首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
施氮对植物生长、硝态氮累积及土壤硝态氮残留的影响   总被引:14,自引:2,他引:14  
陈宝明 《生态环境》2006,15(3):630-632
施用N肥可提高叶类蔬菜的产量,但施用过量也会造成土壤N污染。为了研究当年施肥量对作物硝态氮累积及土壤无机氮残留量的影响,采用土壤盆栽试验,研究了5个施氮水平下3种叶类蔬菜(油菜、小白菜、菠菜)的生长、硝态氮累积和土壤硝态氮残留的变化。结果表明,施氮过高抑制了植物的生长,其中对菠菜的抑制作用最强。3种蔬菜硝态氮累积对施N的反应不同,油菜在施N0.40g时硝态氮含量达到最高,为N1742.2μg·g-1FW;小白菜在0.60g最高,为N1635.6μg·g-1FW;而菠菜则在0.80g最高,为N865.2μg·g-1FW。施N量与土壤硝态氮残留量之间呈显著正相关关系,说明施氮量越高土壤中硝态氮的残余就越大,对土壤的污染就越严重。  相似文献   

2.
氧化亚氮(N_2O)是导致全球变暖的一种重要温室气体。探明热带森林土壤N_2O排放动态及调控机制是全球变化及国际气候谈判的一个重要内容。为探明热带森林不同次生演替对土壤N_2O排放通量时间变化的影响,以西双版纳不同演替阶段热带森林[白背桐(Mallotus paniculatus)群落、崖豆藤(Mellettia leptobotrya)群落和高檐蒲桃(Syzygium oblatum)群落]为研究对象,采用静态箱-气相色谱法对土壤N_2O排放通量动态进行定位观测。探究这些变化与土壤温度和水分及理化性质之间的相互关系。结果表明:(1)不同次生演替阶段热带森林土壤N_2O排放通量存在显著差异,其大小顺序为:高檐蒲桃群落(462.4μg·m~(-2)·h~(-1))崖豆藤群落(378.93μg·m~(-2)·h~(-1))白背桐群落(310.68μg·m~(-2)·h~(-1));(2)不同次生演替阶段热带森林土壤N_2O排放通量月份变化趋势基本一致,均表现为6月显著高于12月,且各月份间差异显著;(3)土壤易氧化有机碳、水解氮、硝态氮和铵态氮显著影响土壤N_2O排放通量的时间变化,而土壤容重和pH值与土壤N_2O排放通量呈显著负相关。因此,土壤N_2O排放对西双版纳不同演替阶段热带森林群落具有敏感的响应,土壤温度、水分、易氧化有机碳、水解氮、硝态氮及铵态氮是土壤N_2O排放时间变化的主控因素。  相似文献   

3.
研究了太湖西部的天目湖和大溪水库以裸地、草地、林地和裸露滩地为主的4种覆盖类型滨岸带潜水中氮磷浓度的空间变化,分析了不同滨岸带对潜水中氮磷的削减率,并对影响潜水氮磷浓度及削减率的主要因素进行分析。结果表明,滨岸带潜水中氮的主要形态为硝态氮,其质量浓度变化范围为0.48~6.83 mg·L-1,氨氮浓度普遍较低,草地和林地滨岸带对硝态氮削减效果较好,平均削减率分别为68.3%和63.4%,而耕地滨岸带潜水中硝态氮浓度有升高趋势。滨岸带潜水中磷的主要形态为溶解性磷,裸地对磷的削减率较高,达32.0%,草地和林地滨岸带对磷的削减率较低,总体上滨岸带对氮的削减率要远高于磷。分析认为影响研究区滨岸带氮磷削减率的主要因素是土壤结构、植被类型和水文状态。  相似文献   

