首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Epps, Thomas H., Daniel R. Hitchcock, Anand D. Jayakaran, Drake R. Loflin, Thomas M. Williams, and Devendra M. Amatya, 2012. Characterization of Storm Flow Dynamics of Headwater Streams in the South Carolina Lower Coastal Plain. Journal of the American Water Resources Association (JAWRA) 1‐14. DOI: 10.1111/jawr.12000 Abstract: Hydrologic monitoring was conducted in two first‐order lower coastal plain watersheds in South Carolina, United States, a region with increasing growth and land use change. Storm events over a three‐year period were analyzed for direct runoff coefficients (ROC) and the total storm response (TSR) as percent rainfall. ROC calculations utilized an empirical hydrograph separation method that partitioned total streamflow into sustained base flow and direct runoff components. ROC ratios ranged from 0 to 0.32 on the Upper Debidue Creek (UDC) watershed and 0 to 0.57 on Watershed 80 (WS80); TSR results ranged from 0 to 0.93 at UDC and 0.01 to 0.74 at WS80. Variability in event runoff generation was attributed to seasonal trends in water table elevation fluctuation as regulated by evapotranspiration. Groundwater elevation breakpoints for each watershed were identified based on antecedent water table elevation, streamflow, ROCs, and TSRs. These thresholds represent the groundwater elevation above which event runoff generation increased sharply in response to rainfall. For effective coastal land use decision making, baseline watershed hydrology must be understood to serve as a benchmark for management goals, based on both seasonal and event‐based surface and groundwater interactions.  相似文献   

2.
In recent years, watershed modelers have put increasing emphasis on capturing the interaction of landscape hydrologic processes instead of focusing on streamflow at the watershed outlet alone. Understanding the hydrologic connectivity between landscape elements is important to explain the hydrologic response of a watershed to rainfall events. The Soil and Water Assessment Tool+ (SWAT+) is a new version of SWAT with improved runoff routing capabilities. Subbasins may be divided into landscape units (LSUs), e.g., upland areas and floodplains, and flow can be routed between these LSUs. We ran three scenarios representing different extents of connectivity between uplands, floodplains, and streams. In the first and second scenarios, the ratio of channelized flow from the upland to the stream and sheet flow from the upland to the floodplain was 70/30 and 30/70, respectively, for all upland/floodplain pairs. In the third scenario, the ratio was calculated for each upland/floodplain pair based on the upland/floodplain area ratio. Results indicate differences in streamflow were small, but the relative importance of flow components and upland areas and floodplains as sources of surface runoff changed. Also, the soil moisture in the floodplains was impacted. The third scenario was found to provide more realistic results than the other two. A realistic representation of connectivity in watershed models has important implications for the identification of pollution sources and sinks.  相似文献   

3.
Abstract: Sierra Nevada snowmelt and runoff is a key source of water for many of California’s 38 million residents and nearly the entire population of western Nevada. The purpose of this study was to assess the impacts of expected 21st Century climatic changes in the Sierra Nevada at the subwatershed scale, for all hydrologic flow components, and for a suite of 16 General Circulation Models (GCMs) with two emission scenarios. The Soil and Water Assessment Tool (SWAT) was calibrated and validated at 35 unimpaired streamflow sites. Results show that temperatures are projected to increase throughout the Sierra Nevada, whereas precipitation projections vary between GCMs. These climatic changes drive a decrease in average annual streamflow and an advance of snowmelt and runoff by several weeks. The largest streamflow reductions were found in the mid‐range elevations due to less snow accumulation, whereas the higher elevation watersheds were more resilient due to colder temperatures. Simulation results showed that decreases in snowmelt affects not only streamflow, but evapotranspiration, surface, and subsurface flows, such that less water is available in spring and summer, thus potentially affecting aquatic and terrestrial ecosystems. Declining spring and summer flows did not equally affect all subwatersheds in the region, and the subwatershed perspective allowed for identification for the most sensitive basins throughout the Sierra Nevada.  相似文献   

