首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 112 毫秒
1.
Organofluorine compounds are rare in Nature, with only a handful known to be produced by some species of plant and two microorganisms. Consequently, the mechanism of enzymatic carbon-fluorine bond formation is poorly understood. The bacterium Streptomyces cattleya biosynthesises fluoroacetate and 4-fluorothreonine as secondary metabolites and is a convenient system to study the biosynthesis and enzymology of fluorometabolite production. Using stable-isotope labelled precursors it has been shown that there is a common intermediate in the biosynthesis of the fluorometabolites, which has recently been identified as fluoroacetaldehyde. Studies with cell-free extracts of S. cattleya have identified two enzymes, an aldehyde dehydrogenase and a threonine transaldolase, that are involved in the biotransformation of fluoroacetaldehyde to fluoroacetate and 4-fluorothreonine.  相似文献   

2.
The biotransformation of the nonylphenol isomer [ring-U-14C]-4-(3',5'-dimethyl-3'-heptyl)-phenol (4-353-NP, consisting of two diastereomers) was studied in soybean and Agrostemma githago cell suspension cultures. With the A. githago cells, a batch two-liquid-phase system (medium/n-hexadecane 200:1, v/v) was used, in order to produce higher concentrations and amounts of 4-353-NP metabolites for their identification; 4-353-NP was applied via the n-hexadecane phase. Initial concentrations of [14C]-4-353-NP were 1 mg L(-1) (soybean), and 5 and 10 mg L(-1) (A. githago). After 2 (soybean) and 7 days (A. githago) of incubation, the applied 4-353-NP was transformed almost completely by both plant species to four types of products: glycosides of parent 4-353-NP, glycosides of primary 4-353-NP metabolites, nonextractable residues and unknown, possibly polymeric materials detected in the media. The latter two products emerged especially in soybean cultures. Portions of primary metabolites amounted to 19-22% (soybean) and 21-42% of applied 14C (A. githago). After liberation from their glycosides, the primary 4-353-NP metabolites formed by A. githago were isolated by HPLC and examined by GC-EIMS as trimethylsilyl derivatives. In the chromatograms, eight peaks were detected which due to their mass spectra, could be traced back to 4-353-NP. Seven of the compounds were side-chain monohydroxylated 4-353-NP metabolites, while the remaining was a (side-chain) carboxylic acid derivative. Unequivocal identification of the sites of hydroxylation/oxidation of all transformation products was not possible. The main primary metabolites produced by A. githago were supposed to be four diastereomers of 6'-hydroxy-4-353-NP (about 80% of all products identified). It was concluded that plants contribute to the environmental degradation of the xenoestrogen nonylphenol; the toxicological properties of side-chain hydroxylated nonylphenols remain to be examined.  相似文献   

3.
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary metabolism of plants and the indirect impact on rhizosphere bacterial communities. We then compared the secondary metabolites of the hyperaccumulator Pteris vittata L. collected from a contaminated mining site to a non-contaminated site in Vietnam and identified the discriminant metabolites. Our data showed a significant increase in chlorogenic acid derivatives and A-type procyanidin in plant roots at the contaminated site. We hypothesized that the intensive production of these compounds could be part of the antioxidant defense mechanism in response to metals. In parallel, the structure and diversity of bulk soil and rhizosphere communities was studied using high-throughput sequencing. The results showed strong differences in bacterial composition, characterized by the dominance of Proteobacteria and Nitrospira in the contaminated bulk soil, and the enrichment of some potential human pathogens, i.e., Acinetobacter, Mycobacterium, and Cupriavidus in P. vittata’s rhizosphere at the mining site. Overall, metal pollution modified the production of P. vittata secondary metabolites and altered the diversity and structure of bacterial communities. Further investigations are needed to understand whether the plant recruits specific bacteria to adapt to metal stress.  相似文献   

