首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用广州塔的O3观测资料、风廓线雷达和转动拉曼温廓线激光雷达探测的垂直环境气象等观测资料,结合ERA5的近地面风场,对2017年5月6—7日(Case I)和2019年10月1—2日(CaseⅡ)两个典型个例从垂直混合与水平输送的角度进行特征与成因分析.O3的垂直观测结果表明,夜间残留层可储存日间混合层内的高浓度O3气团.从垂直混合与水平输送的分析结果表明,残留层O3的垂直混合及高浓度O3气团的水平输送是夜间地表O3的重要来源:夜间存在垂直风切变或边界层抬升,均可加强O3的垂直混合;珠三角地区背景风表现为在早上偏北风和晚上转换为偏南风,广州与佛山地表O3浓度上升最显著.此外,夜间O3浓度上升事件可造成夜间及凌晨O3 8 h滑动平均值持续高值,对空气质量和大气氧化性造成一定影响.  相似文献   

2.
利用2017~2019年夏、冬季天津市大气污染物监测和气象观测数据,基于天津气象铁塔垂直观测,针对大气垂直扩散条件对PM2.5和O3的影响进行研究.结果显示:近地面PM2.5浓度随高度的升高而下降,O3浓度则随高度的升高而上升,受大气垂直扩散条件的季节和日变化影响,冬季,地面与120m PM2.5质量浓度相关明显,与200m PM2.5质量浓度无明显相关.夏季,120m和200m PM2.5质量浓度相关系数为0.72,午后通常出现120m和200m PM2.5质量浓度高于地面的情况.夏季,不同高度O3浓度差异小于冬季,地面与120m高度O3浓度接近.以大气稳定度、逆温强度和气温递减率作为大气垂直扩散指标,对地面PM2.5和O3垂直分布具有指示作用.冬季,TKE与PM2.5质量浓度相关系数为到-0.65,夏季,TKE与ΔPM2.5相关系数为-0.39.夏、冬季TKE与地面O3浓度的相关系数分别为0.46和0.53,与ΔO3的相关系数分别为0.73和0.70.弱下沉运动对地面O3浓度影响较强,40m高度垂直运动速度与地面O3浓度的相关系数在冬、夏季分别为-0.54和-0.61.对冬季典型PM2.5重污染过程的分析发现,雾霾的生消维持和PM2.5浓度的变化与大气稳定度、气温垂直递减率和TKE的变化有直接关系.对夏季典型O3污染过程的分析发现,近地面的O3污染的形成与有利光化学反应的气象条件密切相关,同时,垂直向下输送和有利垂直扩散条件对O3污染的形成和爆发影响明显.  相似文献   

3.
2018年12月15~18日使用激光雷达在河北望都观测气溶胶与O3,利用气溶胶消光系数廓线判断边界层的变化,进而研究大气边界层对于近地表层(300m)O3浓度的影响.结果表明,边界层主要影响O3的干沉降以及高空O3的垂直输送,在受本地污染控制时,近地表O3浓度受干沉降控制明显,随着边界层高度的下降而减少;西北地区气团占主导时,O3浓度主要受水平传输以及高空垂直输送影响.  相似文献   

4.
武清地区冬季一次重污染过程垂直分布特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为研究京津冀地区重污染过程大气污染物的垂直分布特征,于2016年12月13日重污染前(11:49-12:18)和12月18日重污染期间(11:00-11:16)在北京市、天津市、河北省交界处的武清地区利用系留气球开展1 000 m以下的大气观测,探究污染物的垂直分布特征及对流边界层、覆盖逆温层和混合层等要素对重污染形成的影响.结果表明:①在重污染前,大气层结不稳定,ρ(PM2.5)、ρ(NOx)与ρ(O3)随高度变化不明显,存在明显的垂直对流运动,有利于大气污染物的扩散;PM2.5/PM10[ρ(PM2.5)/ρ(PM10)]在800 m以下为0.60~0.80,在800~1 000 m以上大于0.90.②重污染期间,近地面大气层分为对流边界层(距地面0~150 m)、覆盖逆温层(150~370 m)、混合层(370~500 m)和自由大气(500 m以上)4个层次.③NOx主要在对流边界层内聚积;高空O3在向近地面扩散时受强混合层阻挡,在混合层出现一个小峰值;PM2.5不仅在近地面聚积,而且在覆盖逆温层内聚积,ρ(PM2.5)在覆盖逆温层内呈双峰(峰值分别出现在150和370 m)分布,其粒径集中在0.5~1.0 μm,属于积聚态气溶胶.研究显示,在不利扩散条件下,汽车排放、村镇居民供暖排放的污染物聚积及二次颗粒物的生成是重污染形成的重要因素.   相似文献   