4.
This paper examines the relationships between measurable watershed hydrologic features, base flow recession rates, and the Q7,10 low flow statistic (the annual minimum seven‐day average streamflow occurring once every 10 years on average). Base flow recession constants were determined by analyzing hydrograph recession data from 24 small (>130 km2), unregulated watersheds across five major physiographic provinces of Pennsylvania, providing a highly variable dataset. Geomorphic, hydrogeologic, and land use parameters were determined for each watershed. The base flow recession constant was found to be most strongly correlated to drainage density, geologic index, and ruggedness number (watershed slope); however, these three parameters are intercorrelated. Multiple regression models were developed for predicting the recession rate, and it was found that only two parameters, drainage density and hydrologic soil group, were required to obtain good estimates of the recession constant. Equations were also developed to relate the recession rates to Q7,10 per unit area, and to the Q7,10/Q50 ratio. Using these equations, estimates of base flow recession rates, Q7,10, and streamflow reduction under drought conditions can be made for small, ungaged basins across a wide range of physiography.  相似文献   

5.
Using nonparametric Mann‐Kendall tests, we assessed long‐term (1953‐2012) trends in streamflow and precipitation in Northern California and Southern Oregon at 26 sites regulated by dams and 41 “unregulated” sites. Few (9%) sites had significant decreasing trends in annual precipitation, but September precipitation declined at 70% of sites. Site characteristics such as runoff type (groundwater, snow, or rain) and dam regulation influenced streamflow trends. Decreasing streamflow trends outnumbered increasing trends for most months except at regulated sites for May‐September. Summer (July‐September) streamflow declined at many sites, including 73% of unregulated sites in September. Applying a LOESS regression model of antecedent precipitation vs. average monthly streamflow, we evaluated the underlying streamflow trend caused by factors other than precipitation. Decreasing trends in precipitation‐adjusted streamflow substantially outnumbered increasing trends for most months. As with streamflow, groundwater‐dominated sites had a greater percent of declining trends in precipitation‐adjusted streamflow than other runoff types. The most pristine surface‐runoff‐dominated watersheds within the study area showed no decreases in precipitation‐adjusted streamflow during the summer months. These results suggest that streamflow decreases at other sites were likely due to more increased human withdrawals and vegetation changes than to climate factors other than precipitation quantity.  相似文献   

6.
The Watershed Flow and Allocation model (WaterFALL®) provides segment‐specific, daily streamflow at both gaged and ungaged locations to generate the hydrologic foundation for a variety of water resources management applications. The model is designed to apply across the spatially explicit and enhanced National Hydrography Dataset (NHDPlus) stream and catchment network. To facilitate modeling at the NHDPlus catchment scale, we use an intermediate‐level rainfall‐runoff model rather than a complex process‐based model. The hydrologic model within WaterFALL simulates rainfall‐runoff processes for each catchment within a watershed and routes streamflow between catchments, while accounting for withdrawals, discharges, and onstream reservoirs within the network. The model is therefore distributed among each NHDPlus catchment within the larger selected watershed. Input parameters including climate, land use, soils, and water withdrawals and discharges are georeferenced to each catchment. The WaterFALL system includes a centralized database and server‐based environment for storing all model code, input parameters, and results in a single instance for all simulations allowing for rapid comparison between multiple scenarios. We demonstrate and validate WaterFALL within North Carolina at a variety of scales using observed streamflows to inform quantitative and qualitative measures, including hydrologic flow metrics relevant to the study of ecological flow management decisions.  相似文献   

7.
Abstract: The potential of remotely sensed time series of biophysical states of landscape to characterize soil moisture condition antecedent to radar estimates of precipitation is assessed in a statistical prediction model of streamflow in a 1,420 km2 watershed in south‐central Texas, Moderate Resolution Imaging Spectroradiometer (MODIS) time series biophysical products offer significant opportunities to characterize and quantify hydrologic state variables such as land surface temperature (LST) and vegetation state and status. Together with Next Generation Weather Radar (NEXRAD) precipitation estimates for the period 2002 through 2005, 16 raw and deseasoned time series of LST (day and night), vegetation indices, infrared reflectances, and water stress indices were linearly regressed against observed watershed streamflow on an eight‐day aggregated time period. Time offsets of 0 (synchronous with streamflow event), 8, and 16 days (leading streamflow event) were assessed for each of the 16 parameters to evaluate antecedent effects. The model results indicated a reasonable correlation (r2 = 0.67) when precipitation, daytime LST advanced 16 days, and a deseasoned moisture stress index were regressed against log‐transformed streamflow. The estimation model was applied to a validation period from January 2006 through March 2007, a period of 12 months of regional drought and base‐flow conditions followed by three months of above normal rainfall and a flood event. The model resulted in a Nash‐Sutcliffe estimation efficiency (E) of 0.45 for flow series (in log‐space) for the full 15‐month period, ?0.03 for the 2006 drought condition period, and 0.87 for the 2007 wet condition period. The overall model had a relative volume error of ?32%. The contribution of parameter uncertainties to model discrepancy was evaluated.  相似文献   

