首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以酒糟生物碳为原料,采用负载Al(OH)_3改性制得生物吸附剂(CDGB)。通过静态吸附实验研究吸附剂用量、初始浓度、吸附时间、pH值和共存离子对CDGB吸附氟能力的影响。结果表明:CDGB具有非常宽的最适pH值范围,在pH值为5.0~9.0范围内CDGB均能有效地去除饮用水中的氟离子;并且在氟初始浓度为10 mg·L~(-1),吸附时间40 min,CDGB的添加量为2 g·L~(-1)时氟的去除率可达90%以上,且吸附后水中氟离子含量低于1 mg·L~(-1),符合国家饮用水标准;溶液中常见的共存离子(硝酸根、氯离子和硫酸根)对吸附剂吸附没有显著影响;CDGB对氟离子吸附过程符合Langmuir吸附等温线模型和伪二级吸附动力学模型,理论饱和吸附容量为18.05 mg·g~(-1)。  相似文献   

2.
为去除水中Sb(Ⅲ),采用改进的共沉淀法制备抛光污泥掺杂Fe_3O_4吸附剂(HCO/Fe_3O_4),并采用海藻酸钠(SA)固化交联形成HCO/Fe_3O_4复合微球吸附剂(SAB);利用吸附序批实验考察了pH、温度和共存离子对SAB吸附Sb(Ⅲ)效果的影响。结果表明,制备SAB的HCO/Fe_3O_4和SA最佳质量分数分别为2.5%和2.0%。在pH为7,温度为25℃时吸附72h,投加4.0g/L SAB对初始质量浓度为20.0 mg/L的Sb(Ⅲ),去除率达到80%以上。NO_3~-和SO_4~(2-)对SAB吸附Sb(Ⅲ)没有显著影响,而10mmol/L PO_4~(3-)对SAB吸附Sb(Ⅲ)有微弱的促进作用。SAB对Sb(Ⅲ)的吸附符合Langmuir模型和准二级动力学模型,吸附过程结合了化学吸附(离子交换)与物理吸附(扩散反应)作用。  相似文献   

3.
以生物质废弃物柚子皮为主要原料,通过在柚子皮粉中加入FeCl_3进行改性,将该改性产物用于吸附去除水中的砷。该改性柚子皮的制备条件为柚子皮粉:FeCl_3质量比为50∶1,常温下加水混合均匀,在(85±2)℃条件下烘24 h后粉碎。当水中砷离子浓度为1.5~30 mg·L~(-1),pH值为2~9,吸附剂投加量为10 g·L~(-1),吸附反应温度为20℃的条件下,吸附反应30 min后达到平衡,去除率最高达到96.19%,单位吸附量q最大值为1.86 mg·g~(-1)。该吸附反应符合Freundlich等温方程,该去除机制可能以金属沉淀、静电吸附、絮凝作用和共沉淀作用为主。研究表明该改性吸附材料可自动调节废水pH值,操作简单,无二次污染,考虑用作中等浓度含砷废水的预处理,有利于生物质废弃物的资源化利用。  相似文献   

4.
研究了由乙醇改性后的松针对水中壬基酚的吸附去除效果;探讨了其吸附过程的热力学和动力学行为;考察了pH、温度对吸附效果的影响。实验结果表明,改性松针对水中壬基酚具有很好的吸附能力,当壬基酚浓度为10 mg·L~(-1),溶液30 m L、吸附剂投加量为1 g、温度为25℃、pH值为7时,35 min达到吸附饱和,实验饱和吸附量为0.279 mg·g~(-1),吸附去除率为93.3%;吸附过程符合准一级动力学方程,并能够同时满足Langmuir和Freundlich吸附等温吸附模型。  相似文献   

5.
为快速去除富营养化水体中的磷和藻类,制备了絮凝剂-镧复合改性膨润土(聚合氯化铝铁-镧复合改性膨润土(PAFC-La)、聚合硫酸铝-镧复合改性膨润土(PAS-La)、聚合硫酸铁-镧复合改性膨润土(PFS-La)、聚合氯化铝-镧复合改性膨润土(PAC-La)),对材料进行表征,通过吸附动力学和等温吸附模型比较4种复合改性膨润土的除磷性能,并探究投药量和pH对复合改性膨润土除磷除藻的影响。结果表明,4种材料吸附磷的过程均能由准二级动力学模型和Langmuir等温吸附模型描述。其中,PAC-La的磷吸附容量最大(44.677 mg/g);投药量为300 mg/L时,总磷(TP)去除率最高的是PAC-La(94.1%),叶绿素a(Chla)去除率最高的是PFS-La(78.2%);在pH为5~10时,PAC-La除磷除藻效果受pH影响最小。实验结果表明,采用絮凝剂-镧复合改性膨润土能够同步去除富营养化水体中的磷和藻类,尤其是采用PAC-La性能最优。  相似文献   