4.
为探究红壤旱坡花生地气态氮(NH_3和N_2O)排放特征及其影响因素,采用通气法和密闭式静态暗箱-气相色谱法,原位监测翻耕和免耕条件下红壤旱坡花生地土壤NH_3挥发和N_2O排放的动态变化特征,并基于增强回归树(boosted regression tree, BRT)方法识别关键影响因子。结果表明:(1)整个花生生育期翻耕和免耕处理NH_3挥发速率(以N计)变化范围分别为0.02~1.55和0.02~1.05 kg·hm~(-2)·d~(-1),氨挥发累积量(以N计)分别为(17.19±8.56)和(18.38±7.41) kg·hm~(-2),占总施氮量的(11.77±5.86)%和(12.59±5.08)%,热点时段主要集中在施基肥后15 d内;翻耕和免耕处理N_2O排放通量(以N计)变化范围分别为0.07~2.90和0.02~3.97 mg·m~(-2)·d~(-1),累积量(以N计)分别为(0.81±0.27)和(0.68±0.10) kg·hm~(-2),占总施氮量的(0.55±0.17)%和(0.46±0.06)%,N_2O排放通量热点时段不明显;两种耕作条件下NH_3挥发无明显差异,但免耕降低了16.05%的N_2O排放累积量;氨挥发是红壤旱坡花生地氮素气态损失的主要途径。(2)采用增强回归树(BRT)分析发现,土壤铵态氮含量、施肥后天数、花生生育期、前3天降水量和土壤硝态氮含量是红壤旱坡花生地氨挥发的关键影响因子,贡献率分别为47.92%、14.78%、8.21%、7.44%和5.91%;而N_2O排放的关键影响因子分别为土壤含水量、土壤铵态氮含量、地温、前3天降水量、土壤硝态氮含量、施肥后天数和气温,相对贡献率分别为24.67%、20.34%、12.26%、9.93%、9.91%、9.64%和8.51%。上述研究结果表明,施肥是影响红壤花生地氮肥气态氮损失的重要因子,气态氮(NH_3和N_2O)损失最高可占施肥量的18.35%,微生物硝化过程及其环境控制因子可能在土壤氮损失过程中发挥了重要作用。这些结果可为提高南方红壤区坡地氮肥利用率、减轻环境污染提供理论依据。  相似文献   

5.
设施栽培是我国蔬菜生产的重要方式之一.设施菜地土壤高温、高湿、持续且大量施肥等特点,可能改变土壤氮素周转及N_2O排放.寿光是我国重要的蔬菜生产基地之一.然而,鲜有研究关注寿光市设施菜地土壤N_2O排放规律及其影响因素.本文以寿光市农田、种植6、12年设施菜地及荒废设施菜地为例,研究农田转变为设施菜地后土壤N_2O排放规律,并探讨其影响机理.结果表明,设施菜地土壤N_2O年排放量明显高于农田及荒废设施菜地,且种植6年设施菜地土壤N_2O年排放量显著大于种植12年设施菜地(P0.05).其原因可以归结为:(1)设施菜地种植过程中施加大量有机肥及化肥,会促进土壤氮素周转.(2)设施菜地土壤温度、含水率及硝态氮含量均高于农田,且均与土壤N_2O排放通量呈显著正相关关系(P0.05),表明设施菜地土壤高温、高湿的环境特点会促进土壤硝化过程,加速土壤N_2O排放.(3)设施菜地具有较高的土壤脲酶活性,且与土壤硝态氮含量、含水率呈显著正相关关系(P0.05),表明农田变为设施菜地增加了土壤脲酶活性,促进土壤硝化过程及硝态氮累积,这可能间接加速土壤N_2O排放.  相似文献   

