首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A cryptic lineage of hammerhead shark closely related to but evolutionarily distinct from the scalloped hammerhead (Sphyrna lewini) was recently documented in the western North Atlantic Ocean. Here, we demonstrate using nuclear and mitochondrial DNA sequences that this cryptic lineage also occurs in the western South Atlantic Ocean, extending its distribution >7,000 km from its only previously reported location. Our results also further validate the existence of this evolutionarily distinct hammerhead shark lineage. The southern hemisphere cryptic individuals were 1.6 and 5.8% divergent from S. lewini (sensu stricto) for the nuclear internal transcribed spacer 2 (ITS2) and mitochondrial control region loci, respectively, and formed a strongly supported, reciprocally monophyletic sister group to sympatric S. lewini. Coalescent analysis (ITS2 locus) yielded a divergence estimate of ~4.5 million years between S. lewini and the cryptic lineage. Given expanding concerns about overfishing of the large-bodied hammerhead sharks, this cryptic lineage needs to be formally recognized and incorporated into shark management and conservation planning to avoid the inadvertent, potential extirpation of a unique hammerhead lineage.  相似文献   

2.
Biodiversity of sharks in the tropical Indo-Pacific is high, but species-specific information to assist sustainable resource exploitation is scarce. The null hypothesis of population genetic homogeneity was tested for scalloped hammerhead shark (Sphyrna lewini, n = 237) and the milk shark (Rhizoprionodon acutus, n = 207) from northern and eastern Australia, using nuclear (S. lewini, eight microsatellite loci; R. acutus, six loci) and mitochondrial gene markers (873 base pairs of NADH dehydrogenase subunit 4). We were unable to reject genetic homogeneity for S. lewini, which was as expected based on previous studies of this species. Less expected were similar results for R. acutus, which is more benthic and less vagile than S. lewini. These features are probably driving the genetic break found between Australian and central Indonesian R. acutus (F-statistics; mtDNA, 0.751–0.903, respectively; microsatellite loci, 0.038–0.047 respectively). Our results support the spatially homogeneous monitoring and management plan for shark species in Queensland, Australia.  相似文献   

3.
Escolar (Lepidocybium flavobrunneum) is a large, mesopelagic fish that inhabits tropical and temperate seas throughout the world, and is a common bycatch in pelagic longline fisheries that target tuna and swordfish. Few studies have explored the biology and natural history of escolar, and little is known regarding its population structure. To evaluate the genetic basis of population structure of escolar throughout their range, we surveyed genetic variation over an 806 base pair fragment of the mitochondrial control region. In total, 225 individuals from six geographically distant locations throughout the Atlantic (Gulf of Mexico, Brazil, South Africa) and Pacific (Ecuador, Hawaii, Australia) were analyzed. A neighbor-joining tree of haplotypes based on maximum likelihood distances revealed two highly divergent clades (δ = 4.85%) that were predominantly restricted to the Atlantic and Indo-Pacific ocean basins. All Atlantic clade individuals occurred in the Atlantic Ocean and all but four Pacific clade individuals were found in the Pacific Ocean. The four Atlantic escolar with Pacific clade haplotypes were found in the South Africa collection. The nuclear ITS-1 gene region of these four individuals was subsequently analyzed and compared to the ITS-1 gene region of four individuals from the South Africa collection with Atlantic clade haplotypes as well as four representative individuals each from the Atlantic and Pacific collections. The four South Africa escolar with Pacific mitochondrial control region haplotypes all had ITS-1 gene region sequences that clustered with the Pacific escolar, suggesting that they were recent migrants from the Indo-Pacific. Due to the high divergence and geographic separation of the Atlantic and Pacific clades, as well as reported morphological differences between Atlantic and Indo-Pacific specimens, consideration of the Atlantic and Indo-Pacific populations as separate species or subspecies may be warranted, though further study is necessary.  相似文献   

