首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A. Israel  S. Beer 《Marine Biology》1992,112(4):697-700
In this continuing study on photosynthesis of the marine red alga Gracilaria conferta, it was found that ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in crude extracts had a K m (CO2) of 85 M. Since seawater contains only ca. 10 M CO2, it appears that this alga must possess a CO2 concetrating system in order to supply sufficient CO2 to the vicinity of the enzyme. Because this species is a C3 plant (and thus lacks the C4 system for concentrating CO2), but can utilize HCO3 - as an exogenous carbon source, we examined whether HCO3 - uptake could be the initial step of such a CO2 concetrating system. The surface pH of G. conferta thalli was 9.4 during photosynthesis. At this pH, estimated maximal uncatalyzed HCO3 - dehydration (CO2 formation) within the unstirred layer was too slow to account for measured phostosynthetic rates, even in the presence of an external carbonic anhydrase inhibitor. This observation, and the marked pH increase in the unstirred layer following the onset of light, suggests that a HCO3 - transport system (probably coupled to transmembrane H+/OH- fluxes) operates at the plasmalemma level. The involvement of surface-bound carbonic anhydrase in such a system remains, however, obscure. The apparent need of marine macroalgae such as G. conferta for CO2 concentrating mechanisms is discussed with regard to their low affinity of Rubisco to CO2 and the low rate of CO2 supply in water. The close similarity between rates of Rubisco carboxylation and measured photosynthesis further suggests that the carboxylase activity, rather than inorganic carbon transport and intercoversion events, could be an internal limiting factor for photosynthetic rates of G. conferta.  相似文献   

2.
Photosynthesis and respiration in Ahnfeltia plicata (Huds.) Fries (Gigartinales) was measured in a seawater flowthrough system at different temperatures, salinities and photon flux densities (PFD). The exchanges of dissolved oxygen and inorganic carbon were continuously recorded with an oxygen probe and a pH electrode measuring variation in CO2–HCO 3 - equilibrium as pH changes. Highest apparent photosynthesis at moderate photon flux density (PFD 50 E m-2 s-1) was found at 15°C and 33 S. Photosynthesis was measured up to PFD 500 E m-2 s-1 and no light saturation was documented. In the present experimental set-up, with continuous supply of fresh seawater, the number of limiting factors during photosynthesis measurements is reduced.  相似文献   

3.
We examined the growth rate (µ) ofUlva lactuca L. (collected from Roskilde Fjord, Denmark in 1987) at different levels of dissolved inorganic carbon (DIC), pH and oxygen in two culture facilities. Growth was faster in Facility A (µ max ca 0.3 d–1) than in B (µ max ca 0.2 d–1), probably because of more efficient stirring and higher light intensity. The growth-DIC response curve exhibited low half-saturation constant (K 1/2) values (0.35 mM DIC in A, 0.55 mM in B) and growth rates close toµ max at natural seawater concentration of 2 mM DIC. Growth rate showed a low sensitivity to oxygen over a wide range of DIC and oxygen concentrations. Collectively, the results demonstrated an efficient mechanism for DIC use, unaffected by acclimatization to DIC concentrations between 0.2 and 3 mM. The growth rate decreased little between pH 7.5 and 9 at 2 mM DIC, but steeply above pH 9 approaching zero just above pH 10. The decline of growth at high pH may result from direct pH effects on cell pH, reduced HCO 3 - availability and impaired operation of the carbon uptake process. The growth responses ofU. lactuca to DIC, pH and oxygen resembled those observed in previous short-term photosynthetic experiments. This similarity is probably due to the fast growth ofU. lactuca which means that photosynthetic products are rapidly converted into cell growth. Based on the culture experiments we argue that field plants ofU. lactuca not exposed to stagnant water and DIC depletion are likely to be limited in growth by environmental factors other than DIC (e.g. light and nutrients). Dense mats ofU. lactuca, however, may show reduced growth as a result of DIC depletion, high pH and self-shading.  相似文献   