6.
秸秆还田对提高土壤肥力具有重要意义,但是秸秆还田对氮素在土壤中的转化过程的影响还不清楚。通过室内培养研究了等量施氮条件下不同秸秆还田量对尿素态氮的水解、硝化及反硝化等氮素转化过程的影响。试验设5个处理,分别为CK,不加尿素氮不加秸秆;S0,尿素氮200 mg·kg~(-1)+秸秆量0 g·kg~(-1);S1,尿素氮200 mg·kg~(-1)+秸秆量4.44 g·kg~(-1);S2,尿素氮200 mg·kg~(-1)+秸秆量8.88 g·kg~(-1);S3,尿素氮200 mg·kg~(-1)+秸秆量13.33 g·kg~(-1)。结果表明,秸秆添加可促进尿素水解过程,24 h后,尿素的水解率从S0处理的71.9%增加至S3处理的98.0%。添加秸秆在前15天会减少土壤中铵态氮的含量,与S0相比,第3天时,S1、S2、S3的铵态氮含量分别减少了18.35%、27.09%、25.47%。S0处理和S1处理土壤中的硝态氮含量均随着培养时间的延长而升高,且在培养的第21天基本达到稳定;而S2和S3处理的硝态氮含量则呈先下降后上升的趋势。从培养3 d起添加秸秆的处理土壤中的硝态氮含量始终低于不添加秸秆的处理(P0.05),且随着秸秆用量的增加土壤中的硝态氮含量显著降低(P0.05)。添加秸秆增加了氮肥的反硝化损失,且随着秸秆用量的增加,反硝化损失率急剧增加,从S0处理的0.45%增加至S3处理的62.87%。添加秸秆处理土壤的微生物量碳(SMBC)含量和空白对照相比,均有明显的提升(P0.05),且随着秸秆用量的增加而增加。研究表明,秸秆的添加能提高SMBC的含量,进而增加了土壤氮素的同化,但同时也增加了氮素的反硝化损失,且随秸秆添加量的增大,影响效果越明显。  相似文献   

7.
为了研究石灰氮对设施菜地土壤N_2O排放的影响,观测了施用尿素、石灰氮、半量尿素与半量石灰氮混施和对照等4个处理设施菜地土壤N_2O排放以及土壤中氮素变化.结果表明,施用石灰氮能显著降低设施菜地土壤N_2O排放量,对照、施用尿素、施用石灰氮和半量尿素与半量石灰氮混施的N_2O累积排放量分别为4135.80μg·kg~(-1)、5794.25μg·kg~(-1)、1957.03μg·kg~(-1)和4341.31μg·kg~(-1),施用尿素的N_2O累积排放量比对照增加了40.1%,施用石灰氮、半量尿素与半量石灰氮混施比施用尿素分别减少了66.2%和25.1%的N_2O排放量,半量尿素与半量石灰氮混施的N_2O累积排放量与对照的差异不显著(P0.05).尿素处理的N_2O排放系数为0.17%,而石灰氮处理和半量尿素与半量石灰氮混施处理的N_2O排放系数则分别减少至0.06%和0.13%.由此表明,施用石灰氮是减少设施菜地土壤N_2O排放的一项有效措施.  相似文献   

8.
温室气体N_2O的生成和排放与反硝化功能微生物关系密切,探讨沉积物反硝化微生物功能基因丰度及其与N_2O通量的关系有助于更好地理解沉积物N_2O生成与排放的微生物学机制。以太湖为研究对象,采用定量qPCR(Quantitative PCR)技术测定了太湖沉积物反硝化功能基因(nirK、nirS、norB和nosZ)丰度,阐明了太湖沉积物反消化功能基因丰度的季节变化规律,并分析了反硝化功能基因丰度与沉积物N_2O通量及其他环境因子的关系。结果表明:太湖沉积物反硝化功能基因丰度呈现夏秋季高冬春季低,具有明显的季节变化特征,norB基因丰度最高,均值为9.03×10~9 copies·g~(-1),其次为nir S基因(1.14×10~9copies·g~(-1)),nirK和nosZ基因丰度均值分别为3.04×10~8copies·g~(-1)和1.09×10~8copies·g~(-1)。沉积物TN和NO_2~-是影响反硝化功能基因丰度的重要环境因子。夏秋季沉积物N2O通量为-0.12-0.04nmol·g~(-1)·h~(-1),均值为-0.05nmol·g~(-1)·h~(-1),与反硝化功能基因(nir K、nir S和nir B)丰度呈显著正相关(P0.05),表明反硝化过程消耗了N_2O。冬春季沉积物N_2O通量为-0.05-0.48 nmol·g~(-1)·h~(-1),均值为0.27 nmol·g~(-1)·h~(-1),与反硝化功能基因丰度不具显著相关性,表明反硝化作用可能不是N_2O产生的主要过程。  相似文献   