4.
Eurythoe complanata (Pallas 1766) has been considered a cosmopolitan species with a great morphological similarity across its geographic range. To elucidate whether E. complanata is actually a single species, genetic (cytochrome oxidase subunit I and allozymes) and morphological differences were compared among specimens from the Pacific, Caribbean, and South Atlantic Oceans. Large levels of COI divergence (10–22%) and diagnostic allozyme loci identified three cryptic species: one in the eastern Pacific and two in the Atlantic, with one being morphologically differentiated and found only in islands. COI sequences between Pacific and Atlantic lineages were much more divergent than those of other transisthmian invertebrates, indicating their split before the Panama Isthmus closure or a faster evolutionary rate of COI for this species. The existence of two Atlantic species may be a consequence of parapatric speciation followed by a secondary invasion or even a sympatric speciation in the Atlantic oceanic islands.  相似文献   

5.
The distribution and genetic structure of many marine invertebrates in the North Atlantic have been influenced by the Pleistocene glaciation, which caused local extinctions followed by recolonization in warmer periods. Mitochondrial DNA markers are typically used to reconstruct species histories. Here, two mitochondrial markers [16S rDNA and cytochrome c oxidase I (COI)] were used to study the evolution of the widely distributed hydrozoan Obelia geniculata (Linnaeus, 1758) from the North Atlantic and the Pacific and, more specifically, in the context of North Atlantic phylogeography. Samples were collected from six geographic localities between 1998 and 2002. Hydroids from the North Atlantic, North Pacific (Japan), and South Pacific (New Zealand) are reciprocally monophyletic and may represent cryptic species. Using portions of the 16S rDNA and COI genes and the date of the last trans-Arctic interchange (3.1–4.1 million years ago), the first calibrated rate of nucleotide substitutions in hydrozoans is presented. Whereas extremely low substitution rates have been reported in other cnidarians, mainly based on anthozoans, substitution rates in O. geniculata are comparable to other invertebrates. Despite a life history that ostensibly permits substantial dispersal, there is apparently considerable genetic differentiation in O. geniculata. Divergence estimates and the presence of unique haplotypes provide evidence for glacial refugia in Iceland and New Brunswick, Canada. A population in Massachusetts, USA, appears to represent a relatively recent colonization event.Communicated by J.P. Grassle, New Brunswick  相似文献   

6.
The upside-down jellyfish Cassiopea is a globally distributed, semi-sessile, planktonically dispersed scyphomedusa. Cassiopea occurs in shallow, tropical inshore marine waters on sandy mudflats and is generally associated with mangrove-dominated habitats. Controversy over the taxonomy of upside-down jellyfishes precedes their introduction to the Hawaiian Islands during the Second World War, and persists today. Here we address the global phylogeography and molecular systematics of the three currently recognized species: Cassiopea andromeda, C. frondosa, and C. xamachana. Mitochondrial cytochrome c oxidase I (COI) sequences from Australia, Bermuda, Fiji, the Florida Keys, the Hawaiian Islands, Indonesia, Palau, Panama, Papua New Guinea, and the Red Sea were analyzed. Highly divergent COI haplotypes within the putative species C. andromeda (23.4% Kimura 2-parameter molecular divergence), and shared haplotypes among populations of two separate putative species, C. andromeda and C. xamachana from different ocean basins, suggest multiple anthropogenic introductions and systematic confusion. Two deeply divergent Oahu haplotypes (20.3%) from morphologically similar, geographically separate invasive populations indicate long-term (14–40 million years ago) reproductive isolation of phylogenetically distinct source populations and cryptic species. Data support at least two independent introductions to the Hawaiian Islands, one from the Indo-Pacific, another from the western Atlantic/Red Sea. Molecular phylogenetic results support six species: (1) C. frondosa, western Atlantic (2) C. andromeda, Red Sea/western Atlantic/Hawaiian Islands (3) C. ornata, Indonesia/Palau/Fiji (4) Cassiopea sp. 1, eastern Australia (5) Cassiopea sp. 2, Papua New Guinea and (6) Cassiopea sp. 3, Papua New Guinea/Hawaiian Islands.Communicated by P.W. Sammarco, Chauvin  相似文献   

