首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
染料废水中含有大量难生物降解的卤代有机物合成中间体,合成卤代有机物在废水的生物处理过程中容易被吸附到剩余污泥中,如不能妥善处理会引起生态健康风险。研究了零价铁还原、芬顿氧化及其组合技术对染料企业剩余污泥中AOX(可吸附有机卤代物)的去除效果,优化了处理条件,解析了去除机理。结果表明,铁粉投加量为5 g·L~(-1),厌氧反应30 d时,零价铁还原对污泥中AOX降解率仅为24.7%;Fe2+投加量0.059 mol·L~(-1),H2O_2投加量0.89 mol·L~(-1),芬顿氧化1.5 h时,污泥中AOX去除率提高至73.7%;投加2 g·L~(-1)的铁粉,还原30 d后再进行芬顿反应,则污泥中AOX去除率可达到90.3%。GC-MS分析结果表明,污泥中的主要AOX物质为2,6-二氯-4-硝基苯胺,该物质经过零价铁还原与芬顿氧化组合工艺处理后,比直接芬顿氧化能得到更有效的去除。  相似文献   

2.
当今社会消耗了大量的化石能源,使得环境和能源问题十分突出。污泥厌氧消化产沼气是解决能源问题一种具有潜力的方法。然而,传统污泥厌氧消化存在效率低以及污泥停留时间长等问题,严重地阻碍了其优势的发挥。探究了添加不同浓度微量元素Fe和Ni对污泥厌氧消化产气和有机物去除的影响。结果表明,当FeCl_2投加量小于400 mg·L~(-1)时均能促进产气,FeCl_2投加量为25 mg·L~(-1)时,产气率取得最大值414.6 m L·g-1(VSadded),比对照组高28 m L·g-1(VSadded)。当NiCl_2投加量小于5 mg·L~(-1)时均能促进产气,在NiCl_2投加量为5 mg·L~(-1)时,产气率取得最大值389.5 m L·g-1(VSadded)。在最佳投加浓度下,添加Fe对产气的促进效果比添加Ni对产气的促进效果好。对有机物去除而言,当FeCl_2投加浓度为25 mg·L~(-1)时,有机物去除率轻微提升,而后随着FeCl_2添加量的增加整体呈下降趋势,FeCl_2最佳投加浓度为25 mg·L~(-1)。有机物去除率随着NiCl_2添加量的增加整体呈下降趋势。在水解产酸实验中,最优FeCl_2投加条件下(25 mg·L~(-1))能使污泥溶解态化学需氧量和挥发性脂肪酸浓度分别提高15.3%和39.2%,为后续的产气提供了更好的基质条件。  相似文献   

3.
采用铁刨花强化Fenton对制药废水二级生化出水处理效果进行深入研究。考察了铁刨花和药剂投加量对强化Fenton的影响,对比了常规Fenton和强化Fenton两者COD降解情况和出水pH值变化情况。结果表明:强化Fenton中投加的铁刨花可以提供充足的亚铁离子,无需投加Fe SO_4·7H_2O即可高效降解废水中有机物;当初始pH=3.8,铁刨花投加量100 g·L~(-1),30%H_2O_2投加量0.6 m L·L~(-1),曝气反应120 min,强化Fenton出水COD去除率高达66.5%,比常规Fenton提高20%以上;常规Fenton出水pH值在3.0左右,而强化Fenton出水pH在6.0以上,可有效节约后续pH回调时药剂使用量,降低运行成本。  相似文献   

4.
页岩气开发压裂返排液处理是近年的研究热点,本文采用电-Fenton氧化技术对压裂返排液絮凝出水进行深度处理研究,主要考察了H2O2投加量、pH值、电压和反应时间对COD去除效果的影响。通过正交实验和单因素影响实验,确定电-Fenton氧化处理絮凝出水的适宜条件为:H2O2投加量为40 mL·L~(-1)、pH=3、电压6 V和反应时间60 min。在此条件下,出水COD为71.3 mg·L~(-1),COD去除率达到62.5%。实验结果表明化学絮凝—电-Fenton氧化是页岩气压裂返排液达标外排的一种适宜处理工艺。  相似文献   