5.
采用WRF-Chem模式中的3种边界层方案YSU、MYJ和ACM2对2019年6月京津冀及周边地区典型O3污染月份开展模拟研究.详细对比了各方案对地面气象要素、NO2和O3浓度时空分布,以及温湿风要素和O3浓度垂直分布的模拟效果.结果表明:3种方案对地面气象要素的时空分布和温湿风要素的垂直变化模拟较为合理.MYJ方案模拟地面气象要素整体效果最佳.各方案对边界层高度的日变化特征模拟较好,相关系数为0.58~0.69,但存在白天偏高、夜间偏低的现象,YSU方案相比效果最佳.3种边界层方案对NO2浓度模拟普遍高估,而O3模拟结果则出现低估.白天模拟偏差较小而夜间偏差较显著.模拟最佳的是ACM2,其次为YSU和MYJ.3种方案均较好地模拟出了O3的垂直分布特征,但整体低估了O3浓度.对上午O3垂直分布的模拟差异较下午更为明显.此外,基于YSU方案设置了3个敏感实验,通过调整化学模块所用的湍流扩散系数阈值,对比分析了垂直混合过程改变对O3浓度模拟的影响,模拟的变化只反映由于边界层的垂直混合过程改变造成的污染差异,而不是由于热动力场的调整造成的变化.模拟结果表明3个方案均可改善区域上地面NO2和O3的模拟性能,尤其是对原3种边界层方案模拟O3均明显低估的华北平原地区提升效果最显著,平均偏差降低了23.7%.在垂直方向上,湍流扩散系数阈值的调整增加了早间近地面模拟的O3浓度,改善了模拟偏低的现象,但同时增大了高层O3浓度的负偏差.敏感性方案显著改善了夜间的模拟,白天则并不明显.这些结果显示出湍流扩散系数对O3垂直混合的重要影响.因此,改进湍流扩散系数的参数化对O3模拟是必要的.  相似文献   

6.
利用大气O3探测激光雷达在深圳市东部生态区和西部城区同步开展垂直观测,探究了2018年深圳市O3立体分布在秋季光化学污染活跃期至冬季非活跃期的演变过程.结果表明:光化学反应活跃的10月,东部地面O3浓度相对于西部地面高出约128%;地面向上至450m,O3浓度在东部生态区发生快速降低,而在西部城区由于存在“滴定效应”,O3浓度随高度升高而升高;450m~2km,东、西部O3浓度均随高度升高而降低,西部城区O3浓度水平超过东部生态区约30%;2km以上高空,东、西部O3浓度趋同(70μg/m3),并保持稳定,为具深圳市秋季O3污染过程提供了较高的大气背景浓度.高污染期间,深圳市大气边界层内O3浓度变化较为一致,西部高空的O3区域传输作用更加显著.秋季至冬季光化学反应逐渐减弱,深圳市O3浓度的水平和垂直空间差异逐渐减小,冬季的深圳市O3污染基本受大气背景控制.  相似文献   