7.
Species identification in the phylum Nematoda is complicated due to the paucity of easily obtainable diagnostic morphological features. Furthermore, the cosmopolitan distribution of several species despite low dispersal abilities makes cryptic diversity potentially substantial within this phylum. We conducted a population genetic survey in the marine nematode Geomonhystera disjuncta in Belgium and The Netherlands in two seasons. The mitochondrial cytochrome oxidase c subunit 1 (COI) gene was screened with the single-strand conformation polymorphism method in 759 individuals. The 43 haplotypes were grouped into five lineages, with low divergences within (<3%) and high divergences between lineages (>14%). Analysis of the nuclear ITS region yielded concordant tree topologies, indicating the presence of five cryptic taxa within G. disjuncta. Analysis of Molecular Variance (AMOVA) illustrated a significant structuring in all lineages and temporal fluctuations in haplotype frequencies within and between locations. Metapopulation dynamics and/or priority effects best explained this structuring. Finally, our data indicate that the COI gene may be useful for DNA barcoding purposes.  相似文献   

8.
Genetic surveys of reef fishes have revealed high population connectivity within ocean basins, consistent with the assumption that pelagic larvae disperse long distances by oceanic currents. However, several recent studies have demonstrated that larval retention and self-recruitment may be higher than previously expected. To assess connectivity in tropical reef fishes, we contribute range-wide mtDNA surveys of two Atlantic squirrelfishes (family Holocentridae). The blackbar soldierfish, Myripristis jacobus, has a pelagic juvenile phase of about 58 days, compared to about 71 days (~22% longer) in the longjaw squirrelfish, Holocentrus ascensionis. If the pelagic duration is guiding dispersal ability, M. jacobus should have greater population genetic structure than H. ascensionis. In comparisons of mtDNA cytochrome b sequences from 69 M. jacobus (744 bp) and 101 H. ascensionis (769 bp), both species exhibited a large number of closely related haplotypes (h=0.781 and 0.974, π=0.003 and 0.006, respectively), indicating late Pleistocene coalescence of mtDNA lineages. Contrary to the prediction based on pelagic duration, M. jacobus has much less population structure (φST=0.008, P=0.228) than H. ascensionisST=0.091, P<0.001). Significant population partitions in H. ascensionis were observed between eastern, central and western Atlantic, and between Brazil and the Caribbean in the western Atlantic. These results, in combination with the findings from 13 codistributed species, indicate that pelagic larval duration is a poor predictor of population genetic structure in Atlantic reef fishes. A key to understanding this disparity may be the evolutionary depth among corresponding taxonomic groups of “reef fishes”, which extends back to the mid-Cretaceous and encompasses enormous diversity in ecology and life history. We should not expect a simple relationship between pelagic larval duration and genetic connectivity, among lineages that diverged 50–100 million years ago.  相似文献   

9.
Partial sequences of the mitochondrial DNA (mtDNA) gene cytochrome oxidase subunit 1 (COI) were analysed from individuals of the coralline demosponge Astrosclera willeyana sensu lato out of ten Indo-Pacific populations from the Red Sea to the central Pacific. This taxon is widely distributed in cryptic coral reef habitats of the Indo-Pacific and is regarded as a modern representative of long-extinct, formerly reef-building stromatoporoid-type sponges. The aims were to clarify phylogeographic and taxonomic relationships in this “living fossil” and to explore mitochondrial DNA sequence variation over a wide geographic range. Very low variability was observed across the Indo-Pacific, as only three COI haplotypes were identified, with a maximum p-distance of 0.418% and low nucleotide diversity (π=0.00049). Very low genetic structure was revealed among populations: Haplotype 1 was found in all specimens from nine Pacific populations (N=45), separated by distances of more than 7,000 km; haplotype 2 was restricted to the Red Sea population (N=4); haplotype 3 was only found in the Tuamoto specimens (N=7). COI data presented here do not support the hypothesis of at least two sibling species belonging to genus Astrosclera in the Pacific. Considering the maximum geographic distance of more than 20,000 km between sampled populations, mtDNA COI sequence variation observed here is among the lowest reported to date for a diploblastic taxon and adds to the growing evidence of a general mtDNA conservation in sponges. It is argued that this low mtDNA variation in A. willeyana s.l. is due to a low rate of mtDNA evolution caused by a combination of long generation time and low metabolic rate.  相似文献   