5.
采用固相混合法制备了钢渣污泥陶粒催化剂,SEM、XRD测试结果显示,催化剂具有较为发达的孔隙结构,活性组分以MnO_2和CuO晶型形态分布于陶粒中。对含盐炼油废水生化尾水进行了臭氧催化氧化研究,考察了废水初始pH、催化剂用量、臭氧投加量等因素对COD去除效果的影响。结果表明,当反应初始pH为7.36、催化剂用量为15 g·L~(-1)、臭氧投加量为4.21 mg·min~(-1)时,反应35 min,废水中COD从86.97 mg·L~(-1)降至48.02 mg·L~(-1),出水水质达到新修订的《石油炼制工业污染物排放标准》。所制备的催化剂活性稳定、使用寿命长,活性组分锰、铜溶出率低,无二次污染产生。  相似文献   

6.
针对传统生活污水处理的再生水难以有效回用的问题,采用源分离式半集中式分质供排水和资源化体系处理生活污水,并对实际工程案例的进行了长期监测,探讨了其在污染物去除、污水再生利用以及污泥资源化等方面的效果。结果表明:即使灰水和黑水管道存在一定混接现象,但是灰水和黑水处理模块的COD去除率均超过90%,出水COD分别为10~30 mg·L~(-1)和10~40 mg·L~(-1);灰水处理模块的TN去除率达到95%,最低小于5 mg·L~(-1);黑水的TN去除率保持70%~90%,出水水质均可满足回用要求并已用于周边区域;厌氧消化系统1 m~3生污泥的产气量达到7.27~10.91 m~3,甲烷含量达到70%,有机物的降解率30%~50%;投加糖蜜后,单位产气量提高了1倍,有机物的降解率平均提高10%。消化污泥经过脱水后除总汞指标略高外,各主要指标均满足污泥农用中A级污泥标准。基于生活污水源分离的半集中式处理系统,可以对污水、污泥进行有效处理,并就近利用再生水、污泥和沼气。  相似文献   

7.
将零价铁活化过硫酸钠产生硫酸根自由基的高级氧化技术应用于处理含油废水。研究了过硫酸钠浓度、零价铁投加量、p H值对油降解率的影响,分析了反应过程中S2O2-8和Fe2+的浓度变化。通过投加柠檬酸强化了降解效率,并探讨了油降解的动力学过程。结果表明,零价铁活化产生硫酸根自由基是处理含油废水行之有效的手段。当过硫酸钠浓度119 mg·L~(-1)、Fe0投加量为50 mg·L~(-1)、p H=1.0,反应4 h后油降解率达到79.26%。Fe/Ps体系中,存在不同的主反应过程,其中Fe2+为主要活性物质,其浓度与降解速率正相关。适量投加柠檬酸可以优化控制Fe2+浓度,油降解率可提高20.64%。油降解动力学过程用准一级动力学方程描述。  相似文献   

8.
采用静态实验考察了投加高铁酸钾强化混凝的效果,通过控制不同的絮凝搅拌速率、絮凝时间及原水浊度来强化镍(Ⅱ)和有机物的去除。结果表明,絮凝搅拌速度和时间、原水浊度是影响镍(Ⅱ)和有机物的去除效果的重要因素。原水镍(Ⅱ)质量浓度为1 mg·L~(-1)、TOC为10 mg·L~(-1),在一级絮凝搅拌速率为200 r·min~(-1)、时间为2 min,二级絮凝搅拌速率为40 r·min~(-1)、时间为10 min,原水浊度为36.7 NTU时,出水剩余镍为0.018 mg·L~(-1),去除率达到98.2%,TOC去除率为58.8%,浊度去除率为73.8%。出水可满足《生活饮用水卫生标准》的要求。高铁酸钾强化混凝可作为给水厂应对镍污染的一种有效处理措施。  相似文献   