7.
利用近5a深圳西部城区(大学城)大气臭氧(O3)在线监测数据,结合深圳大学城超级站大气复合污染综合观测,获取了大气O3演变趋势,并探究O3超标日气象条件及其前体物的组成变化以期掌握大气O3超标成因.结果表明,深圳大学城大气O3日最大8h平均体积分数上升速度达1.1×10-9/a,超标率达到6%以上.高温低湿的气象条件更容易促进大气O3生成,高温时光化学反应强烈有利于O3的本地生成,而低湿可能不利于O3的湿去除从而导致污染积累.挥发性有机物(VOCs)不同组分在O3超标日上升幅度(70%~95%)明显高于NOx(28%),且O3高值浓度分布在高VOCs低NOx区域,说明深圳大学城大气O3生成主要受VOCs控制.O3超标日的甲苯与苯比值(T/B)在夜间超过10表明可能存在大量工业排放;而含氧挥发性有机物(OVOCs)在午间(12:00~14:00)的消耗相较于非超标日高出了1倍左右,表明工业活动排放的OVOCs对白天O3生成可能贡献显著.  相似文献   

8.
基于车载微脉冲气溶胶激光雷达、多普勒风廓线激光雷达和扭转拉曼廓线激光雷达的中山大学环境气象综合观测车,于2018年12月18日-22日在河北省望都县PM2.5重污染期间开展定点观测.结合地面PM2.5浓度和气象要素观测资料,对本次污染过程的成因展开分析.本次重污染过程日均PM2.5浓度为163.2μg·m-3,PM2.5浓度的日变化特征明显,表现为白天PM2.5浓度降低,傍晚至次日早晨PM2.5浓度升高.气溶胶激光雷达观测结果发现,污染期间,700 m高度以下存在明显的消光系数高值区;夜间存在明显的消光系数高值区分层现象,气溶胶消光系数高值区出现高度可达1700 m.本次PM2.5重污染过程受静稳边界层气象条件和高空气溶胶输送、沉降共同影响.在污染时段内,大气边界层低层小风持续,近地面和大气低层逆温和同温层频发,静稳边界层条件不利于PM2.5的输送和扩散;此外,夜间高空气溶胶伴随强西风带出现...  相似文献   

9.
北京夏季典型臭氧污染分布特征及影响因子   总被引:19,自引:2,他引:17  
为研究北京地区O3分布特征及其影响因子,利用AML-3车载式大气环境污染激光雷达系统(下称AML-3)对北京地区2011年5月7日—6月9日的φ(O3)进行观测. 通过AML-3自带的污染物地面观测系统和差分吸收激光雷达,分析近地面、高空φ(O3)时空分布特征,并将φ(O3)与温度、风速及风向3个气象要素进行相关分析. 结果表明:近地面φ(O3)日变化明显,06:00左右为低谷,下午14:00左右达到峰值. 高空φ(O3)的空间分布很不均匀,上层气流易使O3富集层向下输送造成污染,同时稳定边界层对大气扩散的不利影响也是形成O3污染的重要原因. φ(O3)的日变化趋势与温度的日变化趋势呈显著正相关,R(相关系数)为0.74;上下层湍流交换使风速与近地面φ(O3)呈正相关,而水平扩散使二者呈负相关;通过分析风向的分布规律发现,东北风易造成北京地区O3污染.   相似文献   

10.
基于2018年浙江省嘉兴市14个环境国控站点的O3历史资料与气象要素,研究O3与气象要素的关系,并结合差分吸收臭氧雷达的垂直臭氧探测资料,分析近地层O3廓线变化特征.结果表明,嘉兴地区发生高浓度O3污染的关键气象要素为24~36℃的大气温度和36%~77%的相对湿度,24℃以上的大气温度与77%以下的相对湿度可作为启动预警O3污染的气象指标.差分吸收臭氧雷达监测结果显示,无论O3超标天与清洁天,在垂直方向上其浓度随高度先升后降,在600~800m范围出现峰值;O3污染时段,在中午到午后低空形成持续向下的O3输送带,这种低空O3与地表O3的叠加机制加重地表O3污染程度,导致地表O3超标与低空高浓度相伴出现;其廓线日变化规律表现出800m以下浓度在夜间和凌晨梯度不显著,日出后近地层O3随时间快速增加,中午和午后持续高值,傍晚随时间逐渐下降的特征.后向轨迹分析表明,10,500,1000m高度层的气流后向轨迹聚类有相似性,500m处沿闽浙海岸线的轨迹簇对应O3较10m处来自海上的轨迹簇高,这与500m处前体物输送堆积和紫外线辐射增强有关.污染过程近地层气流来向紧贴地面,但中高层有明显下沉气流使得O3前体物在500m附近堆积,是造成2个典型污染过程中垂直方向上O3高值出现在500m左右的原因之一.  相似文献   