9.
土壤反硝化过程是指土壤中的硝酸盐、亚硝酸盐等含氮物质在反硝化微生物的作用下还原成氮气(N_2)、一氧化氮(NO)、氧化亚氮(N_2O)等气体的过程,是氮循环中重要的过程之一.反硝化的中间产物N_2O是一种重要的温室气体,其中从土壤中释放的量占地球总排放量的70%.反硝化作用主要由硝酸盐还原酶(nitrate reductase,Nar)、亚硝酸还原酶(nitrite reductase,Nir)、一氧化氮还原酶(nitric oxide reductase,Nor)和氧化亚氮还原酶(nitrous oxide reductase,Nos)所催化,相应的编码基因分别为nar、nir、nor和nos.多种土壤反硝化速率测定方法因技术、设备、实验设计等原因存在不同优缺点,据此在自己的研究中选择合适的方法至关重要.测定土壤反硝化的方法目前主要有乙炔抑制法、~(15)N同位素示踪法、N_2直接测定法、硝酸盐消失法、质量守恒法和化学计量法等6种方法.乙炔抑制法,操作简单,但是不适合土壤养分含量低的土壤;~(15)N同位素示踪法测定结果比较精确,但是价格昂贵,成本高;N_2直接测定法则需要精密的仪器.今后反硝化过程测定方法的发展不仅是测量方法的改进,也需要注重精密仪器的研发.(表3参62)  相似文献   

10.
采用田间试验研究不同施肥处理对棕壤N2O排放量的影响。结果表明,N2O释放量随着耕层土壤硝态氮含量增加而上升。不同施肥处理对N2O排放量影响不同,低氮处理(N1)排放量(整个玉米生育期按185d计算)为1.18kg·hm-2,高氮处理(N2)为2.39kg·hm-2。随着施氮量的增加,反硝化作用加强,N2O排放量上升,以N2O形式损失加剧。相同施氮水平条件下,随着有机肥施入量的增加土壤N2O排放量上升,其中以高氮高有机肥处理(M2N2)N2O排放量最高,达到了7.05kg·hm-2,占所投入氮肥的2.34%。相同氮素供应水平条件下增施磷、钾肥,也会增加N2O排放量。整个玉米生育时期通过N2O排放损失的肥料占投入氮肥比例为0.99%~2.46%。  相似文献   

11.
地下渗滤系统(subsurface wastewater infiltration system,SWIS)是一种生态化的污水处理技术模式,在处理小水量、分散污水方面具有较为明显的技术优势,例如管理简单、运行费用低、兼具生态服务功能等。SWIS对污水中氮的去除主要依靠微生物硝化-反硝化作用,脱氮效果受内外部条件因子制约。当基质层内部溶解氧含量不足、NO_2~-积累、氧化亚氮还原酶活性受到抑制时,硝化和反硝化过程均可释放N_2O气体。进水水质、操作条件、温度等因素影响N_2O释放量和转化率。利用原位实验平台,采用静态箱-气相色谱分析方法,以实际生活污水为研究对象,分析了进水氮负荷波动条件下SWIS中N_2O产率、转化率和释放周期的变化规律。研究表明,进水氮负荷显著影响SWIS除污效率、N_2O产率和转化率。随着进水氮负荷由1.6 g·m~(-2)·d~(-1)增至7.2 g·m~(-2)·d~(-1),出水COD、NH_4~+-N、TN质量浓度分别由(9±3)、(0.4±0.1)、(1.5±0.11)mg·L~(-1)升高到(70±7)、(11.0±1.0)、(15.4±0.4)mg·L~(-1);N_2O产率与转化率表现出先升高后降低的趋势,其中,N_2O产率可高达(60.6±2.0)mg·m~(-2)·d~(-1),同时,进水总氮(转化率1.33%±0.03%)转化成N_2O逸出系统;随着系统落干时间的延长,N_2O产率呈下降趋势。综合考虑处理能力、出水水质和N_2O释放量,建议在工程应用中,选用具有一定脱氮能力的前处理工艺,控制SWIS进水氮负荷在4.0~5.6g·m~(-2)·d~(-1)之间,且适当延长SWIS干化周期。此时,出水水质满足城市景观地表水水质标准(GB/T18921—2002),N_2O产率和转化率均维持在较低水平。  相似文献   