9.
Fe(Ⅱ)活化过硫酸盐改善污泥脱水性能   总被引:1,自引:0,他引:1  
针对污水处理厂剩余污泥脱水困难的问题,采用Fe~(2+)活化过硫酸钾高级氧化法提高剩余污泥脱水性能,使用污泥含水率和污泥比阻对调理前后污泥脱水效果进行分析;研究了过硫酸钾投加量、Fe~(2+)投加量、pH和反应时间对污泥调理效果的影响;探究了过硫酸盐调理污泥过程中溶解性有机物质和胞外聚合物(extracellular polymeric substance,EPS)的变化特性。结果表明:过硫酸钾调理的最佳反应条件为pH=7.5,反应时间为20 min,过硫酸钾和Fe~(2+)的最佳投加量分别为15 mmol·L~(-1)和18 mmol·L~(-1),在此条件下,污泥含水率和污泥比阻值分别可达78.89%和0.3×10~(12) m·kg~(-1);污泥含水率和比阻的变化可能与污泥调理后絮体结构形态变化有关;调理污泥后,上清液中溶解性有机物质含量与过硫酸钾投加量呈显著正相关关系,而EPS不同组分中蛋白质和多糖含量在Fe~(2+)投加后均减少,表明Fe~(2+)的投加可以破坏污泥絮体,分解胞内物质;利用Fe~(2+)激活过硫酸钾所生成的硫酸根自由基可极大改善污泥的脱水性能。  相似文献   

10.
为了优化沉淀-微滤组合除碘工艺,开发预除氧-沉淀-柱式膜分离组合工艺处理模拟含碘放射性废水,考察了小试实验的除碘效果、出水水质及连续出水、间歇出水模式的柱式膜污染情况。结果表明:使用Na_2SO_3作除氧剂、Cu~(2+)作催化剂对原水进行预除氧,投加量分别为150 mg·L~(-1)和1 mg·L~(-1);沉淀剂CuCl投加量为100 mg·L~(-1)。实验装置连续运行216 h,累积处理水量为2 160 L,运行稳定后,I-平均去除率为93.9%,出水水质较稳定,出水Cu2+须进行后续处理。产生污泥的体积较小,浓缩倍数为8 640。间歇出水模式有利于减缓膜污染,柱式膜的最终膜比通量降至初始膜比通量的47%。与沉淀-微滤工艺相比,预除氧-沉淀-柱式膜分离组合工艺装置简单,运行成本降低。  相似文献   

11.
为进一步提高微污染水中氨氮、有机物去除效果,采用响应曲面法对强化混凝工艺处理微污染水的影响因素和去除效果进行研究,实验以混凝剂投加量、助凝剂投加量和助凝剂投加点为影响因素,浊度、氨氮和COD去除效果为响应值,利用Design-Expert软件对实验数据进行处理,得到二次响应曲面模型,各因素间的交互作用对响应值的影响以及优化水平值。模型优化结果显示,强化混凝处理微污染水的最佳工艺条件为:PAFC投加量17.80 mg·L~(-1),PAM投加量0.39 mg·L~(-1),PAM于快速搅拌结束投加,此时浊度、氨氮、COD的去除率分别为68.03%、10.92%和30.2%,最终通过模型的验证证明了响应曲面法用于优化强化混凝工艺处理微污染水的可行性和有效性。  相似文献   

12.
臭氧处理污泥后释放的碳物质可作为低碳市政污水生物处理的重要碳源补充。为突破传统臭氧处理效率低等问题,研究采用微气泡臭氧技术以强化污泥碳源释放效果。结果表明,在臭氧投加量为200 mg O_3·(g SS)~(-1)时,污泥SCOD增长了1 964 mg·L~(-1),为传统臭氧处理的2.1倍,DDCOD由18.1%上升至41.5%,污泥碳源释放效果显著提高。同时确定了微气泡臭氧处理在臭氧浓度为100.0 mg·L~(-1),污泥浓度为5 g·L~(-1),污泥初始p H为9的条件下,污泥碳源矿化损失较小且污泥碳源释放效果较好,在臭氧投加量为160 mg O_3·(gSS)~(-1)时污泥SCOD增长了1 923 mg·L~(-1),DDCOD达到41.2%。与传统臭氧处理相比,微气泡臭氧处理能提高臭氧传质效率与间接反应强度,更有利于污泥碳源的释放。  相似文献   

