首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: This paper examines the co‐evolution of the Las Vegas, Nevada metropolitan area, Las Vegas Wash ecosystem‐a downstream riparian wetland‐and Wash management as a case of urban‐environment dynamics. Since Las Vegas Wash provides the primary drainage for Las Vegas, changes in the urban system lead to changes in the Wash and its ecosystem. The population of the drainage area has grown from approximately 1,000 people in 1900 to more than 1.3 million in 2000. This phenomenal population growth led to increased Wash flow, from less than .03 m3/sec (1 ft3/sec) to over 7.4 m3/sec (260 ft3/sec), and consequent ecological changes from a nearly dry wash to a rich wetland, and now to an eroded system. As the Wash ecosystem changed, valuation of Wash characteristics by residents and resource managers also changed, shifting the focus of management and use, which ultimately led to further ecosystem changes. Reciprocal relationships among human activity, environmental change, and management in this urban area highlight the need for a comprehensive and dynamic systems perspective and adaptive approaches in urban environmental management and make this a particularly compelling case study. This paper describes a conceptual systems framework for adaptive urban‐environment management derived from this case.  相似文献   

2.
ABSTRACT: A Geographic Information System (GIS) based non‐point source runoff model is developed for the Las Vegas Valley, Nevada, to estimate the nutrient loads during the years 2000 and 2001. The estimated nonpoint source loads are compared with current wastewater treatment facilities loads to determine the non‐point source contribution of total phosphorus (TP), total nitrogen (TN), and total suspended solids (TSS) on a monthly and annual time scale. An innovative calibration procedure is used to estimate the pollutant concentrations for different land uses based on available water quality data at the outlet. Results indicate that the pollutant concentrations are higher for the Las Vegas Valley than previous published values for semi‐arid and arid regions. The total TP and TN loads from nonpoint sources are approximately 15 percent and 4 percent, respectively, of the total load to the receiving water body, Lake Mead. The TP loads during wet periods approach the permitted loads from the wastewater treatment plants that discharge into Las Vegas Wash. In addition, the GIS model is used to track pollutant loads in the stream channels for one of the subwatersheds. This is useful for planning the location of Best Management Practices to control nonpoint pollutant loads.  相似文献   

3.
ABSTRACT: Historically ephemeral washes in the Las Vegas Valley have become perennial streams in the urbanized area, and the primary source of these perennial flows appears to be the overirrigation of ornamental landscaping and turf. Overirrigation produces direct runoff to the washes via the streets and results in high ground water levels in some areas. Elevated ground water levels result in discharge to the washes because of changes in the natural balance of the hydrologic system and construction site and foundation dewatering. In recognition of the resource potential of these flows within the Las Vegas Valley, of the potential for dry weather flows to convey pollutants from the Valley to Lake Mead, and of the need to characterize dry weather flows under the stormwater discharge permit program, the quantity and quality of dry weather flow in Flamingo Wash was investigated during the period September 1990 through May 1993. This paper focuses on the resource potential of the flow (quantity and quality) as it relates to the interception and use of this water within the Valley. Economic and legal issues associated with the interception and use of this resource are not considered here.  相似文献   

4.
ABSTRACT: Published estimates of natural recharge in Las Vegas Valley range between 21,000 and 35,000 acre‐feet per year. This study examined the underlying assumptions of previous investigations and evaluated the altitude‐precipitation relationships. Period‐of‐record averages from high altitude precipitation gages established in the 1940s through the 1990s, were used to determine strong local altitude‐precipitation relationships that indicate new total precipitation and natural recharge amounts and a new spatial distribution of that recharge. This investigation calculated about 51,000 acre‐feet per year of natural recharge in the Las Vegas Hydrographic Basin, with an additional 6,000 acre‐feet per year from areas tributary to Las Vegas Valley, for a total of 57,000 acre‐feet per year. The total amount of natural recharge is greater than estimates from earlier investigations and is consistent with a companion study of natural discharge, which estimated 53,000 acre‐feet per year of outflow. The hydrologic implications of greater recharge in Las Vegas Valley infer a more accurate ground‐water budget and a better understanding of ground‐water recharge that will be represented in a ground‐water model. Thus model based ground‐water management scenarios will more realistically access impacts to the ground‐water system.  相似文献   

