115 mS m−1). The rejection of target ions by the membranes increases with increasing solution pH due to the increasingly negative membrane charge with synthetic model waters. Cr(VI), As(V), and rejection follows the order LFC-1 (>90%) > MX07 (25–95%)  ESNA (30–90%) > GM (3–47%) at all pH conditions. In contrast, the rejection of target ions by the membranes decreases with increasing solution conductivity due to the decreasingly negative membrane charge. Cr(VI), As(V), and rejection follows the order CaCl2 < KCl  K2SO4 at constant pH and conductivity conditions for the NF and UF membranes tested. For natural waters the LFC-1 RO membrane with a small pore size (0.34 nm) had a significantly greater rejection for those target anions (>90%) excluding (71–74%) than the ESNA NF membrane (11–56%) with a relatively large pore size (0.44 nm), indicating that size exclusion is at least partially responsible for the rejection. The ratio of solute radius (ri,s) to effective membrane pore radius (rp) was employed to compare ion rejection. For all of the ions, the rejection is higher than 70% when the ri,s/rp ratio is greater than 0.4 for the LFC-1 membrane, while for di-valent ions (, , and ) the rejection (38–56%) is fairly proportional to the ri,s/rp ratio (0.32–0.62) for the ESNA membrane.  相似文献   

12.
Semipermeable membrane devices (SPMDs) are a widely used passive sampling methodology for both waterborne and airborne hydrophobic organic contaminants. The exchange kinetics and partition coefficients of an analyte in a SPMD are mediated by its physicochemical properties and certain environmental conditions. Controlled laboratory experiments are used for determining the SPMD–air (Ksa's) partition coefficients and the exchange kinetics of organic vapors. This study focused on determining a simple approach for measuring equilibrium Ksa's for naphthalene (Naph), o-chlorophenol (o-CPh) and p-dichlorobenzene (p-DCB) over a wide range of temperatures. SPMDs were exposed to test chemical vapors in small, gas-tight chambers at four different temperatures (−16, −4, 22 and 40 °C). The exposure times ranged from 6 h to 28 d depending on test temperature. Ksa's or non-equilibrium concentrations in SPMDs were determined for all compounds, temperatures and exposure periods with the exception of Naph, which could not be quantified in SPMDs until 4 weeks at the −16 °C temperature. To perform this study the assumption of constant and saturated atmospheric concentrations in test chambers was made. It could influence the results, which suggest that flow through experimental system and performance reference compounds should be used for SPMD calibration.  相似文献   

13.
Octanol-air partition coefficients (KOA) and supercooled liquid vapor pressures (PL) of nine organochlorine pesticides (OCPs) including p,p′-DDE, p,p′-DDD, o,p′-DDT, o,p′-DDE, o,p′-DDD, α-HCH, β-HCH, γ-HCH, δ-HCH were determined as functions of temperature using a gas chromatographic retention time method. Among them, the KOA of o,p′-DDE and o,p′-DDD and the PL of o,p′-DDE, o,p′-DDD, β-HCH and δ-HCH were determined for the first time. The determined KOA and PL values of investigated compounds at 25°C ranged from 3.14 × 107 (α-HCH) to 3.76×109 (p,p′-DDD), and 8.95×10? 4 Pa (p,p′-DDD) to 1.08×10? 1 Pa (α-HCH), respectively. The KOA and PL data were compared with published data. The KOA values of o,p′-DDT at 25°C were 3.23×109, higher than o,p′-DDE (1.02×109) and o,p′-DDD (2.01×109), indicating o,p′-DDT were more preferred to partition in soil compared with the metabolites. The KOA values were lower and PL values were higher for o,p′-DDE and o,p′-DDD, compared with their p,p′-isomeric counterparts, leading to a potential difference in behavior and fate of these isomers. The discrepancies among chemicals are obvious, which reflected in the increasing KOA and decreasing PL values in order of α-HCH, γ-HCH, β-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-DDD, o,p′-DDT, p,p′-DDD. For each compound, the LogKOA decreased linearly with reciprocal absolute temperature, while LogPL had a significant positive correlation with the inverse absolute temperature. The present study suggested that the method of gas chromatographic retention time was appropriate to measure the KOA and PL of a number of OCPs.  相似文献   