4.
A. Israel  S. Beer  G. Bowes 《Marine Biology》1991,110(2):195-198
Photosynthetic properties of the common red algaGracilaria conferta, collected from the eastern Mediterranean Sea were investigated in 1989, in order to begin evaluating its adaptative strategies with regard to the inorganic carbon composition of seawater, and to test whether the alleged C4 photosynthesis of anotherGracilaria species is common within the genus. Net photosynthetic rates ofG. conferta were, under ambient conditions of inorganic carbon (ca. 10µM, CO2 and 2.2 mM HCO 3 - ), not sensitive to O2 over the range 10 to 300µM, and the CO2 compensation point was low (ca. 0.005µM). Ribulose-1,5-bisphosphate carboxylase/oxygenase was the major carboxylating enzyme, with a crude extract activity of 175µmol CO2 g–1 fresh wt h–1 while phosphoenolpyruvate carboxylase and phosphoenolpyruvate carboxykinase were present at 70 and 20%, respectively, of that activity. No activities of the decarboxylases NAD-and NADP-malic enzyme could be detected. The14C pulse-chase incorporation pattern showed thatG. conferta fixes inorganic carbon via the photosynthetic carbon reduction cycle only, with no evidence for photosynthetic C4 acid metabolism. Photosynthesis at the natural seawater pH of 8.2 was, at 25°C and saturating light, saturated at the ambient inorganic carbon concentration of 2.5 mM. It is proposed that, under ambient inorganic carbon conditions, a CO2 concentrating system other than C4 metabolism provides an internal CO2 concentration sufficient to suppress the O2 effect on ribulose-1,5-bisphosphate carboxylase/oxygenase and, thus, on photorespiration, in a medium where the external free CO2 concentration is lower than theK m(CO2) of the carboxylating enzyme. Since inorganic carbon, under natural saturating light conditions, seems not to be a limiting factor for photosynthesis ofG. conferta, it likely follows that other nutrients limit the growth of this alga in nature.  相似文献   

5.
The hydrothermal vent vestimentiferans Riftia pachyptila Jones, 1981 and Ridgeia piscesae Jones, 1985 live in habitats with different abundances of external CO2. R. pachyptila is found in areas with a high input of hydrothermal fluid, and therefore with a high [CO2]. R. piscesae is found in a range of habitats with low to high levels of hydrothermal fluid input, with a correspondingly broad range of CO2 concentrations. We examined the strategies for dissolved inorganic carbon (DIC) use by the symbionts from these two species. R. pachyptila were collected from the East Pacific Rise (9°50′N; 104°20′W) in March 1996, and R. piscesae were collected from the Juan de Fuca Ridge (47°57′N; 129°07′W) during September of 1996 and 1997. The differences in the hosts' habitats were reflected by the internal pools of DIC in these organisms. The concentrations of DIC in coelomic fluid from R. piscesae were 3.1 to 10.5 mM, lower than those previously reported for R. pachyptila, which often exceed 30 mM. When symbionts from both hosts were incubated at in situ pressures, their carbon fixation rates increased with the extracellular concentration of CO2, and not HCO3 , and symbionts from R. piscesae had a higher affinity for CO2 than those from R. pachyptila (K 1/2 of 7.6 μM versus 49 μM). Transmission electron micrographs showed that symbionts from R. piscesae lack carboxysomes, irrespective of the coelomic fluid [DIC] of their host. This suggests that the higher affinity for CO2 of R. piscesae symbionts may be their sole means of compensating for lower DIC concentrations. The δ13C values of tissues from R. piscesae with higher [DIC] in the coelomic fluid were more positive, opposite to the trend previously described for other autotrophs. Factors which may contribute to this trend are discussed. Received: 24 September 1998 / Accepted: 12 May 1999  相似文献   