5.
Abstract: Earlier measurements of stream channel geometry on 19 reaches were repeated to provide a longitudinal study of stream channel adjustment over 13 years (1987‐2000) in the urbanizing Gwynns Falls, Maryland watershed. We observed both enlargement and reduction in channel size, depending on the extent of upstream development, the timing and location of urbanization and upstream channel adjustment, and the presence of hydrologic constrictions and grade controls. Based on a relatively simple visual assessment of the composition, size, and extent of instream sediment storage, we categorized stream reaches into three phases: aggraded (7 sites), early erosion (7 sites), and late erosion (5 sites). Aggraded sites had point and lateral bars mantled with fine‐grained sediment and experienced some reduction in cross‐sectional area, primarily through the deposition of fine‐grained material on bars in the channel margins. Early erosion sites had smaller bars and increases in channel cross‐sectional area as a consequence of the evacuation of in‐channel fine‐grained sediment. Fine‐grained sediments were either entirely absent or found only at a few high bar elevations at late erosion sites. Sediment evacuation from late erosion sites has both enlarged and simplified channels, as demonstrated by an increase in cross‐sectional area and a strong decrease in channel width variation. Channel cross‐sectional area enlargement, reduced channel width variation, and channel incision were ubiquitous at erosion sites. As a result, overbank flows were less common in the erosion sites as determined by high water marks left by a 2‐year flood that occurred during the study period. Principal causes for channel changes appear to be increased high flow durations and reduced sediment supply. Spatial variation in channel conditions could not be tied simply to sub‐basin impervious cover or watershed area. In‐channel sediment storage is a useful indicator of channel form and adjustment. When combined with information on development and sedimentation conditions in the contributing drainage, instream sediment storage can be used to effectively assess future channel adjustments.  相似文献   

6.
Channel changes from 1919 to 1989 were documented in two study reaches of the Merced River in Yosemite National Park through a review of historical photographs and documents and a comparison of survey data. Bank erosion was prevalent and channel width increased an average of 27% in the upstream reach, where human use was concentrated. Here, trampling of the banks and riparian vegetation was common, and banks eroded on straight stretches as frequently as on meander bends. Six bridges in the upper reach constrict the channel by an average of 38% of the original width, causing severe erosion. In the downstream control reach, where human use was minimal, channel widths both decreased and increased, with a mean increase of only 4% since 1919. Bank erosion in the control reach occurred primarily on meander bends. The control reach also had denser stands of riparian vegetation and a higher frequency of large woody debris in channels. There is only one bridge in the lower reach, located at the downstream end. Since 1919, bank erosion in the impacted upstream reach contributed a significant amount of sediment (74,800 tonnes, equivalent to 2.0 t/km2/yr) to the river. An analysis of 75 years of precipitation and hydrologic records showed no trends responsible for bank erosion in the upper reach. Sediment input to the upper reach has not changed significantly during the study period. Floodplain soils are sandy, with low cohesion and are easily detached by lateral erosion. The degree of channel widening was positively correlated with the percentage of bare ground on the streambanks and low bank stability ratings. Low bank stability ratings were, in turn, strongly associated with high human use areas. Channel widening and bank erosion in the upper reach were due primarily to destruction of riparian vegetation by human trampling and the effect of bridge constrictions on high flow, and secondarily to poorly installed channel revetments. Several specific recommendations for river restoration were provided to park management.  相似文献   

7.
ABSTRACT: Most hydrologic models require input parameters which represent the variability found across an entire landscape. The estimation of such parameters is very difficult, particularly on rangeland. Improved model parameter estimation procedures are needed which incorporate the small-scale and temporal variability found on rangeland. This study investigates the use of a surface soil classification scheme to partition the spatial variability in hydrologic and interrill erosion processes in a sagebrush plant community. Four distinct microsites were found to exist within the sagebrush coppice-dune dune-interspace complex. The microsites explained the majority of variation in hydrologic and interrill erosion response found on the site and were discernable based on readily available soil and vegetation information. The variability within each microsite was quite low and was not well correlated with soil and vegetation properties. The surface soil classification scheme defined in this study can be quite useful for defining sampling procedures, for understanding hydrologic and erosion processes, and for parameterizing hydrologic models for use on sagebrush range-land.  相似文献   