14.
Estimates of dermal permeability (Kp), obtained by fitting an updated human PBPK model for malathion to previously reported data on excreted urinary metabolites after 29 volunteers were dermally exposed to measured values of [14C]malathion dermal load (L), were used to examine the empirical relationship between Kp and L. The PBPK model was adapted from previously reported human biokinetic and PBPK models for malathion, fit to previously reported urinary excretion data after oral [14C]malathion intake by volunteers, and then augmented to incorporate a standard Kp approach to modeling dermal-uptake kinetics. Good to excellent PBPK-model fits were obtained to all of 29 sets of cumulative urinary metabolite-excretion data (ave. [±1 SD] R2 = 0.953 [±0.064]). Contrary to the assumption that Kp and L are independent typically applied for dermally administered liquids or solutions, the 29 PBPK-based estimates of Kp obtained for malathion exhibit a strong positive association with the 2/3rds power of L (log-log Pearson correlation = 0.925, p = ~0). Possible explanations of this observation involving physico-chemical characteristics and/or in vivo cutaneous effects of malathion are discussed. The PBPK model presented, and our observation that Kp estimates obtained by fitting this model to human experimental urinary-excretion data correlate well with L2/3, allow more realistic assessments of absorbed and metabolized dose during or after a variety of scenarios involving actual or potential dermal or multi-route malathion exposures, including for pesticide workers or farmers who apply malathion to crops.  相似文献   

15.
Abstract

Effects of soil pH on weak acid and weak base herbicide adsorption by soil are often determined by modifying soil pH in the laboratory. Modification of soil pH with acidic or basic amendments such as HCl or NaOH can cause changes in the soil‐solution system that may affect pesticide adsorption. The partition coefficients (Kd) for atrazine and dicamba by Waukegan, Piano, and Walla Walla silt loam soils stabilized in the field at different pH levels were compared to the Kd obtained when the soil pH was adjusted with acidic or basic amendments before herbicide addition. NaOH addition to raise soil pH generally increased the soluble soil organic carbon (SSOC) concentration in solution compared to field soils at the same pH and to soil treated with Ca(OH)2. NaOH decreased the soil solution ionic strength slightly. Acidifying soils increased the soil solution ionic strength, when compared to field soils at the same pH and had no effect on SSOC concentration. Dicamba adsorption to soil was minimal (Kd < 0.22) and not influenced by soil pH in the range of 4.1 to 6.0; adsorption by laboratory amended soils in some cases underestimated adsorption compared to nonamended soils. Atrazine adsorption increased with decreased pH in all soils, and was overestimated slightly by several laboratory treatments to reduce pH compared to adsorption by field soils. Treatments to raise the pH did not affect atrazine adsorption. Overall, herbicide adsorption differences due to pH modification were small (<30%), and were not affected by soil solution ionic strength, saturating cation, or SSOC concentration in solution.  相似文献   

16.
Bensulfuron-methyl sorption was studied in Andisol and Ultisol soils in view of their characteristic physical and chemical properties, presenting acidic pH and variable charge. Humic and fulvic acids (HA and FA) and humin (HUM) contributions were established. Sorption was studied by using two synthetic sorbents, an aluminum-silicate with iron oxide coverage and the same sorbent coated with humic acid. Freundlich model described Bensulfuron-methyl behavior in all sorbents (R2 0.969-0.998). Kf for soils (8.3-20.7 μg1−1/n mL1/n g−1) were higher than those reported in the literature. Organic matter, halloysite or kaolinite, and specific surface area contributed to the global process. The highest Kf for HA, FA and HUM were 539.5, 82.9, and 98.7 μg1−1/n mL1/n g−1. Model sorbents described the participation of variable charge materials with high adsorption capacity. The constant capacitance model was used to assess effects of Bensulfuron-methyl adsorption on the distribution of SOH, SOH2+ and SO sites of sorbents.  相似文献   

17.
To fully utilize semipermeable membrane devices (SPMDs) as passive samplers in air monitoring, data are required to accurately estimate airborne concentrations of environmental contaminants. Limited uptake rate constants (kua) and no SPMD air partitioning coefficient (Ksa) existed for vapor-phase contaminants. This research was conducted to expand the existing body of kinetic data for SPMD air sampling by determining kua and Ksa for a number of airborne contaminants including the chemical classes: polycyclic aromatic hydrocarbons, organochlorine pesticides, brominated diphenyl ethers, phthalate esters, synthetic pyrethroids, and organophosphate/organosulfur pesticides. The kuas were obtained for 48 of 50 chemicals investigated and ranged from 0.03 to 3.07 m3 g?1 d?1. In cases where uptake was approaching equilibrium, Ksas were approximated. Ksa values (no units) were determined or estimated for 48 of the chemicals investigated and ranging from 3.84E+5 to 7.34E+7. This research utilized a test system (United States Patent 6,877,724 B1) which afforded the capability to generate and maintain constant concentrations of vapor-phase chemical mixtures. The test system and experimental design employed gave reproducible results during experimental runs spanning more than two years. This reproducibility was shown by obtaining mean kua values (n = 3) of anthracene and p,p′-DDE at 0.96 and 1.57 m3 g?1 d?1 with relative standard deviations of 8.4% and 8.6% respectively.  相似文献   