6.
Net photosynthetic oxygen evolution in Amphiroa anceps (Lamarck) Decaisne is inhibited at high oxygen concentrations. Photosynthesis is highest between pH 6.5 and 7.5. At pH 9 to 10 there is still a significant photosynthetic rate, suggesting that this alga can use HCO - 3 as a substrate for photosynthesis. At pH 7.0 to 8.5, the photosynthetic rate saturates at a total inorganic carbon concentration (Ci) greater than 3 mM. At pH 8.5 and 8.8, calcification rate continues to increase with increasing concentration of Ci. Between pH 7 and 9, the calcification rate in the light in A. foliacea Lamouroux is proportional to the photosynthetic rate, whereas at higher pH where the photosynthetic rate is very low, the calcification rate is stimulated by the higher concentration of CO 2- 3 ion. At all pH values examined, the calcification rate of living plants in the dark and of dead plants is directly proportional to the CO 2- 3 ion concentration, suggesting little metabolic involvement in calcification processes in the dark, whereas calcification in live A. foliacea in the light is influenced both by the photosynthetic rate and the CO 2- 3 ion concentration in the medium.  相似文献   

7.
The effects of mass transfer resistance due to the presence of a diffusive boundary layer on the photosynthesis of the epilithic algal community (EAC) of a coral reef were studied. Photosynthesis and respiration of the EAC of dead coral surfaces were investigated for samples from two locations: the Gulf of Aqaba, Eilat (Israel), and One Tree Reef on the Great Barrier Reef (Australia). Microsensors were used to measure O2 and pH at the EAC surface and above. Oxygen profiles in the light and dark indicated a diffusive boundary layer (DBL) thickness of 180–590 μm under moderate flow (~0.08 m s?1) and >2,000 μm under quasi-stagnant conditions. Under light saturation the oxygen concentration at the EAC surface rose within a few minutes to 200–550% air saturation levels under moderate flow and to 600–700% under quasi-stagnant conditions. High maximal rates of net photosynthesis of 8–25 mmol O2 m?2 h?1 were calculated from measured O2 concentration gradients, and dark respiration was 1.3–3.3 mmol O2 m?2 h?1. From light–dark shifts, the maximal rates of gross photosynthesis at the EAC surface were calculated to be 16.5 nmol O2 cm?3 s?1. Irradiance at the onset of saturation of photosynthesis, E k, was <100 µmol photons m?2 s?1, indicating that the EAC is a shade-adapted community. The pH increased from 8.2 in the bulk seawater to 8.9 at the EAC surface, suggesting that very little carbon in the form of CO2 occurs at the EAC surface. Thus the major source of dissolved inorganic carbon (DIC) must be in the form of HCO3 ?. Estimates of DIC fluxes across the DBL indicate that, throughout most of the daytime under in situ conditions, DIC is likely to be a major limiting factor for photosynthesis and therefore also for primary production and growth of the EAC.  相似文献   

8.
Excretion of total CO2 and uptake of sodium and chloride ions across the branchial epithelium of the posterior gills of the shore crabCarcinus maenas, collected from Kiel Bay (Baltic Sea) in 1989, were measured using isolated perfused gill preparations. Total CO2 effluxes depended on the HCO 3 - concentration of the internal perfusate in a saturable mode and were inhibited by internally and externally applied acetazolamide at 10–4 M. Potential differences between hemolymph space and medium did not change significantly during experimental treatments. Neither a bicarbonate gradient (6 mM) directed from the internal perfusate to external bath solution nor symmetrically applied 10–4 M acetazolamide significantly influenced the influxes of Na+ and Cl. Results confirmed the role of carbonic anhydrase in CO2 excretion but called into question the assumed functioning of the enzyme in branchial ion transport processes.  相似文献   