8.
ABSTRACT: Steamboat Creek basin is an important source of timber and provides crucial spawning and rearing habitat for anadromous steelhead trout (Oncorhynchus mykiss). Because stream temperatures are near the upper limit of tolerance for the survival of juvenile steelhead, the possible long-term effect of clear-cut logging on stream temperatures was assessed. Twenty-year (1969–1989) records of summer stream temperature and flow from four tributaries and two reaches of Steamboat Creek and Boulder Creek (a nearby unlogged watershed) were analyzed. Logging records for the Steamboat Creek basin and air temperature records also were used in the analysis. A time-series model of the components of stream temperature (seasonal cycle of solar radiation, air temperature, streamflow, an autoregressive term of order 1, and a linear trend variable) was fitted to the water-temperature data. The linear trend variable was significant in all the fitted models except Bend Creek (a tributary fed by cool ground-water discharge) and Boulder Creek. Because no trends in either climate (i.e., air temperature) or streamflow were found in the data, the trend variable was associated with the pre-1969 loss and subsequent regrowth of riparian vegetation and shading canopies.  相似文献   

9.
This study assesses a large‐scale hydrologic modeling framework (WRF‐Hydro‐RAPID) in terms of its high‐resolution simulation of evapotranspiration (ET) and streamflow over Texas (drainage area: 464,135 km2). The reference observations used include eight‐day ET data from MODIS and FLUXNET, and daily river discharge data from 271 U.S. Geological Survey gauges located across a climate gradient. A recursive digital filter is applied to decompose the river discharge into surface runoff and base flow for comparison with the model counterparts. While the routing component of the model is pre‐calibrated, the land component is uncalibrated. Results show the model performance for ET and runoff is aridity‐dependent. ET is better predicted in a wet year than in a dry year. Streamflow is better predicted in wet regions with the highest efficiency ~0.7. In comparison, streamflow is most poorly predicted in dry regions with a large positive bias. Modeled ET bias is more strongly correlated with the base flow bias than surface runoff bias. These results complement previous evaluations by incorporating more spatial details. They also help identify potential processes for future model improvements. Indeed, improving the dry region streamflow simulation would require synergistic enhancements of ET, soil moisture and groundwater parameterizations in the current model configuration. Our assessments are important preliminary steps towards accurate large‐scale hydrologic forecasts.  相似文献   

10.
Abstract: The Chi-Chi earthquake, which occurred on September 21, 1999, and had a magnitude of 7.3 on the Richter scale, resulted in an extensive landslide that blocked the Ching-Shui Creek in Taiwan, forming a large lake with a storage volume of 40 million m3. This paper describes an analytical procedure used to perform flow analysis of the Tsao-Ling watershed, which includes the new landslide dammed lake. In this study, a digital elevation model was applied to obtain the watershed geomorphic factors and stage-area storage function of the landslide dammed lake. Satellite images were used to identify the landslide area and the land cover change that occurred as a result of the earthquake. Two topography-based runoff models were applied for long term and short term streamflow analyses of the watershed because the watershed upstream of the landslide dam was ungauged. The simulated daily flow and storm runoff were verified using limited available measured data in the watershed, and good agreement was obtained. The proposed analytical procedure for flow analysis is considered promising for application to other landslide dammed lake watersheds.  相似文献   