4.
Abstract

The biotransformation of the nonylphenol isomer [ring-U-14C]-4-(3′,5′-dimethyl-3′-heptyl)-phenol (4-353-NP, consisting of two diastereomers) was studied in soybean and Agrostemma githago cell suspension cultures. With the A. githago cells, a batch two-liquid-phase system (medium/n-hexadecane 200:1, v/v) was used, in order to produce higher concentrations and amounts of 4-353-NP metabolites for their identification; 4-353-NP was applied via the n-hexadecane phase. Initial concentrations of [14C]-4-353-NP were 1 mg L?1 (soybean), and 5 and 10 mg L?1 (A. githago). After 2 (soybean) and 7 days (A. githago) of incubation, the applied 4-353-NP was transformed almost completely by both plant species to four types of products: glycosides of parent 4-353-NP, glycosides of primary 4-353-NP metabolites, nonextractable residues and unknown, possibly polymeric materials detected in the media. The latter two products emerged especially in soybean cultures. Portions of primary metabolites amounted to 19–22% (soybean) and 21–42% of applied 14C (A. githago). After liberation from their glycosides, the primary 4-353-NP metabolites formed by A. githago were isolated by HPLC and examined by GC-EIMS as trimethylsilyl derivatives. In the chromatograms, eight peaks were detected which due to their mass spectra, could be traced back to 4-353-NP. Seven of the compounds were side-chain monohydroxylated 4-353-NP metabolites, while the remaining was a (side-chain) carboxylic acid derivative. Unequivocal identification of the sites of hydroxylation/oxidation of all transformation products was not possible. The main primary metabolites produced by A. githago were supposed to be four diastereomers of 6′-hydroxy-4-353-NP (about 80% of all products identified). It was concluded that plants contribute to the environmental degradation of the xenoestrogen nonylphenol; the toxicological properties of side-chain hydroxylated nonylphenols remain to be examined.  相似文献   

5.
白腐真菌的广谱生物降解性研究进展   总被引:1,自引:0,他引:1  
白腐真菌由于能够降解木质素而在地球的碳循环中发挥着不可或缺的作用.由胞外的过氧化物酶类和其他次级代谢产物组成的木质素降解系统除了能够降解木质素外,对众多的异生物质也具有广谱的生物降解性,赋予了白腐真菌巨大的环境工业应用潜力.对白腐真菌的木质素降解系统和其广谱的生物降解性进行了介绍与展望.  相似文献   

6.
In order to assess the influence of the aromatic substitution on the ability of a soil bacterial strain, Arthrobacter sp. N2, to degrade phenylurea herbicides, biotransformation assays were performed in mineral medium with resting cells of this soil bacterial strain on three phenylurea herbicides (diuron, chlorotoluron and isoproturon). Each herbicide considered, led to the formation of only one metabolite detected by HPLC analysis. After isolation, the metabolites were identified by NMR and MS, as the corresponding substituted anilines. According to the Microtox test (realized on the bacterium Vibrio fischeri), these metabolites presented non-target toxicity far more important (up to 600 times higher for 4-isopropylaniline) than the parent molecule. For isoproturon and chlorotoluron, the amount of substituted anilines obtained at the end of the biotransformation was very low, whereas the biotransformation of diuron into 3,4-dichloroaniline was almost quantitative. In this last case, the degradation product accumulated in the medium. In soil, other microorganisms are present that might degrade it. So the biotransformation of 3,4-dichloroaniline was then tested with four fungal strains: Aspergillus niger, Beauveria bassiana, Cunninghamella echinulata var. elegans and Mortierella isabellina. The aniline was further transformed with all the microorganisms tested. Only one metabolite was detected by HPLC analysis and after isolation, it was identified to be 3,4-dichloroacetanilide. This acetylated compound led to biological effects less important on V. fischeri than 3,4-dichloroaniline. These results stress the importance of identifying the degradation products to assess the impact of a polluting agent. Indeed, the pollutant may undergo transformation yielding compounds more toxic than the parent molecule.  相似文献   

7.
Abstract

Potato sprouts could be a valuable resource of phytochemicals such as secondary plant metabolites, potential antioxidants and nutritive compounds. In this work, potato sprout extracts of five varieties were examined; they differed in major glycoalkaloid content, trypsin inhibitor activity, total polyphenol content and antioxidant activity, as well as in antimicrobial activity against Gram?+?and G???bacteria, and yeast. Sprouts of colored-fleshed tubers were characterized by higher trypsin inhibitor activity than sprouts of yellow potatoes. The strongest microorganism growth inhibition effect was observed for macerate with sprouts from the purple-fleshed Blaue Annelise variety against B. subtilis, whereas C. albicans yeasts were sensitive to macerates with sprouts from purple-fleshed Blue Congo and yellow-fleshed Vineta potato varieties.  相似文献   