6.
以氧化石墨烯和正硅酸乙酯为原料,采用溶胶-凝胶法制得石墨烯/二氧化硅复合材料(GS),以GS为基体,采用液相还原法,得到石墨烯/二氧化硅负载纳米零价铁(NZVI/GS),将其用于水中As(Ⅲ)的吸附研究。通过XRD、TEM、BET、Zeta电位等表征手段对NZVI/GS进行表征。探讨不同反应条件对NZVI/GS的吸附影响,并进行动力学方程和吸附等温线方程拟合。结果表明,NZVI/GS对As(Ⅲ)具有良好的去除效果,当初始溶液pH为6~8,投加量为0.4 g·L~(-1),反应温度为35℃,砷初始浓度为2 mg·L~(-1)时,NZVI/GS对As(Ⅲ)的去除率高达99.81%。通过Langmuir等温吸附方程得到NZVI/GS对As(Ⅲ)最大吸附量55.93 mg·g~(-1)。  相似文献   

7.
骨炭对水中不同形态Sb吸附和解吸的影响   总被引:1,自引:0,他引:1  
采用骨炭作为吸附剂,研究其在不同骨炭用量、pH值和温度条件下对水中Sb(Ⅲ)和Sb(Ⅴ)吸附和解吸的影响。结果表明,骨炭对Sb(Ⅲ)的吸附效果远好于Sb(Ⅴ),在0.2~8.0 mmol/L的Sb(Ⅲ)和Sb(Ⅴ)浓度下,骨炭对这2种形态Sb的去除率分别为46.1%~78.6%和9.6%~31.7%。采用Langmuir方程和Freundlich方程均可以很好地拟合骨炭对Sb(Ⅲ)和Sb(Ⅴ)的吸附,Sb(Ⅲ)和Sb(Ⅴ)的最大吸附容量分别为110.1034 mg/g和17.4167 mg/g。骨炭对Sb(Ⅲ)的解吸也大于对Sb(Ⅴ)的解吸。骨炭对Sb(Ⅲ)和Sb(Ⅴ)的吸附受不同骨炭用量、pH值和温度影响。  相似文献   

8.
用氯化十六烷基三甲铵(Cetyltrimethylammonium chloride,CTAC)修饰铁氧化物Fe_2O_3,得到氨基复合的铁氧化物纳米材料(Fe_2O_3@CTAC)并研究了其对As(Ⅴ)的吸附去除性能及机理。CTAC修饰不会改变Fe_2O_3的物理化学结构,而形成的Fe_2O_3@CTAC不仅可以通过铁氧化物表面络合作用吸附As(Ⅴ),复合材料表面的氨基也可以通过静电作用吸附As(Ⅴ)。因而复合材料对As(Ⅴ)的吸附去除效果显著提升,饱和吸附容量可以达到23.13 mg·g~(-1)。Fe_2O_3@CTAC吸附As(Ⅴ)可以在2 min内达到平衡,符合拟二级动力学模型和two-site Langmuir模型。在pH为3~9的范围内,Fe_2O_3@CTAC均能有效吸附去除As(Ⅴ),去除率均能达到90%以上。天然有机质和硫酸根、碳酸氢根、硅酸根对As(Ⅴ)在Fe_2O_3@CTAC上的吸附没有明显的抑制作用。磷酸根由于与As(Ⅴ)存在竞争吸附作用而抑制As(Ⅴ)的吸附,然而在通常水体磷酸根浓度条件下,Fe_2O_3@CTAC对As(Ⅴ)的去除率依然达到90%以上。此外,Fe_2O_3@CTAC可以再生并重复利用,经过5次循环利用后As(Ⅴ)的去除率能够保持在85%以上。  相似文献   

9.
铁改性竹炭去除水中的As(Ⅲ)和As(Ⅴ)   总被引:3,自引:0,他引:3  
利用竹炭负载铁氧化物制备了复合吸附剂,并用粉末X射线衍射对负载的铁进行了表征。通过静态吸附实验,对比研究了改性竹炭对水溶液中As(Ⅲ)和As(Ⅴ)阴离子的吸附特性。结果表明,载铁竹炭对As(Ⅲ)和As(Ⅴ)的最佳吸附pH分别为8和2。改性竹炭对砷阴离子的吸附过程可符合准二级动力。Freundlich等温方程式能很好地描述As(Ⅲ)和As(Ⅴ)在改性竹炭上的吸附。在相同初始浓度和吸附剂投加量下,改性竹炭对As(Ⅴ)的吸附量大于As(Ⅲ)。  相似文献   