9.
Dissolved inorganic carbon (DIC) is rarely considered limiting for macroalgae, but some research suggests that under conditions of N sufficiency, photosynthetic capacity is enhanced with DIC enrichment. During spring (April–May) and summer (July–August) 1993, we investigated the interactive effects of nitrogen (N) and DIC on photosynthetic capacity, growth, and nutrient uptake rates of the macroalgae, Cladophora vagabunda (L.) van den Hoek and Gracilaria tikvahiae (McLachlan), dominant species in a temperate eutrophic estuary (Cape Cod, Massachusetts, USA). Water-column CO2 concentrations showed significant diurnal fluctuations, ranging from a morning CO2 peak (21 M) to an afternoon low (13 M) during summer, probably associated with metabolic activities in a thick algal mat. Results from instantaneous photosynthesis measurements and microcosm experiments indicate that DIC limits photosynthetic capacity and growth rates of C. vagabunda during summer, perhaps related to tissue N sufficiency and low water-column CO2 concentrations. For example, this species showed enhanced growth (F=8.69, P<0.02) under DIC but not N enrichment. G. tikvahiae showed marginal DIC enhancement of maximum photosynthetic rate, while growth was significantly stimulated by addition of N. Reduced thallus N of this species during the summer further identifies N as the primary factor limiting growth. In addition, G. tikvahiae has the ability to use DIC in its several forms, while C. vagabunda primarily uses dissolved CO2. DIC enrichment resulted in a depression of NH4 + uptake rates for both species, particularly during summer at saturating (60 M) ammonium levels, suggesting competition between NH4 + uptake and DIC acquisition under conditions of N sufficiency. Dominance of C. vagabunda and G. tikvahiae in areas undergoing eutrophication has been attributed to their successful procurement and storage of N as well as to high growth rates. The present study revealed that under conditions of N sufficiency during summer, DIC may control rates of production of these opportunistic macroalgae.  相似文献   

10.
Cells ofPhaeodactylum tricornutum Bohlin develop the ability to take up L-lysine when they are deprived of nitrogen (illuminated in nitrogen-free medium), carbon (incubated in darkness) or both. Cells with a developed uptake system take up and accumulate lysine in an unchanged form. Uptake occurs under either aerobic or anaerobic conditions and is dependent on the presence of sodium+ ions (K s Na +=,ca. 10 mM). Some potassium+ ions are necessary for uptake, presumably within the cells, but with potassium+-replete cells, increasing K+ concentration depresses lysine uptake. The lysine-uptake porter also transports L-arginine.K s values are about 1.5 M for lysine and 0.5 M for arginine. It is, however, possible that the uptake system developed by incubating cells in darkness differs from that produced in light; it shows a pronounced pH optimum at pH 8.5, whereas the activity of the light-developed system declines from pH 6.5 to pH 9.0 and correlates well with the concentration of lysine+. The uptake system developed in darkness may also have a higher affinity for lysine. Lysine uptake is not inhibited by 1 mM concentrations of nitrate, nitrate, ammonium, or urea nor by similar concentrations of amphoteric or acidic amino acids.  相似文献   

11.
The dinoflagellate symbionts (zooxanthellae) present in many reef corals aid in the survival of the symbiotic unit in nitrogen deficient tropical waters by providing additional routes of nitrogen uptake and metabolism. The enzymatic pathway of ammonia assimilation from seawater and the re-assimilation of coral ammonium waste by zooxanthellae was studied by examining the affinity of glutamine synthetase for one of its substrates, ammonia. Glutamine synthetase activity was measured in dinoflagellates of the species Symbiodinium microadriaticum found in symbiotic association with various marine coelenterates. Michaelis-Menten kinetics for the substrate ammonia were determined for freshly isolated dinoflagellates from Condylactis gigantea (apparent NH3 Km=33 M) and for cultured dinoflagellates from Zoanthus sociatus (apparent NH3 Km=60 M). On the basis of the low apparent Kms for NH3, it appears that ammonia assimilation by these symbiotic dinoflagellates occurs via the glutamine synthetase/glutamate synthase pathway. Additionally, the uptake of exogenous ammonium by an intact coelenterate-dinoflagellate symbiosis was strongly inhibited by 0.5 mM methionine sulfoximine, and inhibitor of glutamine synthetase.  相似文献   