8.
Cheng J  Mao L  Zhao Z  Shen M  Zhang S  Huang Q  Gao S 《Chemosphere》2012,86(5):446-453
Polybrominated diphenyl ethers (PBDEs) are extensively used as a class of flame retardants and have become ubiquitous environmental pollutants. Significant biotransformation of some PBDEs via reductive debromination has been observed. However, little is known about the fate of lower brominated BDEs in fish. In this study, the tissue distribution, excretion, depuration and biotransformation of 4,4′-dibromodiphenyl ether (BDE 15) were investigated in crucian carp (Carassius auratus) which were exposed to spiked water solution at different concentrations for 50 d, followed by a 14-d depuration period. Bioaccumulation parameters were calculated and the results showed that BDE 15 was mainly concentrated in the gill and liver. In particular, five biotransformation products of BDE 15 in carp were identified using GC-MS/MS. Besides two debrominated metabolites, three of the metabolites were mono-OH-BDE 15, diOH-BDE 15 and bromophenol. Our results unequivocally suggested that BDE 15 oxidation did occur via the formation of hydroxylated (OH-) metabolites in crucian carp exposed in vivo. These findings will be useful for determination of the metabolic pathways of PBDEs in freshwater fish, especially about their oxidation metabolism.  相似文献   

9.
The activities of several individual polychlorinated biphenyls (PCBs) and dibenzofurans (PCDFs) and several environmentally significant reconstituted mixtures of these compounds as inducers of aryl hydrocarbon hydroxylase (AHH) and ethoxyresorufin O-deethylase (EROD) in rat hepatoma H-4-II E cells were determined. The observed AHH and EROD induction EC50S for the mixtures were compared with the calculated values, which were based on the summation of the relative per cent contributions of the individual components of the reconstituted PCB and PCDF mixtures. The results show that the differences between the observed and calculated EC50s for these mixtures were minimal or not significant and the data supports the use of the rat hepatoma H-4-II E cell system as a bioassay for toxic halogenated aryl hydrocarbons.  相似文献   

10.
Li Y  Yediler A  Ou Z  Conrad I  Kettrup A 《Chemosphere》2001,45(1):67-75
Effects of a non-ionic surfactant (Tween-80) on the mineralization, metabolism and uptake of phenanthrene in wheat-solution-lava microcosm were studied using 14C-labeled phenanthrene. The mineralization and metabolism of phenanthrene were fast in such a system. At least 90% of the applied phenanthrene were transformed within 24 days. Only 0.3% of the applied 14C-activity were identified to be the parent phenanthrene. Most of the applied 14C-activity (70%) was recovered from wheat, in which ca. 70% were associated with wheat shoots (stems and leaves) and ca. 30% wheat roots. 33% and 20% of the applied 14C-activity had been constructed into wheat tissues of shoots and roots, respectively. The 14C-activity recovered in forms of CO2 and volatile organic chemicals (VOCs) was 12-16% and 4-5%, respectively. The major metabolites of phenanthrene were polar compounds (18% of the applied 14C) and only 2.1% were identified as non-polar metabolites. No phenanthrene was found in wheat shoots indicating that it could not be transported from roots to upper parts of the plant but in form of metabolites (mostly polar metabolites). Foliar uptake of 14C-activity via air in form of 14CO2 occurred. The presence of Tween-80 significantly enhanced the degradation of phenanthrene, which could be attributed to its increase of microbial activities in the system. Tween-80 also significantly (P < 0.05) reduced the phenanthrene level in wheat roots, which probably resulted from desorption of phenanthrene from root surface caused by the surfactant.  相似文献   