11.
Harshburger, Brian J., Von P. Walden, Karen S. Humes, Brandon C. Moore, Troy R. Blandford, and Albert Rango, 2012. Generation of Ensemble Streamflow Forecasts Using an Enhanced Version of the Snowmelt Runoff Model. Journal of the American Water Resources Association (JAWRA) 48(4): 643‐655. DOI: 10.1111/j.1752‐1688.2012.00642.x Abstract: As water demand increases in the western United States, so does the need for accurate streamflow forecasts. We describe a method for generating ensemble streamflow forecasts (1‐15 days) using an enhanced version of the snowmelt runoff model (SRM). Forecasts are produced for three snowmelt‐dominated basins in Idaho. Model inputs are derived from meteorological forecasts, snow cover imagery, and surface observations from Snowpack Telemetry stations. The model performed well at lead times up to 7 days, but has significant predictability out to 15 days. The timing of peak flow and the streamflow volume are captured well by the model, but the peak‐flow value is typically low. The model performance was assessed by computing the coefficient of determination (R2), percentage of volume difference (Dv%), and a skill score that quantifies the usefulness of the forecasts relative to climatology. The average R2 value for the mean ensemble is >0.8 for all three basins for lead times up to seven days. The Dv% is fairly unbiased (within ±10%) out to seven days in two of the basins, but the model underpredicts Dv% in the third. The average skill scores for all basins are >0.6 for lead times up to seven days, indicating that the ensemble model outperforms climatology. These results validate the usefulness of the ensemble forecasting approach for basins of this type, suggesting that the ensemble version of SRM might be applied successfully to other basins in the Intermountain West.  相似文献   

12.
In the Piedmont of North Carolina, a traditionally water‐rich region, reservoirs that serve over 1 million people are under increasing pressure due to naturally occurring droughts and increasing land development. Innovative development approaches aim to maintain hydrologic conditions of the undisturbed landscape, but are based on insufficient target information. This study uses the hydrologic landscape concept to evaluate reference hydrology in small headwater catchments surrounding Falls Lake, a reservoir serving Raleigh and the greater Triangle area. Researchers collected one year of detailed data on water balance components, including precipitation, evapotranspiration, streamflow, and shallow subsurface storage from two headwater catchments representative of two hydrologic landscapes defined by differences in soils and topographic characteristics. The two catchments are similar in size and lie within the same physiographic region, and during the study period they showed similar water balances of 26‐30% Q, ?4 to 5% ΔS, 59‐65% evapotranspiration, and 9‐10% G. However, the steeper, more elevated catchment exhibited perennial streamflow and nongrowing season runoff ratios (Q/P) of 33%, whereas the flat, low‐lying stream was drier during the growing season and exhibited Q/P ratios of 52% during the nongrowing season. A hydrologic landscape defined by topography and soil characteristics helps characterize local‐scale reference hydrology and may contribute to better land management decisions.  相似文献   

13.
ABSTRACT: The approximate streamflow partitioning method which uses daily rainfall and streamfiow data was applied in Coastal Plain, Coastal Flatwoods, and Southern Piedmont physiographic regions for estimation of the surface and subsurface flow components of total streainflow. Sizes of the watersheds ranged from 9.6 km2 to 1,030 km. Although the streamflow partitioning method was developed and tested on the Coastal Plain physiographic region, results indicate that the procedure can be applied to other physiographic regions where available data are limited to daily values. The effect of channelization on the partitioned flow components in the Coastal Plain and Coastal Flatwoods physiographic areas was also examined. While channelization was found to decrease the storm-time base, it had no significant effect on the relative percentages of the partitioned flow components.  相似文献   

14.
Caballero, Luis A., Alon Rimmer, Zachary M. Easton, and Tammo S. Steenhuis, 2012. Rainfall Runoff Relationships for a Cloud Forest Watershed in Central America: Implications for Water Resource Engineering. Journal of the American Water Resources Association (JAWRA) 48(5): 1022‐1031. DOI: 10.1111/j.1752‐1688.2012.00668.x Abstract: Understanding the basic relationships between rainfall and runoff is vital for effective management and utilization of scarce water resources. Especially, this is important in Central America with widespread potable water shortage during the dry months of the monsoon. Potential good water sources are cloud forests, but little information concerning its potential is available to water supply engineers. Our objective is to define rainfall‐runoff‐base flow relationships for a cloud forest catchment. Flumes were installed for measuring river flow in four subwatersheds in La Tigra National Park, Honduras. One of the four watersheds was a 636‐ha subwatershed (WS1) with 60% cloud forest coverage. Precipitation averaged 1,130 mm/yr over the entire basin. About half of the total rainfall became runoff for the cloud forest watershed whereas, for the adjacent undisturbed forested watershed, the total discharge was <20% of the amount of precipitation. Infiltration rates were generally greater than rainfall rates. Therefore, most rainfall infiltrated into the soil, especially in the upper, steep, and well‐drained portions of the watershed. Direct runoff was generated from saturated areas near the river and exposed bedrock. This research provides compelling evidence that base flow is the primary contributor to streamflow during both wet and dry seasons in cloud forest catchments. Protecting these flow processes over time is critical for the sustained provision of potable water.  相似文献   