12.
《生态环境》2001,10(4):273-276
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况.结果表明,小麦生育期土壤温度及含水量较低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高.土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量.玉米生育期土壤温度升高以及孔隙含水量有较大的改善,反硝化损失氮量、N2O生成排放量有明显上升.通常情况下土壤反硝化损失氮量与N2O排放氮量基本处于同一水平.在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用.在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面.  相似文献   

13.
农田土壤硝化-反硝化作用与N_2O的排放   总被引:2,自引:0,他引:2  
在北京潮土上研究了冬小麦夏玉米轮作体系下土壤硝化反硝化作用以及N2O排放情况。结果表明,小麦生育期土壤温度及含水量较低,无论是反硝化损失氮量还是土壤的N2O生成排放量均不高。土壤的N2O生成排放量与反硝化氮量相当或低于反硝化氮量。玉米生育期土壤温度升高以及孔隙含水量有较大的改善,反硝化损失氮量、N2O生成排放量有明显上升。通常情况下土壤反硝化损失氮量与N2O排放氮量基本处于同一水平。在玉米十叶期追肥后的较短时间内,N2O总排放量明显高于反硝化损失氮量,说明至少在这一阶段中,硝化作用在北方旱地土壤N2O的排放中发挥了主要作用。在评价北方旱地农田土壤氮素硝化反硝化损失中,硝化作用的氮素损失是不可忽视的重要方面。  相似文献   

14.
一株好氧反硝化菌的分离鉴定及其混合应用特性研究   总被引:6,自引:0,他引:6  
采用溴百里酚(BTB)鉴定培养基和稀释平板法从南京市某市政污水处理厂曝气池污水样本中分离筛选得到1株好氧反硝化细菌,经16S rDNA序列同源性比较和系统发育分析初步鉴定为反硝化产碱杆菌(Alcaligenes denitrificans),并将其命名为菌株BMB-N6.研究了菌株BMB-N6在不同浓度亚硝态氮条件下的反硝化能力,运用正交试验设计探讨了该菌株最适的好氧反硝化条件,并且在实验室和大田条件下分别考察了菌株BMB-N6与蛋白质降解菌BMB-LA和氨氮脱除菌BMB-HKF复配形成的混合菌制剂的反硝化能力.结果表明,菌株BMB-N6在8 h内对亚硝态氮的去除率可达94%,其最适亚硝态氮去除条件为摇床转速50 r·min-1,C/N比值4,pH 6,温度35 ℃.在实验室条件下以菌株BMB-N6为基础制成的混合菌制剂在12 h内可去除90%的亚硝态氮,在大田应用中7 d内可去除80%的亚硝态氮.  相似文献   

15.
稻壳炭施用对太湖滨岸灰潮土氮磷淋失及土壤性质的影响   总被引:1,自引:0,他引:1  
探究稻壳炭施用对太湖滨岸灰潮土养分淋失的抑制效应,以及对灰潮土性质的改良作用,为太湖滨岸植被带恢复提供理论依据。通过16周的土柱淋溶试验,研究了不同施用率(0%,1%,2%和5%)稻壳炭与肥料(NH_4NO_3和KH_2PO_4)混施后,对太湖滨岸灰潮土氮磷淋失以及土壤性质的影响。结果表明,随着稻壳炭施用量的增加,灰潮土土柱渗滤液中铵态氮累积淋失量减少11.7%—26.6%,硝态氮累积淋失量减少32.4%—67.3%。然而,当稻壳炭施用率为2%和5%时,土柱渗滤液中磷酸盐累积淋失量分别显著增加了32.1%和54.2%。稻壳炭施用16周后,灰潮土土壤总氮含量显著增加,土壤有效磷含量在2%和5%施用率下显著增加。同时,添加稻壳炭使土壤铵态氮含量显著减少,而土壤硝态氮含量显著增加,这表明稻壳炭添加增强了滨岸灰潮土土壤硝化作用。灰潮土土壤微生物生物量碳在2%和5%的稻壳炭施用率下分别显著增加了22.4%和36.8%,土壤微生物生物量氮在5%的稻壳炭施用率下显著增加了48.4%。随着稻壳炭施用量的增加,灰潮土土壤容重减小,而pH值、土壤总孔隙度以及土壤持水能力增加。因此,施用稻壳炭减少了太湖滨岸灰潮土土壤氮素的淋失,但当施用率为2%—5%时,增加了土壤磷素淋失的风险;添加稻壳炭使土壤总氮,有效磷以及土壤微生物生物量增加,这将有利于太湖滨岸植被带的恢复。  相似文献   