12.
In fast, glycolytic muscles, oxidative phosphorylation presumably facilitates recuperation from exhaustive exercise and supports growth and maintenance metabolism. Given the shifts in pH with extensive glycolytic activity, the pH optima of mitochondrial processes should indicate whether mitochondria are adapted for recuperation from exercise or for growth and maintenance. We examined this question using mitochondria from the phasic adductor muscle of the scallop, Euvola (Pecten) ziczac, collected from the Golfo de Cariaco, Venezuela in 1992 and 1993. Scallop muscle mitochondria showed well coupled oxidation of glutamate and pyruvate at pH 7.0 and 6.4. The preferred substrates (glutamate, pyruvate and succinate) were oxidized at approximately 40 nmol O2 min-1 mg-1 mitochondrial protein at 25°C, while malate and glutamine were oxidized at 75% and proline at 30% of these rates. Neither palmitoyl carnitine nor aspartate were oxidized. Succinate oxidation was not coupled to ADP utilization at pH 7.0 but was somewhat coupled at pH 6.4. Generally, State 3 rates of oxygen uptake were similar at pH 7.0 and 6.4. Maximal rates of oxidation of glutamate and pyruvate showed broad pH optima. For both glutamate and pyruvate, the highest respiratory control ratio (RCR) values were found at pH 6.5. The saturation curves of scallop muscle mitochondria for pyruvate, glutamate and ADP were well described by the Michaelis-Menten equation. The affinity for pyruvate was greater at pH 6.4 (apparent K m, app=0.013 mM) than at pH 7.0 (K m, app=0.026 mM) while the affinity for ADP (K m, app=0.015 mM) and that for glutamate (K m, app=0.55 mM) changed little with pH. The ADP affinity was the same whether pyruvate or glutamate was the carbon substrate. The combination of maintenance of sensitivity to ADP with an enhanced affinity for pyruvate at acidic pH values should facilitate recuperation from bouts of glycolytic activity. Scallops harvested in September and those harvested in January differed in the maximal rates of glutamate and pyruvate oxidation.  相似文献   

13.
B. R. Oates 《Marine Biology》1985,89(2):109-119
Rates of gross photosynthesis for the intertidal saccate alga Colpomenia peregrina (Sauv.) Hamel were determined under submersed and emersed conditions. Maximal photosynthetic rates were lower than for most seaweeds but comparable with other saccate members of the genus. By fitting the data to a hyperbolic tangent function, maximal photosynthetic rates were estimated to be 5.29 mmol CO2 m-2 h-1 under submersed conditions and 2.06 mmol CO2 m-2 h-1 under emersed conditions. Ik for submersed thalli was 69.1 E m-2 s-1, wherea for emersed thalli it was 149.0 E m-2 s-1, or 2.2 times higher. At low tide in the field and under saturating irradiance, carbon from seawater retained within the thallus cavity was assimilated at 0.9 mmol CO2 m-2 h-1. In the laboratory under emersed conditions, carbon from this source was taken up at 0.6 mmol CO2 m-2 h-1 at 20°C and at 0.34 mmol CO2 m-2 h-1. Retained seawater also greatly reduced drying under desiccating conditions. Experimental thalli from which seawater had been removed lost thallus water continuously throughout the drying period (120 min). On the other hand, control, thalli lost water for the first 15 min, after which no further water loss occurred. At the termination of the experiment, control thalli had lost 7.2% of their water, whereas experimental thalli had lost 39.2%. Desiccation affected the emersed photosynthetic rate of experimental and control thalli. Emersed photosynthetic rates for thalli dried for 15 min were higher than for fullyhydrated thalli. However, emersed photosynthesis of thalli dried for longer than 15 min was lower than fully-hydrated rates and was directly related to percent water loss. Utilizing data from this study, a model was constructed to determine total photosynthetic production of C. peregrina over a single daylight period. From these calculations it was determined that emersed photosynthesis can increase daily photosynthetic production of C. peregrina by 50%.  相似文献   