13.
应用基于硫酸根自由基(SO_4~-·)的污泥预处理技术对抚顺某市政污水处理厂浓缩池剩余污泥进行预处理,强化污泥的过滤脱水性能。研究了最佳的氧化反应时间、S_2O_8~(2-)与Fe~(2+)的最佳投加浓度与投加方式;并探讨了SO_4~-·对污泥特性的影响。结果表明,当S_2O_8~(2-)投加浓度为80 mg·g~(-1)(以干物质计),Fe~(2+)和S_2O_8~(2-)的摩尔比为1:1,Fe~(2+)按时间比10 min:20 min分2段投加时,在反应时间30 min内,污泥的过滤脱水性能达到最佳。此外,Fe~(2+)活化S_2O_8~(2-)产生的SO_4~-·是强化污泥脱水的关键。同时,影响污泥脱水性能的胞外聚合物(extracellular polymeric substances,EPS)浓度和组成在氧化反应前后发生变化,污泥的脱水和过滤性能得到提高。  相似文献   

14.
针对电镀废水中络合金属采用常规硫化钠沉淀法难以脱除问题,选用螯合沉淀-微滤法对实际电镀废水中低浓度络合Fe、Cu、Zn和Cr进行深度脱除。重点考察了pH值,重金属捕集剂EDTC投加量,EDTC反应时间,絮凝剂PAC投加量及其共存金属等因素对Fe、Cu、Zn和Cr去除效果的影响,并对EDTC去除各金属的反应机制进行了对比研究。结果表明,在pH为7,EDTC为60 mg·L~(-1),反应时间为1 min,PAC为20 mg·L~(-1),反应时间为2 min,PAM为2.5 mg·L~(-1),反应时间为2 min条件下,经微滤作用后,出水Cu 0.020 mg·L~(-1)(0.3 mg·L~(-1)),Fe 0.43 mg·L~(-1)(2.0 mg·L~(-1)),Zn 0.37mg·L~(-1)(1.0 mg·L~(-1)),Cr 0.45 mg·L~(-1)(0.5 mg·L~(-1)),均低于《电镀污染物排放标准(GB21900-2008)》中的特别限值。Fe、Cu、Zn和Cr之间存在抢夺EDTC的竞争关系,而Fe、Zn对Cr的去除又具有一定促进作用。红外光谱图表明,EDTC脱除金属Fe、Cu、Zn和Cr的反应机制是一致的,EDTC与金属发生螯合反应,EDTC巯基中硫原子捕捉金属阳离子,生成难溶的螯合产物,从而有效地去除废水中金属。  相似文献   

15.
以南方城镇生活污水为研究对象,对BAF-MBR组合系统进行研究。BAF-MBR组合系统运行稳定,去污完全,出水COD、NH+4-N、TN、TP的浓度分别达到7.11、0.16、8.85和0.34 mg·L-1,均达到了污水回用的最高要求。在后置MBR池内进行同步化学除磷时,Fe SO4·7H2O的投加量为20 mg·L-1时,出水TP达到0.34 mg·L-1,一定程度上加剧了膜污染;Al2(SO4)3·18H2O的投加量为30 mg·L-1,出水TP达到0.33 mg·L-1,能有效减缓膜污染进程。  相似文献   

16.
利用GC-MS分析了某化工园区污水厂一期(化工)进水中的有机物组分,并通过活性污泥呼吸抑制实验评估其微生物毒性及对现有生化处理系统的影响。在此基础上,对Fenton试剂后置深度处理和前置预处理2个方案开展比较研究。结果表明,一期进水含多种难降解有机物,对生活污泥表现出微生物毒性,但对园区污水厂污泥无明显呼吸抑制作用。Fenton试剂后置处理生化出水,当进水COD125 mg·L-1,在p H为3.5左右,H_2O_2投加量为5 mmol·L-1,Fe~(2+)/H_2O_2摩尔比为1∶2的条件下,出水COD可稳定低于60 mg·L-1,处理成本不含污泥处置费低于1.8元·t-1水,难降解组分从18种减少为4种。而Fenton试剂前置预处理化工废水时,废水B/C在几种Fenton药剂组合下均未能达到0.3以上,无法得到理想的可生化性提高效果。因此推荐该化工园区污水厂采用Fenton试剂后置处理工艺为主的提标改造方案。  相似文献   