16.
氧化亚氮(N_2O)是一种重要的温室气体,而农田生态系统是N_2O的重要排放源。酸雨是中国重要的环境问题,然而少有研究关注酸雨对农田土壤N_2O排放的影响。在大豆(Glycine max(Linn.)Merr.)生长季开展了2年的田间模拟酸雨试验,设置了pH值分别为6.7(对照,CK)、4.0(T_1)、3.0(T_2)和2.0(T_3)的4个不同酸雨处理水平,采用静态箱-气相色谱法测定N_2O排放通量,以研究模拟酸雨对大豆田土壤N_2O排放通量及植株与土壤氮含量的影响。结果表明:与CK相比,酸雨没有改变土壤N_2O排放的季节性规律,虽然整个大豆生长季土壤N_2O平均通量并没有显著变化,但在第二年大豆鼓粒期,与CK相比,T_1和T_3处理使土壤N_2O平均排放通量分别显著增加35.1%(P=0.020)和71.2%(P=0.000)。通过植株和土壤理化分析发现,酸雨处理显著降低了开花—结荚期大豆植株地下生物量,T_1和T_3处理的地下生物量分别下降了31.93%(P=0.039)和24.30%(P=0.027)。在分枝期、开花—结荚期和鼓粒期,各酸雨处理不同程度地降低了叶片可溶性蛋白质含量;在开花—结荚期,酸雨各处理均降低了叶片全氮和硝态氮含量。酸雨处理没有显著改变土壤有机碳及全氮含量,但在分枝期和开花—结荚期,酸雨处理显著减少了土壤硝态氮含量。  相似文献   

17.
以NH4NO3作为氮源,对广州东北郊木荷(Schima superba)人工幼林地进行模拟氮沉降处理,共设置3个氮沉降水平,分别为N0(N:0 g·m-2·a-1)、N5(N:5 g·m-2·a-1)以及N10(N:10 g·m-2·a-1),每月进行喷施。在连续施氮22个月(当月当次施氮5天后)对土壤氮素(硝氮、氨氮、总氮)、碳素(总碳)以及微生物量(脂磷)在0~60 cm土层中的垂直分布进行研究。结果显示:在3个氮沉降水平下,随着土层加深,pH呈现出下降的趋势,氮沉降存在加剧土壤酸化的风险;在N0、N5、N10水平下,土壤全氮和总碳的垂直分布趋势大体一致,随着土层加深,其含量下降,但在深层土壤(40~60 cm)中,施氮与对照比较,总碳呈现一定的增加趋势;除40~50 cm土层,N5、N10水平下的硝态氮含量在各个深度土壤中都表现为比对照组要高,氮沉降导致土壤一定程度上硝态氮的积累;在浅层土壤(0~20 cm)中,铵态氮水平较低并且其含量明显低于对照组,而在较深的土层中铵态氮有较多的积累,说明存在污染地下水的风险;N5和N10水平下,无机氮比例(无机氮含量与总氮含量之比)在各个深度土壤中总体高于N0水平;用脂磷含量表征土壤微生物含量,结果表明外加氮源对微生物含量有显著性影响,在N5、N10水平下,微生物含量在30~40 cm土层中出现峰值。  相似文献   