10.
Restriction fragment length polymorphism (RFLP) analysis of mitochondrial DNA (mtDNA) was used to investigate the taxonomic status of the following species-pairs of Atlantic and Indo-Pacific istiophorid billfishes: Atlantic blue marlin Makaira nigricans (Lacépède) and Indo-Pacific blue marlin M. mazara (Jordan and Snyder); Atlantic sailfish Istiophorus albicans (Latreille) and Indo-Pacific sailfish I. platypterus (Shaw and Nodder); and white marlin Tetrapturus albidus Poey and striped marlin T. audax (Phillippi). Tissue samples were collected from 1990 to 1992. Several mtDNA haplotypes were common to Atlantic and Indo-Pacific samples of blue marlin and sailfish, although there were significant differences in the distribution of haplotypes between samples from different oceans. For both blue marlin and sailfish, a single group of closely related mtDNA haplotypes was found among all indo-Pacific and some Atlantic individuals, while the remaining Atlantic specimens exhibited mtDNA haplotypes that differed by several consistent restriction site changes from the common haplotype. No restriction site differences were found to discriminate white marlin from striped marlin, and the mtDNA haplotypes of both species were very similar although significant differences were found in the distribution of haplotypes between the two species. Two of 26 haplotypes were shared between white and striped marlin, and the corrected mean nucleotide sequence divergence between species (0.06%) was not much greater than that observed between geographically distant samples of striped marlin from the Pacific Ocean (mean 0.03%). The presence of identical haplotypes in samples from both oceans for each of the three species-pairs of istiophorid billfishes suggests that specific status may not be warranted for any of the Atlantic and Indo-Pacific populations. The significant difference in the distributions of mtDNA haplotypes between Atlantic and Indo-Pacific populations, which contrasts sharply with the homogeneity reported for several species of tunas, indicates considerable population structuring within the highly vagile billfishes.  相似文献   

11.
We explore the phylogeography of the broadcast spawner Marthasterias glacialis along south Europe and Azores. Sequences of the cytochrome c oxidase gene from 225 specimens, belonging to 10 localities, were analysed. We found 73 haplotypes grouped within two lineages (divergence 2.9%). One lineage was Atlanto–Mediterranean, whereas another one was exclusively Mediterranean. Estimation of lineages split goes back to 830,000–580,000 (±120,000) years ago. This suggests that sea-level oscillations during the Pleistocene glaciations promoted gene flow interruption, lineage divergence between basins and cryptic speciation. Secondary contact between populations allowed a recolonization of the Mediterranean by the Atlantic lineage. When animals of the Atlanto–Mediterranean lineage were considered separately, F st index and AMOVA did not show significant differences between populations along either the Iberian Peninsula or basins. Isolation by distance between populations was not detected, and only populations of Plymouth and Azores showed significant differences to all the others. The remoteness of Azores islands might explain the structure of this population. Haphazard arrival of larvae and local extinctions rather than contemporary restricted gene flow might be responsible for the distinctive population structure of Plymouth.  相似文献   