10.
为了探究同步去除酸性矿山废水(AMD)中酸度及重金属离子的新型多功能矿物环保材料,确定最佳运行方式,在固定床操作条件下,对比研究复合颗粒吸附柱、锰砂柱、复合颗粒-锰砂混合填充柱对AMD中酸度、Mn~(2+)的去除效果,确定小型连续流反应器的最佳吸附剂;在确定最佳吸附剂的基础上,对比研究升流淹没式、降流淹没式、降流非淹没式吸附柱对AMD中酸度、Mn~(2+)的去除效果,确定小型连续流反应器的最佳运行方式;并结合SEM、XRD等微观分析揭示复合颗粒动态吸附去除重金属离子的规律及机理。实验结果表明:3种吸附材料对Mn~(2+)的吸附容量关系为:PG柱(28.871 mg·g~(-1))PG-MS柱(16.935 mg·g~(-1))MS柱(2.194 mg·g~(-1));3种运行方式对Mn~(2+)的吸附容量关系为:降流非淹没式(28.817mg·g~(-1))升流淹没式(26.532 mg·g~(-1))降流淹没式(23.479 mg·g~(-1))。因此,固定床吸附柱处理含Mn~(2+)酸性矿山废水动态实验的最佳吸附材料为膨润土-钢渣复合颗粒,复合颗粒的最佳运行方式为降流非淹没式。PG在去除Mn~(2+)的过程中不仅存在吸附、化学沉淀等作用,还存在聚沉作用,即具有吸附-聚沉协同作用,并且Mn~(2+)在复合颗粒表面的赋存状态主要以Mn-Si-O相结合的矿物相以及Ca Mn7O12沉淀物存在。  相似文献   

11.
为了更好的去除水体中微量汞,研究了采用二氧化锰和壳聚糖对天然斜发沸石进行改性,着重考察了pH、温度、离子强度、Hg~(2+)初始浓度和时间对改性前后沸石吸附Hg~(2+)的影响,并研究了其吸附机理。结果表明,改性沸石受pH、温度和离子强度影响较小,在pH、温度、离子强度和初始浓度为6、25℃、0.05 mol·L~(-1)和50μg·L~(-1)时,二氧化锰+壳聚糖改性沸石(ZCM)对Hg~(2+)的去除率高达99%,符合国家饮用水标准,并且二氧化锰+壳聚糖改性沸石(ZCM)具有更好的解吸再生性。3种沸石均较好的符合Langmuir等温吸附模型和假二级动力学模型,其中改性沸石对汞的吸附主要为离子交换和表面官能团的络合作用,二氧化锰+壳聚糖改性沸石(ZCM)和壳聚糖改性沸石(ZC)饱和吸附量由1.43 mg·g~(-1)提高到5和3.3 mg·g~(-1),吸附平衡时间由10 h减少至1和4 h,为治理汞微污染地表水提供一定的理论支持。  相似文献   

12.
叶智新  任刚 《环境工程学报》2019,13(12):2798-2807
为探讨改性碳纳米管(CNTs)对砷的吸附特性,采用化学修饰对CNTs进行了改性。将CNTs先后进行氧化和酰胺化处理,并与聚苯胺反应,得到酰胺化/氧化碳纳米管-聚苯胺(NMCNTs-PANI),利用SEM观察、比表面积测定、含氧含氮官能团和分子结构分析对改性前后CNTs进行了表征;研究了NMCNTs-PANI在不同反应体系对As(Ⅲ)的吸附效果。结果表明:NMCNTs-PANI总孔容和平均孔径均有所增加;表面含氧含氮基团增加;初始pH对吸附量影响较显著;共存阴离子对吸附量影响可忽略不计;吸附过程符合准一级动力学和准二级动力学方程,证实该过程主要以化学吸附为主;吸附等温线符合Langmuir模型。NMCNTs-PANI通过表面吸附-化学诱导作用可较好地去除水中As(Ⅲ),是一种优良的含砷污染水的吸附剂。  相似文献   