8.
Geomorphic change from extreme events in large managed rivers has implications for river management. A steady‐state, quasi‐three‐dimensional hydrodynamic model was applied to a 29‐km reach of the Missouri River using 2011 flood data. Model results for an extreme flow (500‐year recurrence interval [RI]) and an elevated managed flow (75‐year RI) were used to assess sediment mobility through examination of the spatial distribution of boundary or bed shear stress (τb) and longitudinal patterns of average τb, velocity, and kurtosis of τb. Kurtosis of τb was used as an indicator of planform channel complexity and can be applied to other river systems. From differences in longitudinal patterns of sediment mobility for the two flows we can infer: (1) under extreme flow, the channel behaves as a single‐thread channel controlled primarily by flow, which enhances the meander pattern; (2) under elevated managed flows, the channel behaves as multithread channel controlled by the interaction of flow with bed and channel topography, resulting in a more complex channel; and (3) for both flows, the model reach lacks a consistent pattern of deposition or erosion, which indicates migration of areas of erosion and deposition within the reach. Despite caveats and limitations, the analysis provides useful information about geomorphic change under extreme flow and potential implications for river management. Although a 500‐year RI is rare, extreme hydrologic events such as this are predicted to increase in frequency.  相似文献   

9.
ABSTRACT: Storm water management is a concept being applied in many urban areas to deal with the increasing problems of storm runoff control and flood damage prevention. This paper introduces the concept and describes the recently completed storm water management program in Columbus, Georgia. Columbus has spent five years and over $200,000 in the development of their problem which includes several basic elements: soils inventory and analysis, hydrologic data collection, sediment and erosion control ordinance, storm water management handbook, urban flood simulation model, interdepartment coordination study, drainage problem categorization study, and a pilot basin study. The results of the pilot basin study are presented including example output from the urban simulation model. The computer output illustrates both the hydrologic-hydraulic and economic capabilities of the model.  相似文献   

10.
ABSTRACT. In urban hydrologic studies, it is often necessary to determine the effect of changes in urban land use patterns on such runoff characteristics as flood peaks and flow volumes. Nonparametric statistical methods have certain properties that make them a valuable tool for detecting hydrologic change caused by a treatment, such as urbanization, that changes watershed over a period of time. As many hydrologists do not have a working familiarity with nonparametric methods, a number of them are used for illustrative purposes to analyze the effect of urbanization on 24 years of annual flood peaks for a Louisville, Kentucky, watershed. In the example, urbanization was found to increase the central tendency, but not the dispersion of the peaks. Peak flows modeled by holding watershed parameters constant were also found to be increasing because of an upward trend in precipitation. By following the numerical examples in the paper and looking up test statistics in referenced sources, the reader can easily apply these methods to other situations.  相似文献   

11.
ABSTRACT: Historic changes in stream channel morphology were investigated in the Georgia Piedmont to better understand the hydrologic processes and functioning of the region's riverine systems. USGS gaging station data and channel geomorphology data were collected from thirty study sites in the Upper Oconee River Basin for flood frequency analysis. Historic and modern (i.e., present-day) channel capacity discharge (i.e., overbank flow) was calculated using Manning's equation and historic channel cross-section records. The recurrence interval for overbank flow was estimated for each site from flood frequency data. Results indicate that channel expansion has occurred throughout the basin, especially in upper reaches. Recurrence intervals for modern overbank events were variable and generally high ranging from < 2 to > 500 years for first to third order streams. They were less variable and lower for fourth and fifth order streams, ranging from < 2 to 3 years. Potential depositional thresholds were identified that exemplify the complex response of sediment distribution patterns throughout the basin. Results indicate overbank flows occur less frequently now than they once did due to historic accelerated sedimentation and subsequent channel expansion. One application of these findings is that these basin processes are likely applicable across the region and may impact the hydrologic functioning of associated Piedmont riverine wetlands that depend on flooding regimes.  相似文献   