15.
Abstract: The Loess Plateau region in northwestern China has experienced severe water resource shortages due to the combined impacts of climate and land use changes and water resource exploitation during the past decades. This study was designed to examine the impacts of climatic variability on streamflow characteristics of a 12‐km2 watershed near Tianshui City, Gansu Province in northwestern China. Statistic analytical methods including Kendall’s trend test and stepwise regression were used to detect trends in relationship between observed streamflow and climatic variables. Sensitivity analysis based on an evapotranspiration model was used to detect quantitative hydrologic sensitivity to climatic variability. We found that precipitation (P), potential evapotranspiration (PET) and streamflow (Q) were not statistically significantly different (p > 0.05) over the study period between 1982 and 2003. Stepwise regression and sensitivity analysis all indicated that P was more influential than PET in affecting annual streamflow, but the similar relationship existed at the monthly scale. The sensitivity of streamflow response to variations of P and PET increased slightly with the increase in watershed dryness (PET/P) as well as the increase in runoff ratio (Q/P). This study concluded that future changes in climate, precipitation in particular, will significantly impact water resources in the Loess Plateau region an area that is already experiencing a decreasing trend in water yield.  相似文献   

16.
ABSTRACT: An index of watershed susceptibility to surface water contamination by herbicides could be used to improve source water assessments for public drinking water supplies, prioritize watershed restoration projects, and direct funding and educational efforts to areas where the greatest environmental benefit can be realized. The goal of this study is to use streamflow and herbicide concentration data to develop and evaluate a method for estimating comparative watershed susceptibility to herbicide loss. United States Geological Survey (USGS) concentration data for five relatively water soluble herbicides (alachlor, atrazine, cyanazine, metolachlor, and simazine) were analyzed for 16 Indiana watersheds. Correlation was assessed between observed herbicide losses and: (1) a herbicide runoff index using GIS‐based land use, soil type, SCS runoff curve number, tillage practice, herbicide use estimates, and combinations of these factors; and (2) predicted herbicide losses from a non‐point source pollution model (NAPRA‐Web, an Internet‐based interface for GLEAMS). The highest adjusted R2value was found between herbicide concentration and the runoff curve number alone, ranging from 0.25 to 0.56. Predictions from the simulation model showed a poorer correlation with observed herbicide loss. This indicates potential for using the runoff curve number as a simple herbicide contamination susceptibility index.  相似文献   

17.
Los Angeles has a long history of importing water; however, drought, climate change, and environmental mitigation have forced the City to focus on developing more local water sources (target of 50% local supply by 2035). This study aims to improve understanding of water cycling in Los Angeles, including the impacts of imported water and water conservation policies. We evaluate the influence of local water restrictions on discharge records for 12 years in the Ballona Creek (urban) and Topanga Creek (natural) watersheds. Results show imported water has significantly altered the timing and volume of streamflow in the urban Ballona watershed, resulting in runoff ratios above one (more streamflow than precipitation). Further analysis comparing pre‐ vs. during‐mandatory water conservation periods shows there is a significant decrease in dry season streamflow during‐conservation in Ballona, indicating that prior to conservation efforts, heavy irrigation and other outdoor water use practices were contributing to streamflow. The difference between summer streamflow pre‐ vs. during‐conservation is enough to serve 160,000 customers in Los Angeles. If Los Angeles returns to more watering days, educating the public on proper irrigation rates is critical for ensuring efficient irrigation and conserving water; however, if water restrictions remain in place, the City must take the new flow volumes into account for complying with water quality standards in the region.  相似文献   