13.
利用売聚糖(CS)将氧化石墨烯(GO)交联到粉煤灰颗粒上,制备出粉煤灰/氧化石墨烯(FCGO)复合吸附材料。扫描电子显微镜(SEM)、漫反射红外光谱(DRIFT)和X射线电子光谱(XPS)对FCGO的研究表明GO被成功负载到粉煤灰上。静态吸附实验表明pH值接近中性时有利于FCGO对Hg(Ⅱ)的吸附,共存阴离子促进而阳离子抑制对Hg(Ⅱ)的吸附。动力学研究表明FCGO吸附Hg(Ⅱ)符合Elovich方程模型,饱和吸附量高达42.2 mg·g~(-1)1。非线性Redlich-Peterson模型比Langmuir和Freundlich模型更适合描述吸附过程。热力学参数△H~0=12.20 kj·mol~(-1),△S~0=48.92 J·(mol K)~(-1),△G~0=-4.09kJ·mol~(-1)(333K)表明吸附过程是吸热且自发进行的。分析吸附前后FCGO的DRIFT和XPS光谱,推测对Hg(Ⅱ)的吸附主要是静电吸引作用。  相似文献   

14.
水体的碘污染问题正日益引起人们的广泛关注。以Swy-2型钠基蒙脱土为载体,利用其层间离子交换特性,简单快速制备了羟基铋离子改性蒙脱土,并通过扫描电镜(SEM)、X射线衍射(XRD)和X射线光电子能谱(XPS)对材料吸附碘前后的物化特性进行了表征,研究了材料对水体中碘离子的去除效果,探讨了相关吸附机理。结果表明:合成材料对碘离子的吸附动力学符合假二级动力学方程,吸附等温线符合Langmuir模型,其最大吸附量为107.5 mg·g~(-1),换算成氧化铋对碘的吸附量高达595.2 mg·g~(-1);因此,以Swy-2型钠基蒙脱土为载体,进行羟基铋离子改性,可以大大地提高铋利用效果。对吸附碘后材料的XPS和XRD进一步分析推测,羟基铋离子改性蒙脱土对碘离子的去除,可能是经由化学吸附,生成Bi_4I_2O_5所造成的。  相似文献   

15.
改性沸石对二级生化出水中氨氮的吸附特性   总被引:1,自引:0,他引:1  
采用氯化钠联合高温对天然斜发沸石进行改性,通过批次实验探究改性沸石吸附氨氮特性。结果表明:氯化钠浓度为0.8 mol·L~(-1),焙烧温度为300℃条件下,氨氮去除效果最佳;改性沸石在氨氮初始浓度为8mg·L~(-1),投加量为10 g·L~(-1),反应时间为120 min的条件下,去除率可达71%,相比天然沸石提高23.1%。通过扫描电镜(SEM)、X射线能谱(EDS)、比表面积(BET)、X射线衍射(XRD)和傅里叶光谱(FT-IR)考察改性前后沸石组成特征以及化学键的变化,可以看出,改性机制可去除孔道杂质及Na~+置换沸石中金属阳离子;氨氮吸附过程满足拟二级动力学方程(R~2=0.986),Langmuir等温线模型拟合结果 (R~2=0.998)优于Freundlich模型(R~2=0.839),且改性沸石最大吸附容量为5.94 mg·L~(-1)。热力学计算结果表明,沸石对氨氮的吸附过程是一个自发、吸热、熵增过程。上述结果表明,改性沸石能够有效地对污水厂二级生化出水中氨氮进行深度处理。  相似文献   

16.
采用共沉淀法制备锆改性铝氧化物。在研究其对水中磷吸附特性的基础上,结合SEM-EDS、XRD、FTIR和XPS等表征手段,分析吸附剂的结构组成以及反应前后的表面基团变化,探讨吸附除磷的机理。结果表明:Power动力学模型和Langmuir等温线模型可以很好地描述锆改性铝氧化物对磷的吸附特征;在投加量为0.3 g·L~(-1)、溶液pH为7时,磷的饱和吸附量为76.63 mg·g~(-1);pH=4~6时,吸附剂除磷效果较好,在偏碱性环境下,磷吸附量明显降低;Cl~-和SiO_3~(2-)对磷的吸附有较强的抑制作用,且干扰效果随着阴离子浓度的升高而加强。通过材料表征结果可知,吸附剂呈无定型结构,表面含有丰富的羟基。该吸附剂的除磷机制主要为表面络合和离子交换作用。  相似文献   