18.
通过田间试验,采用静态箱-气相色谱法研究不同施肥模式下硝化抑制剂(DCD)和生物炭对菜地土壤氧化亚氮(N2_O)排放及土壤特性的影响。试验包括单施化肥氮与有机肥替代25%化肥氮2种施肥模式,共设6个处理:(1)单施化肥氮(CF);(2)单施化肥氮DCD(CFDCD);(3)单施化肥氮生物炭(CFBC);(4)有机肥替代25%化肥氮(MF);(5)有机肥替代25%化肥氮DCD(MFDCD);(6)有机肥替代25%化肥氮生物炭(MFBC)。研究结果表明,施氮量为225 kg·hm-2条件下,有机肥替代25%化肥氮处理较单施化肥氮处理显著降低了菜地N2_O累积排放量和土壤硝态氮含量,降幅分别为46.9%和30.7%。整个菜心季土壤N2_O总排放量与收获季0~15 cm土层土壤硝态氮含量之间呈极显著的线性正相关关系,表明有机肥部分替代化肥氮一定程度上改变了土壤中氮素营养的存在形态及氮转化路径。CFDCD和CFBC处理较CF处理显著降低了土壤N2_O排放,降幅达72.8%和38.8%,MFDCD和MFBC较MF处理土壤N2_O排放减少了44.9%和10.3%,表明在本试验条件下,DCD处理抑制菜地N2_O排放的效果相对高于生物炭处理,而生物炭抑制菜地N2_O排放的效果在单施化肥氮模式下表现得更明显。与此同时,DCD和BC配施处理均有效降低了土壤硝态氮的积累,且DCD处理在整个菜心生长季0~15 cm土壤铵态氮含量明显高于相同施肥模式下的其他处理。综上可知,有机肥部分替代化肥氮模式、生物炭与DCD的添加均能有效抑制菜地土壤N2_O的排放并降低土壤硝态氮水平。本研究结果可为调控菜地土壤N2_O气体排放提供提供参考。  相似文献   

19.
茶园氧化亚氮排放机制及减排措施研究进展   总被引:2,自引:0,他引:2  
茶园因氧化亚氮(N_2O)排放系数大、氮肥施用量高及种植面积逐年增加,成为我国农业重要的N_2O排放源,因此迫切需要研究茶园N_2O排放机理及有效的减排措施。目前,关于不同农学措施对茶园N_2O排放特征的影响研究较多,但其N_2O减排效果尚无定论,该研究综合分析不同农学措施对茶园N_2O排放的影响及其机制,希望为进一步开展茶园N_2O减排研究提供理论和实践参考。通过综述发现:茶园排放的N_2O主要源于土壤硝化和反硝化过程,其中反硝化作用引起的N_2O排放更多;影响茶园N_2O排放的因素主要有气象因子(温度、降雨)和土壤条件(pH、含水量、质地、温度、底物浓度);茶园有效的N_2O减排措施主要为施用铵态氮肥、控释氮肥和石灰氮以及氮肥深施;施用有机肥、施用生物硝化抑制剂、添加碱性材料、添加生物质炭、间种豆科植物及施用生物肥料的N_2O减排效果尚存在分歧,需开展进一步研究。  相似文献   

20.
采用溴百里酚(BTB)鉴定培养基和稀释平板法从南京市某市政污水处理厂曝气池污水样本中分离筛选得到1株好氧反硝化细菌,经16SrDNA序列同源性比较和系统发育分析初步鉴定为反硝化产碱杆菌(Alcaligenes denitrificns),并将其命名为菌株BMB—N6。研究了菌株BMB—N6在不同浓度亚硝态氮条件下的反硝化能力,运用正交试验设计探讨了该菌株最适的好氧反硝化条件,并且在实验室和大田条件下分别考察了菌株BMB—N6与蛋白质降解菌BMB-LA和氨氮脱除菌BMB—HKF复配形成的混合菌制剂的反硝化能力。结果表明,菌株BMB—N6在8h内对亚硝态氮的去除率可达94%,其最适亚硝态氮去除条件为摇床转速50r·min^-1,C/N比值4,pH6,温度35℃。在实验室条件下以菌株BMB-N6为基础制成的混合菌制剂在12h内可去除90%的亚硝态氮,在大田应用中7d内可去除80%的亚硝态氮。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号