12.
Current taxonomy indicates a single global species of the Great Barracuda (Sphyraena barracuda) despite differences in color and behavior between Atlantic and Pacific forms. To investigate these differences and qualify the dispersal characteristics of this unique coastal–pelagic teleost (bony fish), we conducted a global phylogeographic survey of 246 specimens from thirteen sampling locations using a 629-base pair fragment of mtDNA cytochrome b. Data indicate high overall gene flow in the Indo-Pacific over large distances (>16,500 km) bridging several biogeographic barriers. The West Atlantic population contains an mtDNA lineage that is divergent from the Indo-Pacific (d = 1.9%), while the East Atlantic (N = 23) has two mutations (d = 0.6%) apart from the Indo-Pacific. While we cannot rule out distinct evolutionary partitions among ocean basins based on behavior, coloration, and near-monophyly between Atlantic and Indo-Pacific subpopulations, more investigation is required before taxonomic status is revised. Overall, the pattern of high global dispersal and connectivity in S. barracuda more closely resembles those reported for large oceanic predators than reef-associated teleosts.  相似文献   

13.
The phylogeographic patterns among populations of Mesopodopsis slabberi (Crustacea, Mysida), an ecological important mysid species of marine and estuarine habitats, were analysed by means of DNA sequencing of a fragment of the mitochondrial cytochrome c oxidase subunit I (COI) and the 16S ribosomal RNA genes. Samples of M. slabberi collected from five Atlantic and two Western Mediterranean populations were investigated. Very high levels of within-population molecular diversity were observed in all samples (mean h=0.807 and π=0.0083), with exception of the Mediterranean Ebro population which contained only one haplotype. Differentiation among populations was high, and a clear phylogeographic break was observed between the Atlantic and Mediterranean populations. Moreover, a strong differentiation was detected between both populations in the Western Mediterranean Sea (Alicante and Ebro delta), while two divergent lineages occurred in sympatry within the Atlantic Mondego estuary. The high congruence between both the COI and 16S rRNA sequence data, the reciprocal monophyly of the different mitochondrial clades and the levels of nucleotide divergence between them suggest the presence of a complex of cryptic species within M. slabberi. Estimations of divergence time between the different mitochondrial lineages indicate that a split occurred during the late Miocene/early Pliocene. Such a divergence could be concordant with vicariant events during sea-level drops within the Mediterranean region at that time. However, within the Mediterranean Sea, the potential of divergence through ecological diversification cannot be ruled out.  相似文献   

14.
Molecular systematic analyses of marine taxa are crucial for recording ocean biodiversity, so too are elucidation of the history of population divergence and the dynamics of speciation. In this paper we present the joined phylogeography of the calanoid copepod Calanus helgolandicus (Claus 1863) from the North East (NE) Atlantic and the Adriatic Sea and the closely related C. euxinus (Hulsemann 1991) from the Black Sea based on sequences of a mitochondrial Cytochrome Oxidase subunit I (COI) fragment. Coalescent-based Bayesian methods and minimum spanning networks are used to reconstruct the history of population divergence. Our results reveal that copepod populations from all three basins share a great number of haplotypes and demonstrate a close genetic affinity of C. euxinus with C. helgolandicus. The data do not support significant genetic structuring among samples within seas. Coalescent analyses suggest divergences between NE Atlantic, Mediterranean, and Black Sea populations dating back to the middle Pleistocene, with the NE Atlantic–Mediterranean divergence being the earliest and the Mediterranean–Black Sea divergence the most recent. These middle Pleistocene dates are much older than the estimated dates of colonisation of the Mediterranean and Black Seas based on paleoclimatic scenarios. Our results do not rule out that the assumed colonisations took place but they indicate that the populations colonising the Mediterranean and the Black Sea were already, and have since remained, diverged. The chaetognath Sagitta setosa, which has a comparable distribution pattern and feeds upon the copepods, provides a unique opportunity to compare phylogeographic patterns and distinguish among alternative hypotheses. The dates produced in this paper are in agreement with those estimated elsewhere for S. setosa. We propose that a great deal of the genetic make-up of marine planktonic populations comprises divergences that date back to long before the last glacial maximum. We consider questions on the taxonomic status of C. euxinus to remain open. However, its high genetic affinity to the C. helgolandicus calls for further investigation.  相似文献   