17.
采用氧化还原-共沉淀法将铝锰复合氧化物负载到沸石表面制成颗粒型吸附材料,探究了该吸附剂同步去除氨氮(NH_4~+-N)和磷(P)的吸附动力学和吸附等温线特征,并讨论了吸附剂投加量和溶液p H值对吸附效果的影响。结果表明:铝锰复合氧化物改性沸石(aluminum-manganese bimetal oxide coated zeolite,AMOCZ)对NH_4~+-N及P的吸附动力学曲线均符合拟二阶吸附动力学方程的特征;NH_4~+-N的吸附等温线数据可用Freundlich方程进行较好地拟合,而Langmuir方程更适用于描述P的吸附等温线特征。NH_4~+-N和P共存时,两者在AMOCZ表面的饱和吸附量分别从单独体系下的1.24和6.43mg·g~(-1)变为8.17和6.51 mg·g~(-1)。这说明P的存在可显著促进AMOCZ对NH_4~+-N的吸附,而NH_4~+-N的存在对P的吸附无显著影响。此外,复合污染条件下,P的存在在p H=3~10范围内均能促进AMOCZ对NH_4~+-N的吸附;NH_4~+-N在p H为3~8时对P的吸附起促进作用,p H大于8时则会抑制AMOCZ对P的吸附。  相似文献   

18.
低浓度的磷在污水处理中较难去除,排放至水体会造成水体富营养化。采用溶胶-凝胶法,以壳聚糖和FeCl_3·6H_2O为原料,通过原位水解-浸渍法制备出壳聚糖载纳米羟基氧化铁(CNFeOOH),对其进行了场发射透射电镜(HRTEM)、比表面积和孔径、X射线衍射仪(XRD)分析的表征。结果表明,CNFeOOH中含有类似正方针铁矿(β-FeOOH)的晶体结构,呈纳米棒状分布,长约10 nm,宽约2~3 nm,比表面积为76.240 m~2·g~(-1)。磷吸附实验结果表明:Freundlich吸附等温式能更好地描述CNFeOOH对磷的吸附特征,其实际最大吸附量为24.50 mg·g~(-1)(pH=6,T=(20±1)?C);动力学吸附平衡时间约为24 h,其吸附过程符合准二级动力学模式和颗粒内扩散模式,证明吸附过程中同时发生了物理吸附和化学吸附;溶液的p H对CNFeOOH吸附磷的影响较为明显,随pH升高,吸附量降低;离子强度(0.01~0.5 mol·L~(-1))则影响不大;共存阴离子(SO_4~(2-)、NO_3~-、HCO_3~-)对磷的吸附影响较小。因此,推断CNFeOOH对磷的吸附机理是以静电引力和配位作用为主的特性吸附。  相似文献   

19.
低浓度氮和磷在污水处理中较难去除,排放至水体会造成水体富营养化。以长碳链季铵为功能基团,将其接枝到自制备的介孔材料MCM-41上,成功制得一种吸附容量大且易再生的脱氮除磷吸附剂(QA-MCM-41)。采用SEM、XRD、BET等方法表征了QA-MCM-41微观形貌;研究了氮磷初始浓度、吸附时间及共存离子对QA-MCM-41吸附氮磷效果的影响;采用等温吸附模型、吸附动力学模型、ATR-IR以及XPS等分析手段探究了吸附反应机理。实验结果表明,QA-MCM-41对氮磷的饱和吸附量分别为20.83 mg·g~(-1)和17.67 mg·g~(-1),SO_4~(2-)对QA-MCM-41吸附氮磷的效果并未产生显著影响,吸附剂容易再生且重复利用性能较好。吸附动力学模拟及ATR-IR、XPS分析表明,QA-MCM-41对氮磷的吸附均符合以化学吸附为主导的准二级动力学方程,吸附作用主要依靠离子交换。  相似文献   

20.
以丝瓜络为原料制备壳聚糖/磁性生物炭(CMLB),并研究了改性前后的生物炭对重金属Cu(Ⅱ)的吸附性能。结果表明,改性后的生物炭包含γ-Fe_2O_3纳米颗粒,颗粒尺寸均匀,大小一致。CMLB对Cu(Ⅱ)的吸附量为54.68 mg·g~(-1),高于原始生物炭(LB)、磁性生物炭(MLB)的吸附量,且能够达到壳聚糖吸附量的86%。整个吸附过程在18 h达到平衡,在pH=5.8±0.1有较好的吸附效果。吸附反应动力学可采用准二级动力学方程拟合,吸附等温线符合Freundlich模型。CMLB吸附Cu(Ⅱ)的机制下包括离子交换、物理吸附和共沉淀。CMLB材料在处理废水后,利用磁铁可将材料从水中分离。CMLB可作为一种吸附剂有效去除水中的重金属,应用前景广阔。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号