11.
Two strains of the basidiomycete, Bjerkandera adusta (DAOM 215869 and BOS55) produce in static liquid culture, phenyl, veratryl, anisyl and chloroanisyl metabolites (CAM's) (alcohols, acids and aldehydes) as well as a series of compounds not previously known to be produced by Bjerkandera species: 1-phenyl, 1-anisyl, 1-(3-chloro-4-methoxy) and 1-(3,5-dichloro-4-methoxy) propan-1,2-diols, predominantly as erythro diastereomers with IR, 2S absolute configurations. 1-Anisyl-propan-1,2-diol and 1-(3,5-dichloro-4-methoxy)-propan-1,2-diol are new metabolites for which the names Bjerkanderol A and B, respectively, are proposed. Experiments with static liquid cultures supplied with 13C6- and 13C9-L-phenylalanine showed that all identified aromatic compounds (with the exception of phenol) can be derived from L-phenylalanine. For the aryl propane diols, the 13C label appeared only in the phenyl ring and the benzylic carbon, suggesting a stereoselective re-synthesis from a C7 and a C2-unit, likely aromatic aldehyde and decarboxylated pyruvate, respectively. Other compounds newly discovered to be derived from phenylalanine by this white rot fungus include phenylacetaldehyde and phenylpyruvic, phenylacetic, phenyllactic, mandelic and phenyl glyoxylic (benzoyl formic) acids. For both strains, cultures supplied with Na37Cl showed incorporation of 37Cl in all identified chlorometabolites. Veratryl alcohol and the CAM alcohols, which occur in both strains and can be derived from L-phenylalanine (all 13C-labelled), have reported important physiological functions in this white rot fungus. Possible mechanisms for their formation through the newly discovered compounds are discussed.  相似文献   

12.
Khan SJ  Ongerth JE 《Chemosphere》2004,54(3):355-367
A conceptual model is presented for determining which currently prescribed pharmaceutical compounds are most likely to be found in sewage, and for estimating their concentrations, both in raw sewage and after successive stages of secondary sewage treatment. A ranking of the "top-50" pharmaceutical compounds (by total mass dispensed) in Australia over the 1998 calendar year was prepared. Information on the excretion ratios and some metabolites of the pharmaceuticals enabled prediction of the overall rates of excretion into Australian sewage. Mass-balance and fugacity modelling, applied to sewage generation and to a sewage treatment plant, allowed calculation of predicted concentrations of the compounds in raw, primary and secondary treated sewage effluents. Twenty nine of the modelled pharmaceutical residuals were predicted to be present in raw sewage influent at concentrations of 1 microgl(-1) or greater. Twenty of the compounds were predicted to remain in secondary effluent at concentrations of 1 microgl(-1) or greater.  相似文献   

13.
Fish samples (perch, roach, vendace and rainbow trout) from the lake area in castern Finland were found to be contaminated not only with PCB- and DDT-compounds but also with chlordane-compounds. The contents of pollutants were strongly species specific and were studied against the biotransformation capacity of the fishes. No chlordane compounds were found in rainbow trout, which is superior to the other species in its biotransformation capacity.  相似文献   

14.
Biodegradation of the polychlorinated naphthalenes (PCNs) 1,4-dichloronaphthalene (1,4-DCN), 2,7-dichloronaphthalene (2,7-DCN), and 1,2,3,4-tetrachloronaphthalene (1,2,3,4-TCN), by the white-rot fungus Phlebia lindtneri was investigated. 1,4-DCN was metabolized to form six metabolites by the fungus. It was estimated from GC–MS fragment patterns that the metabolites were four putative hydroxylated and two dihydrodihydroxylated compounds. One of the hydroxylated products was identified as 2,4-dichloro-1-naphthol by GC–MS analysis using an authentic standard. This intermediate indicated chlorine migration in a biological system of P. lindtneri. 2,7-DCN was metabolized to five hydroxylated metabolites and a dihydrodihydroxylated metabolite. Significant inhibition of the degradation of DCNs and formation of their metabolic products was observed in incubation with the cytochrome P-450 monooxygenase inhibitor piperonyl butoxide. The formation of the dihydrodiol-like metabolites, chlorine migration and the experiment with P-450 inhibitor suggested that P. lindtneri provides hydroxyl metabolites via benzene oxide intermediates of DCNs by a cytochrome P450 monooxygenase. In addition, P. lindtneri degraded 1,2,3,4-TCN; two hydroxylated compounds and a dihydrodihydroxylated compound were formed.  相似文献   