17.
电镀废水中含络合铜废水的处理主要采用硫化钠破络法,由于原水水质波动,硫化钠投加量难以准确控制,从而导致Cu~(2+)或S~(2-)残留对后续生物段运行会产生一定的影响。然而,针对这2种离子对反硝化污泥的影响尚未见系统报道。通过小试实验系统研究了Cu~(2+)和S~(2-)对反硝化污泥的毒性和抑制作用并通过长期实验考察了反硝化污泥对这2种离子的耐受程度以及污泥性质的变化。结果表明,Cu~(2+)和S~(2-)对反硝化污泥活性的EC_(50)分别为3.15 mg·L~(-1)和14.71mg·L~(-1)在相同质量浓度下,Cu~(2+)比S~(2-)具有更强的毒性。长期运行实验结果表明,反硝化污泥对S~(2-)具有一定适应能力,最大承受浓度为20 mg·L~(-1),而Cu~(2+)耐受能力较差,最大承受浓度仅为1 mg·L~(-1)同时,Cu~(2+)的连续投加使反硝化污泥的沉降性和脱水性能变差,比阻増大,而S~(2-)的存在对反硝化污泥的沉降性和脱水性能无明显影响。  相似文献   

18.
采用零价铁耦合芬顿氧化法处理TNT红水,研究了初始pH、零价铁投加量、过氧化氢(H_2O_2)投加量及温度对红水中总有机碳(TOC)去除效果的影响,同时进行了TOC去除过程中反应动力学的探讨。结果表明,零价铁耦合芬顿氧化体系可有效降解TNT红水中的2,4-二硝基甲苯-3-磺酸钠和2,4-二硝基甲苯-5-磺酸钠。在初始pH为2,温度为20?C的条件下,加入1.5 g·L~(-1)零价铁反应1 h后,再加入100 mL·L~(-1)H_2O_2反应4 h,红水中二硝基甲苯磺酸盐浓度从500 mg·L~(-1)降至0 mg·L~(-1),去除率为100%,TOC浓度从150 mg·L~(-1)降至30 mg·L~(-1),去除率达到80%。反应中TOC的降解过程遵循拟二级反应动力学方程。零价铁耦合芬顿氧化法可以作为TNT红水的有效处理途径。  相似文献   

19.
浓盐水处理是一项世界性难题,采用高级氧化工艺能有效去除废水中难降解有机物,从而提高其可处理性。分别采用臭氧氧化、O3/H2O2、GAC/O3和GAC/O3/H2O2等工艺处理煤化工浓盐水,研究了工艺参数对COD去除的影响,探索了有机物去除机理。研究表明,煤化工浓盐水中易被臭氧氧化的有机物大约占55%。增加臭氧投加量和气体流速能提高有机物去除效率。酸性条件下的COD去除率要高于碱性条件下。臭氧氧化、O3/H2O2、GAC/O3和GAC/O3/H2O2工艺中·OH稳定浓度分为4.1、37.7、5.9和41.3×10-14mol/L。O3与H2O2之间存在明显协同作用,GAC与O3协同产生·OH的作用不明显,但GAC对氧化过程中生成的生物抑制物具有较好的吸附去除作用。GAC、O3和H2O2三者之间的协同作用有助于去除煤化工浓盐水中难降解有机物、提高出水可生化性和降低出水水质毒性。  相似文献   

20.
王巧茹  史旋  宋伟  张小磊  李继 《环境工程学报》2019,13(11):2593-2600
为强化硫自养反硝化过程,通过向连续稳定运行的硫自养反硝化反应器内投加少量碳源以进行强化,乙酸钠投加量分别为5.99、11.98、23.96 mg·L~(-1)。分析投加前后反应器内硝氮、COD、硫酸根和耗碱量的变化;研究了碳源强化下硫自养反硝化运行效能及反应机理。结果表明,投加少量碳源可增强自养反硝化过程硝氮的去除效果;在3种碳源投加量条件下,COD的利用率均大于85%,但硫酸盐生成量并未减少;在5.99 mg·L~(-1)碳源投加量下,系统实际耗碱量大于以硫酸根和COD计的理论耗碱量,而在11.98 mg·L~(-1)和23.96 mg·L~(-1)投加量下,实际耗碱量均介于2种理论值之间。在投加少量碳源后,自养反硝化脱氮效果明显提高,异养反硝化趋势随着碳源投加量的增加而增加。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号