14.
The mechanisms for uptake of inorganic carbon (Ci) for photosynthesis and calcification of a perforate foraminifer, Amphistegina lobifera Larsen, and an imperforate species, Amphisorus hemprichii Ehrenberg, from the Gulf of Eilat, Red Sea were studied in 1986–1987 using 14C tracer techniques. Total Ci uptake of A. lobifera and photosynthetic carbon uptake of A. hemprichii fit the Hill-Whittingham equation that describes the overall rate of enzymatic reactions that are provided with their substrate through a diffusion barrier. This suggests that diffusion is the rate limiting step for total Ci uptake in A. lobifera. Photosynthesis by the isolated symbionts and uptake of CO3 2- for calcification obey Michaelis-Menten kinetics indicating that enzymatic reactions determine the rate of the separate processes. Both photosynthesis and calcification can be inhibited without affecting each other. Calcification rates in A. lobifera were optimal at Ca levels around normal seawater concentration and were sensitive to inhibitors of respiratory adenosine triphosphate (ATP) generation and Ca-ATP-ase. This indicates that Ca uptake is also active. Calcification rates of A. hemprichii increased linearly as a function of external Ci concentration over the entire experimental range (0 to 4 mM Ci). In contrast, photosynthetic rates showed Hill-Whittingham type kinetics. The dependence of calcification on the CO3 2- concentration was also linear, suggesting that its diffusion is the rate limiting step for calcification in A. hemprichii. Increasing Ca concentrations yielded higher calcification rates over the entire range measured (0 to 40 mM Ca). Calcification in A. hemprichii was less sensitive to inhibitors of ATP generation than in A. lobifera, suggesting that in A. hemprichii energy supply is less important for this process.  相似文献   

15.
Photosynthetic rates of eight seagrass species from Zanzibar were limited by the inorganic carbon composition of natural seawater (2.1 mM, mostly in the form of HCO3 ), and they exhibited more than three time higher rates at inorganic carbon saturation (>6 mM). The intertidal species that grew most shallowly, Halophila ovalis, Halodule wrightii and Cymodocea rotundata, showed the highest affinity for inorganic carbon (K 1/2 = ca. 2.5 mM), followed by the subtidal species (K 1/2 > 5 mM). Photosynthesis of H. wrightii, C. rotundata, Cymodocea serrulata and Enhalus acoroides was >50% inhibited by acetazolamide, a membrane-impermeable inhibitor of carbonic anhydrase, indicating that extracellular HCO3 dehydration is an important part of their inorganic carbon uptake. Photosynthetic rates of H. wrightii, Thalassia hemprichii, Thalassodendron ciliatum, C. serrulata and E. acoroides were strongly reduced by changing the seawater pH from 8.2 to 8.6 in a closed system. In H. ovalis, C. rotundata and Syringodiumisoetifolium, photosynthesis at pH 8.6 was maintained at a higher level than could be caused by the ca. 30% CO2 concentration which remained in the closed experimental systems at that pH, pointing toward HCO3 uptake in those species. It is suggested that the ability of H. ovalis and C. rotundata to grow in the high, frequently air-exposed, intertidal zone may be related to a capability to take up HCO3 directly, since this is a more efficient way of HCO3 utilisation than extracellular HCO3 dehydration under such conditions. The inability of all species to attain maximal photosynthetic rates under natural conditions of inorganic carbon supports the notion that seagrasses may respond favourably to any future increases in marine CO2 levels. Received: 19 March 1997 / Accepted: 31 March 1997  相似文献   