18.
The gas-particle partitioning of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) was examined (i) by re-interpreting results from controlled field experiments and (ii) in diurnal samples taken in the New Jersey (NJ), New York (NY) City region. In the controlled field experiments, aerosol-laden filters were exposed to elevated concentrations of PCDD/Fs. Gas-particle partitioning coefficients, Kp's, were significantly correlated with octanol–air partitioning coefficients, Koa's. The regression of all individual datapoints resulted in the following best fit (r2=0.74, n=87): log Kp,meas=1.00(±0.13) log(10−12fomKoa/ρoct)−0.15(±0.48). We interpret this as showing that the ability of organic matter (OM) to absorb PCDD/Fs is generally well described by the octanol–air partitioning model (fomKoa). At the NJ land-based sites, samples were taken and analyzed for organic carbon (OC) and elemental carbon (EC), gaseous and particulate PCDD/Fs. Kp's were significantly correlated with the fomKoa approach. Adsorption to the filter and possibly to black carbon (BC), which was estimated based on EC measurements, could have contributed to the observed Kp values. Gas-particle predictions based on BC adsorption and OM absorption, with Kp=fomKoa/(1012ρoct)+fBCKBC–air/(1012ρBC) resulted in Kp predictions that were close to measured values. Adsorption to the filter might have been the major reason for elevated Kp's: The one NJ site with highest Kp's was most prone to the filter adsorption sampling artefact because of relatively low sampling volumes and concentrations of total suspended particulates. In addition, while adsorption to BC would result in better prediction of Kp values, no influence of fBC or fBC/fom ratios was seen, suggesting that it was of lesser importance in our sample set.  相似文献   

19.
Hexavalant chromium [Cr(VI)] tolerance and accumulation in in vitro grown Nopalea cochenillifera Salm. Dyck. plants was investigated. A micropropagation protocol was establish for a rapid multiplication of N. cochenillifera and [Cr(VI)] tolerance and accumulation was studied in in vitro grown cultures. Cr concentration was estimated by atomic absorption spectroscopy in roots and shoots to confirm plant’s hyperaccumulation capacity. Plants showed tolerance up to 100 μM K2Cr2O7 without any significant changes in root growth after 16 days treatment; whereas, chlorophyll content in plants treated with 1 and 10 μM K2Cr2O7 were not so different than the control plant. The levels of lipid peroxidation and protein oxidation increased significantly (p?<?0.01) with increasing concentration of chromium. Exposures of N. cochenillifera to lower concentrations of K2Cr2O7 (≤10 μM) induced catalase (CAT) and superoxide dismutase (SOD) significantly (p?<?0.001) but higher concentrations of K2Cr2O7 (>100 μM) inhibited the activities of CAT and SOD. Roots accumulated a maximum of 25,263.396?±?1,722.672 mg?Cr?Kg?1 dry weight (DW); while the highest concentration of Cr in N. cochenillifera shoots was 705.714?±?32.324 mg?Cr?Kg?1?DW. N. cochenillifera could be a prospective hyperaccumulator plant of Cr(VI) and a promising candidate for phytoremediation purposes.  相似文献   

20.
Chen H  Chen S  Quan X  Zhao H  Zhang Y 《Chemosphere》2008,73(11):1832-1837
Sorption of nonpolar (phenanthrene and butylate) and polar (atrazine and diuron) organic chemicals to oil-contaminated soil was examined to investigate oil effects on sorption of organic chemicals and to derive oil–water distribution coefficients (Koil). The resulting oil-contaminated soil–water distribution coefficients (Kd) for phenanthrene demonstrated sorption-enhancing effects at both lower and higher oil concentrations (Coil) but sorption-reducing (competitive) effects at intermediate Coil (approximately 1 g kg−1). Rationalization of the different dominant effects was attempted in terms of the relative aliphatic carbon content which determines the accessibility of the aromatic cores to phenanthrene. Little or no competitive effect occurred for butylate because its sorption was dominated by partitioning. For atrazine and diuron, the changes in Kd at Coil above approximately 1 g kg−1 were negligible, indicating that the presently investigated oil has little or no effect on the two tested compounds even though the polarity of the oil is much less than soil organic matter (SOM). Therefore, specific interactions with the active groups (aromatic and polar domains) are dominantly responsible for the sorption of polar sorbates, and thus their sorption is controlled by available sorption sites. This study showed that the oil has the potential to be a dominant sorptive phase for nonpolar pollutants when compared to SOM, but hardly so for polar compounds. The results may aid in a better understanding of the role of the aliphatic and aromatic domains in sorption of nonpolar and polar organic pollutants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号