18.
Mayer, Timothy D. and Seth W. Naman, 2011. Streamflow Response to Climate as Influenced by Geology and Elevation. Journal of the American Water Resources Association (JAWRA) 47(4):724‐738. DOI: 10.1111/j.1752‐1688.2011.00537.x Abstract: This study examines the regional streamflow response in 25 predominately unregulated basins to warmer winter temperatures and snowpack reductions over the last half century in the Klamath Basin of California and Oregon. Geologic controls of streamflow in the region result in two general stream types: surface‐dominated and groundwater‐dominated basins. Surface‐dominated basins were further differentiated into rain basins and snowmelt basins on the basis of elevation and timing of winter runoff. Streamflow characteristics and response to climate vary with stream type, as discussed in the study. Warmer winter temperatures and snowpack reductions have caused significantly earlier runoff peaks in both snowmelt and groundwater basins in the region. In the groundwater basins, the streamflow response to changes in snowpack is smoothed and delayed and the effects are extended longer in the summer. Our results indicate that absolute decreases in July‐September base flows are significantly greater, by an order of magnitude, in groundwater basins compared to surface‐dominated basins. The declines are important because groundwater basins sustain Upper Klamath Lake inflows and mainstem river flows during the typically dry summers of the area. Upper Klamath Lake April‐September net inflows have decreased an estimated 16% or 84 thousand acre‐feet (103.6 Mm3) since 1961, with the summer months showing proportionately more decline. These changes will exacerbate water supply problems for agriculture and natural resources in the region.  相似文献   

19.
In contrast to spatial inequality, there are currently no methods for leveraging information on temporal inequality to improve conservation efficacy. The objective of this study was to use Lorenz curves to quantify temporal inequality in surface runoff and tile drainage, identify controls on nutrient loading in these flowpaths, and develop design flows for structural conservation practices. Surface runoff (n = 94 site‐years) and tile drainage (n = 90 site‐years) were monitored on 40 fields in Ohio. Results showed, on average, 80% of nitrate‐nitrogen, soluble reactive phosphorus (P), and total P loads occurred between 7 and 12 days per year in surface runoff and between 32 and 58 days per year in tile drainage. Similar temporal inequality between discharge and load provided evidence that loading was transport‐limited and highlighted the critical role hydrologic connectivity plays in nutrient delivery from tile‐drained fields. Design flow criterion for sizing structural practices based on load reduction goals was developed by combining Lorenz curves and flow duration curves. Comparing temporal inequality between fields and the Maumee River, the largest tributary to the western Lake Erie Basin, revealed challenges associated with achieving watershed load reduction goals with field‐scale conservation. In‐field (i.e., improved nutrient and water management), edge‐of‐field (i.e., structural practices), and instream practices will all be required to meet nutrient reduction goals from tile‐drained watersheds.  相似文献   

20.
Stratton, Benjamin T., Venakataramana Sridhar, Molly M. Gribb, James P. McNamara, and Balaji Narasimhan, 2009. Modeling the Spatially Varying Water Balance Processes in a Semiarid Mountainous Watershed of Idaho. Journal of the American Water Resources Association (JAWRA) 45(6):1390‐1408. Abstract: The distributed Soil Water Assessment Tool (SWAT) hydrologic model was applied to a research watershed, the Dry Creek Experimental Watershed, near Boise Idaho to investigate its water balance components both temporally and spatially. Calibrating and validating SWAT is necessary to enable our understanding of the water balance components in this semiarid watershed. Daily streamflow data from four streamflow gages were used for calibration and validation of the model. Monthly estimates of streamflow during the calibration phase by SWAT produced satisfactory results with a Nash Sutcliffe coefficient of model efficiency 0.79. Since it is a continuous simulation model, as opposed to an event‐based model, it demonstrated the limited ability in capturing both streamflow and soil moisture for selected rain‐on‐snow (ROS) events during the validation period between 2005 and 2007. Especially, soil moisture was generally underestimated compared with observations from two monitoring pits. However, our implementation of SWAT showed that seasonal and annual water balance partitioning of precipitation into evapotranspiration, streamflow, soil moisture, and drainage was not only possible but closely followed the trends of a typical semiarid watershed in the intermountain west. This study highlights the necessity for better techniques to precisely identify and drive the model with commonly observed climatic inversion‐related snowmelt or ROS weather events. Estimation of key parameters pertaining to soil (e.g., available water content and saturated hydraulic conductivity), snow (e.g., lapse rates, melting), and vegetation (e.g., leaf area index and maximum canopy index) using additional field observations in the watershed is critical for better prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号