16.
The concentrations and flux of CO2, 222Radon (Rn), and gaseous elemental mercury (Hg) in soil gas were investigated based on the field measurements in June 2010 at ten sites along the seismic rupture zones produced by the May 12, 2008, Wenchuan M s 8.0 earthquake in order to assess the environmental impact of degassing of CO2, Rn and Hg. Soil gas concentrations of 344 sampling points were obtained. Seventy measurements of CO2, Rn and Hg flux by the static accumulation chamber method were performed. The results of risk assessment of CO2, Rn and Hg concentration in soil gas showed that (1) the concentration of CO2 in the epicenter of Wenchuan M s 8.0 earthquake and north end of seismic ruptures had low risk of asphyxia; (2) the concentrations of Rn in the north segment of seismic ruptures had high levels of radon, Maximum was up to level 4, according to Chinese code (GB 50325-2001); (3) the average geoaccumulation index I geo of soil Hg denoted the lack of soil contamination, and maximum values classified the soil gas as moderately to strongly polluted in the epicenter. The investigation of soil gas CO2, Rn and Hg degassing rate indicated that (1) the CO2 in soil gas was characterized by a mean \(\updelta^{13}C_{CO2}\) of ?20.4 ‰ and by a mean CO2 flux of 88.1 g m?2 day?1, which were in the range of the typical values for biologic CO2 degassing. The maximum of soil CO2 flux reached values of 399 g m?2 day?1 in the epicenter; (2) the soil Rn had higher exhalation in the north segment of seismic ruptures, the maximum reached value of 1976 m Bq m?2 s?1; (3) the soil Hg flux was lower, ranging from ?2.5 to 18.7 n g m?2 h?1 and increased from south to north. The mean flux over the all profiles was 4.2 n g m?2 h?1. The total output of CO2 and Hg degassing estimated along seismic ruptures for a survey area of 18.17 km2 were approximately 0.57 Mt year?1 and 688.19 g year?1. It is recommended that land-use planners should incorporate soil gas and/or gas flux measurements in the environmental assessment of areas of possible risk. A survey of all houses along seismic ruptures is advised as structural measures to prevent the ingress of soil gases, including CO2 and Rn, were needed in some houses.  相似文献   

17.
Calcification, photosynthesis and respiration of the scleractinian coral Astrangia danae were calculated from the changes in total alkalinity, pH, calculated total CO2, and oxygen concentration produced by colonies incubated in glass jars. A correction for changes in ammonia, nitrate and nitrite was taken into account and the method evaluated. The fluxes of oxygen and CO2 were highly correlated (r=0.99). The statistical error of alkalinity determinations was less than 10% of the changes observed in the slowest calcifying samples. Metabolism of polyparium alone was estimated by difference after removal of tissue and reincubation of bare corallum. Zooxanthellae concentration in the polyps was obtained from cell counts made on homogenates of polyp tissue. The calculated photosynthetic rate of the zooxanthellae in vivo was 25 mol O2 (108 cell)-1 h-1 at a light intensity of 120 Ein m-2 s-1. In corals having 0.5x109 zooxanthellae/dm2 of colony area up to 8% of the total photosynthesis was attributed to the corallum microcosm. Polyp respiration, photosynthesis, and CaCO3 uptake rates were all much higher than rates previously reported from A. danae, apparently because in these experiments the organisms were better fed. This increased photosynthesis in turn enhanced calcification still further. The symbiosis therefore appears to provide a growth advantage even to fed corals, under the conditions of these experiments.  相似文献   

18.
 Short-term effects of temperature and irradiance on oxygenic photosynthesis and O2 consumption in a hypersaline cyanobacterial mat were investigated with O2 microsensors in a laboratory. The effect of temperature on O2 fluxes across the mat–water interface was studied in the dark and at a saturating high surface irradiance (2162 μmol photons m−2 s−1) in the temperature range from 15 to 45 °C. Areal rates of dark O2 consumption increased almost linearly with temperature. The apparent activation energy of 18 kJ mol−1 and the corresponding Q 10 value (25 to 35 °C) of 1.3 indicated a relative low temperature dependence of dark O2 consumption due to mass transfer limitations imposed by the diffusive boundary layer at all temperatures. Areal rates of net photosynthesis increased with temperature up to 40 °C and exhibited a Q 10 value (20 to 30 °C) of 2.8. Both O2 dynamics and rates of gross photosynthesis at the mat surface increased with temperature up to 40 °C, with the most pronounced increase of gross photosynthesis at the mat surface between 25 and 35 °C (Q 10 of 3.1). In another mat sample, measurements at increasing surface irradiances (0 to 2319 μmol photons m−2 s−1) were performed at 25, 33 (the in situ temperature) and 40 °C. At all temperatures, areal rates of gross photosynthesis saturated with no significant reduction due to photoinhibition at high irradiances. The initial slope and the onset of saturation (E k = 148 to 185 μmol photons m−2 s−1) estimated from P versus E d curves showed no clear trend with temperature, while maximal photosynthesis increased with temperature. Gross photosynthesis was stimulated by temperature at each irradiance except at the lowest irradiance of 54 μmol photons m−2 s−1, where oxygenic gross photosynthesis and also the thickness of the photic zone was significantly reduced at 40 °C. The compensation irradiance increased with temperature, from 32 μmol photons m−2 s−1 at 25 °C to 77 μmol photons m−2 s−1 at 40 °C, due to increased rates of O2 consumption relative to gross photosynthesis. Areal rates of O2 consumption in the illuminated mat were higher than dark O2 consumption at corresponding temperatures, due to an increasing O2 consumption in the photic zone with increasing irradiance. Both light and temperature enhanced the internal O2 cycling within hypersaline cyanobacterial mats. Received: 30 November 1999 / Accepted: 11 April 2000  相似文献   