12.
ABSTRACT: Bank erosion along a river channel determines the pattern of channel migration. Lateral channel migration in large alluvial rivers creates new floodplain land that is essential for riparian vegetation to get established. Migration also erodes existing riparian, agricultural, and urban lands, sometimes damaging human infrastructure (e.g., scouring bridge foundations and endangering pumping facilities) in the process. Understanding what controls the rate of bank erosion and associated point bar deposition is necessary to manage large alluvial rivers effectively. In this study, bank erosion was proportionally related to the magnitude of stream power. Linear regressions were used to correlate the cumulative stream power, above a lower flow threshold, with rates of bank erosion at 13 sites on the middle Sacramento River in California. Two forms of data were used: aerial photography and field data. Each analysis showed that bank erosion and cumulative effective stream power were significantly correlated and that a lower flow threshold improves the statistical relationship in this system. These correlations demonstrate that land managers and others can relate rates of bank erosion to the daily flow rates of a river. Such relationships can provide information concerning ecological restoration of floodplains related to channel migration rates as well as planning that requires knowledge of the relationship between flow rates and bank erosion rates.  相似文献   

13.
14.
Over the past 35 years, a trend of decreasing water clarity has been documented in Lake Tahoe, attributable in part to the delivery of fine grained sediment emanating from upland and channel erosion. A recent study showed that the Upper Truckee River is the single largest contributor of sediment to Lake Tahoe, with a large proportion of the sediment load emanating from streambanks. This study combines field data with numerical modeling to identify the critical conditions for bank stability along an unstable reach of the Upper Truckee River, California. Bank failures occur during winter and spring months, brought on by repeated basal melting of snow packs and rain‐on‐snow events. Field studies of young lodgepole pines and Lemmon's willow were used to quantify the mechanical, hydrologic, and net effects of riparian vegetation on streambank stability. Lemmon's willow provided an order of magnitude more root reinforcement (5.5 kPa) than the lodgepole pines (0.5 kPa); the hydrologic effects of the species varied spatially and temporally and generally were of a smaller magnitude than the mechanical effects. Overall, Lemmon's willow provided a significant increase in bank strength, reducing the frequency of bank failures and delivery of fine grained sediment to the study reach of the Upper Truckee River.  相似文献   

15.
Light Detection and Ranging (LiDAR), is relatively inexpensive, provides high spatial resolution sampling at great accuracy, and can be used to generate surface terrain and land cover datasets for urban areas. These datasets are used to develop high‐resolution hydrologic models necessary to resolve complex drainage networks in urban areas. This work develops a five‐step algorithm to generate indicator fields for tree canopies, buildings, and artificial structures using Geographic Resources Analysis Support System (GRASS‐GIS), and a common computing language, Matrix Laboratory. The 54 km2 study area in Parker, Colorado consists of twenty‐four 1,500 × 1,500 m LiDAR subsets at 1 m resolution with varying degrees of urbanization. The algorithm correctly identifies 96% of the artificial structures within the study area; however, application success is dependent upon urban extent. Urban land use fractions below 0.2 experienced an increase in falsely identified building locations. ParFlow, a three‐dimensional, grid‐based hydrological model, uses these building and artificial structure indicator fields and digital elevation model for a hydrologic simulation. The simulation successfully develops the complex drainage network and simulates overland flow on the impervious surfaces (i.e., along the gutters and off rooftops) made possible through this spatial analysis process.  相似文献   

16.
ABSTRACT: Major erosion of urban stream channels is found in smaller basins in the North Texas study area with contributing drainage areas of less than ten square miles. Within these basins, four basic channel types are identified based on bed and bank lithologies: alluvial banks and bottoms, alluvial banks and gravel bottoms, alluvial banks with rock bottoms, and rock banks with rock bottoms. Most channels (75 percent) have alluvial banks with gravel or rock bottoms. Channel slopes are steep (.38 to.76 percent). Rock consists predominantly of shale and limestone. Channel cross sections are divided into the following four zones based on weathering, scour and entrainment mechanisms: soil zone, slake zone, rock zone and bed material zone. Erodibility of the channels is determined using multiple techniques including reach hydraulics and stream power computations, submerged jet testing, slab entrainment thresholds, and slake durability rates. Procedures are based on both empirical and modeled time series estimates of channel erosion. Field and modeled results support rates of erosion of up to four inches per year. Rates are tied to flow regime, climate, and type of channel bed and banks.  相似文献   