15.
In this study the effects of the main marine pollutants (metals, PAHs, PCBs and DDTs) were assessed in native mussels from the Mediterranean coast of Spain. For this purpose several biomarkers such as benzo[a]pyrene hydroxylase (BPH), DT-diaphorase (DTD), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidases (GPs), glutathione reductase (GR), metallothionein (MT) and lipid peroxidation (LPO) were measured in the digestive gland. Results showed increased LPO levels in mussels which accumulated high loads of organic compounds and arsenic in their tissues. BPH levels correlated to the concentrations of organic compounds in mussel tissues, though the range of BPH response was low in relation to the high gradient of accumulation of organic pollutants. Increased BPH levels, concomitant to low DTD and GST activities, were detected in mussels which presented high levels of organic pollutants in their tissues. This suggests that signs of LPO present in these organisms are related to the imbalance between phase I and phase II biotransformation processes. Furthermore, the increased levels of MT and CAT detected in mussels which showed high levels of Cd in their tissues appear to reflect a coordinated response which protects against the toxicity of this metal. The application of these biomarkers in environmental assessment is discussed.  相似文献   

16.
In the present investigation, the oxidative metabolism of 14C-labeled metamitron was examined in plant cell cultures of tobacco overexpressing human P450 enzymes CYP1A1 or CYP1A2; special interest was in the aromatic hydroxylation of the herbicide. The oxidative metabolites deaminometamitron (DAM) and 4-hydroxydeaminometamitron (4-HDAM) were found in the untransformed control culture as well as in the transgenic culture. The transgenic cultures, however, exhibited higher turnover rates after 48 h of incubation with 20 microg 14C-metamitron per assay (untransformed: 40%, CYP1A1: 80%, CYP1A2: 100%). Primary metabolite 4-HDAM was partially found in glucosylated form in the transgenic cultures. As minor oxidative metabolites, 6-hydroxyphenyl-3-methoxymethyl-1,2,4-triazine-5(4H)-one and 3-hydroxymethyl-6-phenyl-1,2,4-triazine-5(4H)-one were identified in the transgenic cultures by GC-MS, LC-MS. Additionally, it could be demonstrated that both foreign enzymes (CYP1A1, CYP1A2) also catalyzed the deamination of metamitron. In a large-scale study (up to 400 microg per assay) with the transgenic culture expressing CYP1A2, the high efficiency of this P450 system toward metamitron was demonstrated: turnover of the xenobiotic was almost complete with 400 microg. Since large portions of unglucosylated 4-H-DAM were found, the activity of foreign CYP1A2 apparently exceeded that of endogenous O-glucosyltransferases of the tobacco cell culture. We concluded that in comparison to the nontransformed cell culture, the extent of metabolism was considerably higher in the transgenic cultures. The transgenic cell cultures expressing human CYP1A1 or CYP1A2 are thus suitable tools for the production of large quantities of primary oxidized metabolites of metamitron.  相似文献   

17.
Two analytical methods have been evaluated for quantitative determination of de-conjugated chrysene metabolites in fish bile. High performance liquid chromatography-fluorescence (HPLC-F) and gas chromatography-mass spectrometry (GC--MS) were compared regarding instrumental and overall limits of detection (LOD) as well as recoveries for the following nine chrysene compounds: 1-, 2,- 3-, 4- and 6-hydroxychrysene (1-, 2-, 3-, 4- and 6-OH-chr), 1,2-dihydroxy-1,2-dihydrochrysene (1,2-DHD-chr), 3,4-dihydroxy-3,4-dihydrochrysene (3,4-DHD-chr), 5,6-dihydroxy-5,6-dihydrochrysene (5,6-DHD-chr) and chrysene. Instrumental LODs were comparable for the two methods whereas the overall LOD was better for HPLC-F. Recoveries varied per chrysene compound for both HPLC-F (62-107%) and GC-MS (48-124%). In vivo formed chrysene metabolites were studied in the bile of Atlantic cod (Gadus morhua) exposed to chrysene (1 mg/kg) via intra-peritoneal (i.p.) and inter-muscular (i.m.) injection. Total amounts of chrysene metabolites were three times higher in i.p. compared to i.m. exposed cod bile, but the relative distribution of determined metabolites was very similar. 1,2-DHD-chr was the most prominent metabolite in de-conjugated bile and constituted more than 88% of the total chrysene metabolites. Additional chrysene metabolites formed were 3,4-DHD-chr and 1-, 2-, 3- and 4-OH-chr. K-region chrysene metabolites (oxidation at carbons 5 and 6) were not detected and seem to be a less favoured biotransformation route. The two methods were applied and evaluated for analysis of chrysene metabolites in two bile reference materials (BCR 720 and 721) and a limited number of field exposed cods.  相似文献   