15.
From a geographical survey of allozyme variation, a history of repeated trans-Arctic invasions since the Plio-Pleistocene is suggested for circumboreal bivalves of the Macoma balthica complex. A principal genetic subdivision, involving several nearly diagnostic loci and Nei's distance D=0.6, distinguishes the clams of the NE Pacific from those of the NE Atlantic. The Pacific taxon is however also present in Europe, in disjunct isolates in the Baltic Sea and White Sea basins. Nevertheless, these populations have marked Atlantic introgressive elements in their gene pools (ca. 30%). Two further population types are recognized, one in the St. Lawrence estuary, Quebec, the other in Varangerfjorden, NE Norway; the latter appears a mixture of Pacific and Atlantic components in almost equal proportions, in local genetic equilibrium (a hybrid swarm). Populations in temperate North America fall outside the circumboreal M. balthica complex discussed here (D=1.0), and are referred to M. petalum. In a scenario of the history and evolution of the M. balthica complex and the similarly subdivided Mytilus edulis complex, the divergence between Pacific and Atlantic taxa started after an initial introduction of Pacific ancestors to the Atlantic basin, enabled by the Pliocene opening of the Bering Strait. During the Pleistocene and Holocene, the ocean basins were, for the most part, effectively isolated, but occasional re-invasions have taken place, causing secondary contacts of the diverged bivalve types on the Atlantic coasts. The recently re-invaded Pacific taxa in northern Europe now seem to thrive only in the extreme marginal environments. Exact dating of the re-invasions is not possible from current data. Apart from the divergence through isolation, hybridization and introgression have significantly molded the present affinities within the M. balthica complex. A formal taxonomic treatment of reticulate and hybridizing lineages is problematic; yet to recognize the evolutionary and systematic diversity within the M. balthica complex, a subspecies distinction between the NE Atlantic clams and those from the Pacific, Baltic and White Sea basins is suggested.Communicated by L. Hagerman, Helsingør  相似文献   

16.
Pelagic species have been traditionally thought to occupy vast, genetically interconnected, geographic ranges in an essentially homogeneous environment. Although this view has been challenged recently for some mesopelagic planktonic taxa, the population structure of hyponeustonic (surface-drifting) species remains unknown. Here, we test the hypothesis of panmixis in Glaucus atlanticus, a cosmopolitan neustonic nudibranch, by assessing the genetic differentiation of multiple representatives from a global neustonic sampling effort. Specimens were collected from all subtropical oceanic gyre systems (North Atlantic, South Atlantic, North Pacific, South Pacific, and Indian Ocean). We sequenced a fragment of the mitochondrial cytochrome oxidase I gene for 98 individuals and performed population structure, differentiation (analysis of molecular variance, spatial analysis of molecular variance, F ST, Jost’s D), and molecular clock analyses. Our results indicate that G. atlanticus is not globally panmictic, but that populations appear to be panmictic within ocean basins. We detected several topologically ectopic haplotypes in the Atlantic Ocean, but the molecular clock analysis indicates that these have diverged from closely related Indo-Pacific haplotypes over 1.2 MYA, coinciding with cooling in waters around in the southern tip of Africa and resulting oceanographic changes. These data and the fact that G. atlanticus is not known from polar latitudes suggest that gene flow between ocean basins is hindered by physical barriers (supercontinents) and water temperatures in the Arctic and Southern Oceans.  相似文献   

17.
Among pelagic fish, the Southwestern Atlantic menhaden genus Brevoortia (Clupeidae, Alosinae) constitutes an important species model to investigate the patterns of genetic differentiation. It is abundant in the Río de la Plata estuary and in the Atlantic coastal lagoons system from Uruguay and Southern Brazil. To access in the taxa discrimination and population structure in Brevoortia we perform a phylogeographic approach based on mitochondrial cytochrome b (cyt-b) sequences including 240 individuals from 16 collecting sites. Among the 720 bp cyt-b sequenced, 199 correspond to variables and 88 to phylogenetically informative sites. High values of haplotype diversity (h = 1.000) and nucleotide diversity (π = 0.061), as well as an average of 0.084 polymorphic segregating sites and 46 different haplotypes were found. Maximum likelihood analysis based on the GTR + I + G model and Bayesian inference strongly support the idea that B. aurea is the only species of the genus inhabiting the Southwestern Atlantic region. Our analyses revealed a complex population pattern characterized by the existence of long-term highly structured genetic assemblages of mixed stocks. Each monophyletic entity included individuals from different collecting sites, different age groups and collected in different years. Our data also suggest that the recruitment of unrelated mtDNA haplotypes carried out by individuals within schools could be occurring in the same nursery areas revealing the existence of many different maternal lineages. A scenario where different simultaneously and successively mixed mtDNA lineages remain historically connected through basal haplotypes among different clades could explains more accurately the complex and ordered metapopulation dynamic found in this pelagic fish.  相似文献   