19.
The reef coral Pocillopora damicornis (Linnaeus) was grown for 8 wk in four nutrient treatments: control, consisting of ambient, unfiltered Kaneohe Bay seawater [dissolved inorganic nitrogen (DIN, 1.0 M) and dissolved inorganic phosphate (DIP, 0.3 M)]; nitrogen enrichment (15 M DIN as ammonium); phosphorus enrichment (1.2 M DIP as inorganic phosphate); and 15 M DIN+1.2 M DIP. Analyses of zooxanthellae for C, N, P and chlorophyll a after the 8 wk experiment indicated that DIN enrichment increased the cellular chlorophyll a and excess nitrogen fraction of the algae, but did not affect C cell-1. DIP enrichment decreased both C and P cell-1, but the decrease was proportionally less for C cell-1. the response of cellular P to both DIN and DIP enrichment appeared to be in the same direction and could not be explained as a primary effect of external nutrient enrichment. The observed response of cellular P might be a consequence of in situ CO2 limitation. DIN enrichment could increase the CO2 (aq) demand by increasing the net production per unit area. DIP enrichment could slow down calcification, thus decreasing the availability of CO2 (aq) in the coral tissue.Hawaii Institute of Marine Biology Contribution No. 920  相似文献   

20.
Inorganic nitrogen metabolism inUlva rigida illuminated with blue light   总被引:2,自引:0,他引:2  
A. Corzo  F. X. Niell 《Marine Biology》1992,112(2):223-228
Inorganic nitrogen metabolism in blue light was studied for the green algaUlva rigida C. Agardh collected in the south of Spain (Punta Carnero, Algeciras) in the winter of 1987. NH4 + has been reported to inhibit NO3 - uptake; however,U. rigida showed a net NO3 - uptake even when the NH4 + concentration of the external medium was three or four times greater than the concentration of NO3 -. NO3 - uptake rates were similar in both darkness and in blue light of various photon fluence rates (PFR) ranging from 17 to 160 mol m-2 s-1. Since NO3 - uptake is an active mechanism involving the consumption of ATP, respiratory metabolism can provide enough ATP to maintain the energetic requirement of NO3 - transport even in darkness. In contrast, NO3 - reduction inU. rigida was highly dependent on the net photosynthetic rate. After 7 h in blue light, intracellular NO3 - concentrations ([NO3 -] i ) were higher in specimens exposed to intensities below the light compensation point (LCP) than in those incubated at a PFR above the LCP. When PFR is below the light compensation point, NO3 - reduction is low, probably because all the NADH produced by the cells is oxidized in the respiratory chain in order to produce ATP to maintain a steady NO3 - transport rate. The total nitrogen (TN) and carbon (TC) contents decreased from darkness to 33 mol m-2 s-1 in blue light. In this range, catabolic processes prevailed over anabolic ones. In contrast, increases in TN and TC contents were observed above the light compensation point. The C : N ratio increased with light intensity, reaching a stable value of 17 at 78 mol m-2 s-1 in blue light. Intracellular NO3 - concentration and NO3 - reduction appear to be directly controlled by light intensity. This external control of [NO3 -]i and the small capacity ofU. rigida to retain incorporated NO3 -, NO2 - and NH4 + ions may explain its nitrophilic character.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号