18.
The biotransformation of the anti-inflammatory drug ibuprofen (IBF) was studied by exposing rainbow trout (Oncorhynchus mykiss) to IBF via intraperitoneal (i.p.) injection, and via water at four (0.17, 1.9, 13 and 145 μg L−1) exposure levels for 4 d. Following exposure, the bile was collected and analyzed by LC–MS/MS methods. The identification of the formed metabolites in i.p. injected fish bile was based on the exact mass determinations by a time-of-flight mass analyzer (Q–TOF–MS) and on the studies of fragments and fragmentation patterns of precursor ions by ion trap mass analyzer (IT-MS). In addition to unmetabolized IBF, several phase I and phase II metabolites were found in the bile. The main metabolites were acyl glucuronides and taurine conjugates of IBF and of hydroxylated IBFs. The bioconcentration factors (BCFbile), defined as the ratio of the sum of IBF and its metabolites in fish bile to the concentration of IBF in water, was determined following enzymatic deconjugation and was found to range from 14 000 to 49 000. The highest BCFbile was found at the lowest exposure concentration (0.17 μg L−1). The results show that rainbow trout has a high capacity for biotransformation of IBF, and the exposure of fish to sub μg L−1 concentrations of IBF can be determined by the analyses of the biliary metabolites of the compound.  相似文献   

19.
Endocrine disrupters in the aquatic environment   总被引:1,自引:0,他引:1  
Possible mechanisms to explain endocrine effects on reproduction and sex differentiation are presented for selected pharmaceuticals, agrochemicals, industrial chemicals and plant sterols which are known to be present in the aquatic environment. Disruptions of the hormonal coordination can be induced by xenobiotics on various levels of the hierachically organised endocrine system of vertebrates. Phthalate plasticisers, for example, may disrupt the pituitary control of gonadal functions; prenatal/larval exposure to synthetic estrogen impairs sex differentiation and neuroendocrine sexual determination of the central nervous system; phenylurea herbicides block the androgen receptor; the biotransformation of weakly estrogenic plant sterol components of paper mill wastewater (e.g. βsitosterol) may lead to androgenic compounds. The effect of hypolipidemic drugs on lipid homeostasis (peroxysom proliferation) is transmitted via a receptor protein that seems to be closely related to the endocrine system both functionally as well as phylogenetically; possible interferences with the neuroendocrine control of sex differentiation are also discussed. In invertebrates, tributyltin is known to effect the biosynthesis of steroidal sexual hormones. PCBs are suspected to be competitive inhibitors of the steroid catabolism. In order to identify potential risks caused by chemicals to the reproductive capacities of aquatic animals and to the quality of drinking water, methods should be established to detect endocrine disrupters at the various levels of the endocrine system.  相似文献   

20.
The ability of a plant cytochrome P450 to bind and metabolise plant endogenous molecules and xenobiotics was investigated. The work was performed on the yeast-expressed CYP73A1, a cinnamate 4-hydroxylase isolated fromHelianthus tuberosus. CYP73 controls the general phenylpropanoid pathway and is likely to be one of the most abundant sources of P450 in the biosphere. The enzyme shows a high selectivity toward plant secondary metabolites. Nevertheless, it oxygenates several small and planar xenobiotics with low efficiency, including an herbicide (chlorotoluron). One xenobiotic molecule, 2naphthoic acid, is hydroxylated with an efficiency comparable to that of the physiological substrate. This reaction was used to devise a fluorimetric test for the rapid measurement of enzyme activity. A series of herbicidal molecules (hydroxybenzonitriles) are shown to bind the active site without being metabolised. These molecules behave as strong competitive inhibitors of CYP73 with a Ki in the same micromolar range as the Km for the physiological substrate. It is proposed that their inhibition of the phenylpropanoid pathway reinforces their other phytotoxic effects at the level of the chloroplasts. All our results indicate a strong reciprocal interaction between plant P450s and xenobiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号