18.
We conducted a phylogeographic study of the meiofaunal nemertean Ototyphlonemertes parmula, an apparent species complex from the littoral zone of coarse-grained beaches, using a 494-bp fragment of the mitochondrial cytochrome oxidase 3 gene (cox3). Six populations from the Gulf and Atlantic coasts of Florida, two from New England, and one from the Caribbean were sampled in March and August 2005. Three major lineages were identified, separated by cox3 sequence divergence of 16–18%, with partially overlapping ranges. Tests for hybridization using ISSR markers detected nuclear gene exchange within but not between the major mitochondrial lineages, indicating the presence of cryptic species. One lineage dominating the Atlantic coast of Florida shows no evidence of geographic structuring. Another lineage shows a phylogenetic break between the Atlantic and Gulf coasts, suggesting that unsuitable habitat may act as a barrier to dispersal. Long-distance migration is evidenced by shared haplotypes between Florida and the eastern Caribbean. Overall, the widespread distribution of individual haplotypes and lack of structuring within geographic regions contrast with O. parmula’s strongly sediment-bound lifestyle. We speculate that dispersal of adults by storms and/or sediment transport may be more important than few and potentially short-lived planktonic larvae to explain geographic diversity in O. parmula and may be important for meiofauna in general.  相似文献   

19.
The tropical lancelet Asymmetron lucayanum (= Epigonichthys lucayanus) is distributed from the western Indian Ocean to the central Pacific Ocean, and the western Atlantic Ocean. Molecular phylogenetic analysis of mitochondrial cytochrome c oxidase subunit I (COI) sequences (1,035 bp) of A. lucayanum (80 specimens from seven localities) showed clearly that this species is genetically distinguished into three major groups of geographical populations based on neighbor-joining tree using maximum likelihood distance (HKY model with invariable sites and gamma correction), suggesting the existence of three cryptic species. Our genetic data show that (1) inter-oceanic divergence time between Clade B (the West-Central Pacific) and Clade C (the Atlantic) (d = 6.6%, ca. 12 million years ago) was smaller than intra-oceanic divergence time between Clade A (the Indo-West Pacific) and Clade B (d=39.5%, ca. 100 million years ago); (2) there are two cryptic species in the West Pacific in sympatry; and (3) high gene flow is implied between the Maldives and the Ryukyus in Clade A (10,000 km distance), the Philippines and Hawaii in Clade B (8,500 km distance), and Barbados and Bermuda in Clade C (2,200 km distance).  相似文献   

20.
The orange roughy Hoplostethus atlanticus is a well-known commercial species with a global distribution. There is no consensus about levels of connectivity among populations despite a range of techniques having been applied. We used cytochrome c oxidase subunit I (COI) and cytochrome b sequences to study genetic connectivity at a global scale. Pairwise ΦST analyses revealed a lack of significant differentiation among samples from New Zealand, Australia, Namibia, and Chile. However, low but significant differentiation (ΦST = 0.02–0.13, P < 0.05) was found between two Northeast Atlantic sites and all the other sites with COI. AMOVA and the haplotype genealogy confirmed these results. The prevalent lack of genetic differentiation is probably due to active adult dispersal under the stepping-stone model. Demographic analyses suggested the occurrence of two expansion events during the Pleistocene period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号