17.
The Road Erosion and Delivery Index (READI) is a new geographic information system–based model to assess erosion and delivery of water and sediment from unpaved road networks to streams. READI quantifies the effectiveness of existing road surfacing and drain placements in reducing road sediment delivery and guides upgrades to optimize future reductions. Roads are draped on a digital elevation model and parsed into hydrologically distinct segments. Segments are further divided by engineered drainage structures. For each segment, a kinematic wave approximation generates runoff hydrographs for specified storms, with discharge directly to streams at road–stream crossings and onto overland‐flow plumes at other discharge points. Plumes are attenuated by soil infiltration, which limits their length, with delivery occurring if plumes intersect streams. Sediment production and sediment delivery can be calculated as a relative dimensionless index. READI predicts only a small proportion of new drains and new surfacing results in the majority of sediment delivery reductions. The model illustrates how the spatial relationships between road and stream networks, controlled by topography and network geometries, influence patterns of road–stream connectivity. READI was applied in seven northern California basins. The model was also applied in a recent burn area to examine how reduced hillslope infiltration can result in increased hydrologic connectivity and sediment delivery.  相似文献   

18.
ABSTRACT: The shape of a river channel is linked to surrounding land use through interacting hydrologic and geologic processes. This study analyzes the relationship between the change in near‐stream land use and the shape of the adjacent river channel over time. Three watersheds in the foothills of the Venezuelan Andes that have experienced differing degrees of development were studied to determine river channel width, sinuosity, and position relative to surrounding land use. Change in land use over time was obtained from multiple‐date aerial photographs (1946 and 1980) referenced to 1996 Landsat Thematic Mapper (TM) satellite imagery, and verified by field inspection. Measurements of land‐use type and amount and river channel morphology from the two dates were made using geographic information system (GIS) methods. The three watersheds differed in the extent of deforestation, the location of remaining forested land, and how much land‐use change had already occurred by 1946. Change in river channel morphology was greatest at the most deforested sites. Valley shape and channel constraint also had a discernible effect on change in channel morphology. This study introduces a method for analyzing change in coupled terrestrial‐aquatic systems based on multiple‐date, remotely sensed data and GIS analysis of spatial properties. The results document human impacts on river channels through a comparison of multiple watersheds over a 35‐year time interval.  相似文献   

19.
The Bank Assessment of Nonpoint source Consequences of Sediment (BANCS) framework allows river scientists to predict annual sediment yield from eroding streambanks within a hydrophysiographic region. BANCS involves field data collection and the calibration of an empirical model incorporating a bank erodibility hazard index (BEHI) and near‐bank shear stress (NBS) estimate. Here we evaluate the applicability of BANCS to the northern Gulf of Mexico coastal plain, a region that has not been previously studied in this context. Erosion rates averaged over two years expressed the highest variability of any existing BANCS study. As a result, four standard BANCS models did not yield statistically significant correlations to measured erosion rates. Modifications to two widely used NBS estimates improved their correlations (r2 = 0.31 and r2 = 0.33), but further grouping of the data by BEHI weakened these correlations. The high variability in measured erosion rates is partly due to the regional hydrologic and climatic characteristics of the Gulf coastal plains, which include large, infrequent precipitation events. Other sources of variability include variations in bank vegetation and the complex hydro‐ and morphodynamics of meandering, sand bed channels. We discuss directions for future research in developing a streambank erosion model for this and similar regions.  相似文献   

20.
Abstract: Land use in a watershed is commonly held to exert a strong influence on trunk channel form and process. Land use changes act over human time‐scales, which are short enough to measure effects on channels directly using historic aerial photographs. We show that high‐resolution topographic surveys for the channels of paired watersheds in the Lehigh Valley, Pennsylvania, are comparable, but have channel widths that have changed dramatically in the past five decades. The two watersheds, Little Lehigh Creek and Sacony Creek, are similar in most aspects except in their respective amount of urban land use. Aerial photographs of the urbanized Little Lehigh Creek show that a majority of the measured widths (67 of 85) were statistically wider in 1999 than in 1947. In contrast, the measured widths from the agricultural Sacony Creek are more evenly distributed among those that widened (18), narrowed (28), and those that were statistically unchanged (6) from 1946 to 1999. From 1946 to 1999 the only section of Sacony Creek that widened was that reach downstream of the only sizable urban area in the watershed. The current land use in Sacony Creek watershed resembles that of 1946, while the Little Lehigh Creek watershed has more than tripled its urban area. These data, in concert with other recent hydrologic data from the watersheds suggest that the increase in urban area‐generated peak discharges is the mechanism behind the widening that occurred in the Little Lehigh Creek. These wider channels can affect water quality, aquatic habitat, suspended sediment loads, and river esthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号