11.
The potential harm of heavy metals is a primary concern in application of sludge to the agricultural land. A pot experiment was conducted to evaluate the effect of two sludges on fractionation of Zn and Cu in soil and their phytotoxicity to pakchoi. The loamy soil was mixed with 0%, 20%, 40%, 60% and 80% (by weight) of digested sewage sludge (SS) and composted sludge (SC). The additions of both sludges caused a significant raise in all fractions, resulting in that exchangeable (EXCH) and organic bound (OM) became predominance of Zn and organic bound Cu occupied the largest portion. There was more available amount of Zn and Cu in SS treatments than SC treatments. During the pot experiment, the concentration of Zn in EXCH, carbonate (CAR) and OM and Cu in EXCH and OM fractions decreased in all treatments, so their bioavailability reduced. Germination rate and plant biomass decreased when the addition rate was high and the best yield appeared in 20% mixtures at the harvest of pakchoi. The two sludges increased tissue contents of Zn and Cu especially in the SS treatments. Zn in pakchoi was not only in relationship to ΔEXCH and ΔCAR forms but also in ΔOM forms in the sludge-soil mixtures. Tissue content of Cu in pakchoi grown on SC-soils could not be predicted by ΔEXCH. These correlation rates between Zn and Cu accumulation in pakchoi and variation of different fractions increased with time, which might indicate that sludges represented stronger impacts on the plant in long-term land application.  相似文献   

12.
A hydroponic experiment was carried out to study intraspecific differences in the effects of different concentrations of cadmium (Cd)(0-10 mg/L) and arsenate (As(V)) (0-8 mg/L) on the growth parameters and accumulation of Cd and As in six wheat varieties Jing-9428, Duokang-1, Jingdong-11, Jing-411, Jingdong-8 and Zhongmai-8. The endpoints of wheat seedlings, including seed germination,biomass, root length and shoot height, decreased with increasing the Cd and As concentrations. Significant differences in seed germination, biomass, root length, shoot height and the accumulation of Cd and As were observed between the treatments and among the varieties (p < 0.05). The lethal dosage 50% were about 20, 80, 60, 60, 80 and 20 mg As/L for Jing-9428, Duokang-1, Jingdong-11,Jing-411, Jingdong-8 and Zhongmai-8, respectively, and the corresponding values for Cd were about 30, 80, 20, 40, 60 and 10 mg Cd/L, respectively. Among the six varieties, Duokang-1 was found to be the most resistant to Cd and As toxicity, and Zhongmai-8 was the most sensitive to Cd and As co-contamination. The resistance of the six varieties was found dependant on the seedling uptake of Cd and As. Duokang-1 was the most suitable for cultivation in Cd and As co-contaminated soils.  相似文献   

13.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

16.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

17.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

18.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

19.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

20.
Toxic effect of Zn(Ⅱ) on a green alga (Chlorella pyrenoidasa) in the presence of sepiolite and kaolinite was investigated.The Zn-free clays were found to have a negative impact on the growth of C.pyrenoidosa in comparison with control samples (without adding any clay or Zn(Ⅱ)).When Zn(Ⅱ) was added,the algae in the presence of clays could be better survived than the control samples,which was actually caused by a decrease in Zn(Ⅱ) concentration in the solution owing to the adsorption of Zn(Ⅱ) on the clays.When the solution system was diluted,the growth of algae could be further inhibited as compared to that in a system which had the same initial Zn(Ⅱ) concentration as in the diluted system.This in fact resulted from desorption of Zn(Ⅱ) from the zinc-contaminated clays,although the effect varied according to the different desorption capabilities of sepiolite and kaolinite.Therefore the adsorption and desorption processes of Zn(Ⅱ) played an important part in its toxicity,and adsorption and desorption of pollutants on soils/sediments should be well considered in natural eco-environmental systems before their risk of toxicity to aquatic organisms was assessed objectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号