首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Methane (CH4) oxidation by aerobic methanotrophs in landfill-cover soils decreases emissions of landfill-produced CH4 to the atmosphere. To quantify in situ rates of CH4 oxidation we performed five gas push–pull tests (GPPTs) at each of two locations in the cover soil of the Lindenstock landfill (Liestal, Switzerland) over a 4 week period. GPPTs consist of the injection of a gas mixture containing CH4, O2 and noble gas tracers followed by extraction from the same location. Quantification of first-order rate constants was based upon comparison of breakthrough curves of CH4 with either Ar or CH4 itself from a subsequent inactive GPPT containing acetylene as an inhibitor of CH4 oxidation. The maximum calculated first-order rate constant was 24.8 ± 0.8 h?1 at location 1 and 18.9 ± 0.6 h?1 at location 2. In general, location 2 had higher background CH4 concentrations in vertical profile samples than location 1. High background CH4 concentrations in the cover soil during some experiments adversely affected GPPT breakthrough curves and data interpretation. Real-time PCR verified the presence of a large population of methanotrophs at the two GPPT locations and comparison of stable carbon isotope fractionation of CH4 in an active GPPT and a subsequent inactive GPPT confirmed that microbial activity was responsible for the CH4 oxidation. The GPPT was shown to be a useful tool to reproducibly estimate in situ rates of CH4 oxidation in a landfill-cover soil when background CH4 concentrations were low.  相似文献   

2.
Methane oxidation in a landfill cover with capillary barrier   总被引:6,自引:0,他引:6  
The methane oxidation potential of a landfill cover with capillary barrier was investigated in an experimental plant (4.8 m x 0.8 m x 2.1m). The cover soil consisted of two layers, a mixture of compost plus sand (0.3 m) over a layer of loamy sand (0.9 m). Four different climatic conditions (summer, winter, spring and fall) were simulated. In and outgoing fluxes were measured. Gas composition, temperature, humidity, matrix potential and gas pressure were monitored in two profiles. CH4 oxidation rate within the investigated top cover ranged from 98% to 57%. The minimum was observed for a short time after irrigation. Temperature distribution, gas concentration profiles and lab-scaled batch experiments indicate that before irrigation the highest oxidising activity took place in a depth of about 30 cm. After irrigation the oxidising horizon seemed to migrate upwards since methanotrophic bacteria develop better there due to an adequate supply with oxygen. It can be assumed that the absence of oxygen is one of the most important limiting factors for the CH4 oxidation process. Abrupt cross-overs between horizons of different soil material may lead to zones of increased water saturation and decreased soil respiration.  相似文献   

3.
Biologically-active landfill cover soils (biocovers) that serve to minimize CH4 emissions by optimizing CH4 oxidation were investigated at a landfill in Florida, USA. The biocover consisted of 50 cm pre-composted yard or garden waste placed over a 10-15 cm gas distribution layer (crushed glass) over a 40-100 cm interim cover. The biocover cells reduced CH4 emissions by a factor of 10 and doubled the percentage of CH4 oxidation relative to control cells. The thickness and moisture-holding capacity of the biocover resulted in increased retention times for transported CH4. This increased retention of CH4 in the biocover resulted in a higher fraction oxidized. Overall rates between the two covers were similar, about 2g CH4 m(-2)d(-1), but because CH4 entered the biocover from below at a slower rate relative to the soil cover, a higher percentage was oxidized. In part, methane oxidation controlled the net flux of CH4 to the atmosphere. The biocover cells became more effective than the control sites in oxidizing CH4 3 months after their initial placement: the mean percent oxidation for the biocover cells was 41% compared to 14% for the control cells (p<0.001). Following the initial 3 months, we also observed 29 (27%) negative CH4 fluxes and 27 (25%) zero fluxes in the biocover cells but only 6 (6%) negative fluxes and 22 (21%) zero fluxes for the control cells. Negative fluxes indicate uptake of atmospheric CH4. If the zero and negative fluxes are assumed to represent 100% oxidation, then the mean percent oxidation for the biocover and control cells, respectively, for the same period would increase to 64% and 30%.  相似文献   

4.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

5.
Methane flux and oxidation at two types of intermediate landfill covers   总被引:4,自引:0,他引:4  
Methane emissions were measured on two areas at a Florida (USA) landfill using the static chamber technique. Because existing literature contains few measurements of methane emissions and oxidation in intermediate cover areas, this study focused on field measurement of emissions at 15-cm-thick non-vegetated intermediate cover overlying 1-year-old waste and a 45-cm-thick vegetated intermediate cover overlying 7-year-old waste. The 45 cm thick cover can also simulate non-engineered covers associated with older closed landfills. Oxidation of the emitted methane was evaluated using stable isotope techniques. The arithmetic means of the measured fluxes were 54 and 22 g CH(4) m(-2)d(-1) from the thin cover and the thick cover, respectively. The peak flux was 596 g m(-2)d(-1) for the thin cover and 330 g m(-2)d(-1) for the thick cover. The mean percent oxidation was significantly greater (25%) at the thick cover relative to the thin cover (14%). This difference only partly accounted for the difference in emissions from the two sites. Inverse distance weighing was used to describe the spatial variation of flux emissions from each cover type. The geospatial mean flux was 21.6 g m(-2)d(-1) for the thick intermediate cover and 50.0 g m(-2)d(-1) for the thin intermediate cover. High emission zones in the thick cover were fewer and more isolated, while high emission zones in the thin cover were continuous and covered a larger area. These differences in the emission patterns suggest that different CH(4) mitigation techniques should be applied to the two areas. For the thick intermediate cover, we suggest that effective mitigation of methane emissions could be achieved by placement of individualized compost cells over high emission zones. Emissions from the thin intermediate cover, on the other hand, can be mitigated by placing a compost layer over the entire area.  相似文献   

6.
In addition to methane (CH(4)) and carbon dioxide (CO(2)), landfill gas may contain more than 200 non-methane organic compounds (NMOCs) including C(2+)-alkanes, aromatics, and halogenated hydrocarbons. Although the trace components make up less than 1% v/v of typical landfill gas, they may exert a disproportionate environmental burden. The objective of this work was to study the dynamics of CH(4) and NMOCs in the landfill cover soils overlying two types of gas collection systems: a conventional gas collection system with vertical wells and an innovative horizontal gas collection layer consisting of permeable gravel with a geomembrane above it. The 47 NMOCs quantified in the landfill gas samples included primarily alkanes (C(2)-C(10)), alkenes (C(2)-C(4)), halogenated hydrocarbons (including (hydro)chlorofluorocarbons ((H)CFCs)), and aromatic hydrocarbons (BTEXs). In general, both CH(4) and NMOC fluxes were all very small with positive and negative fluxes. The highest percentages of positive fluxes in this study (considering all quantified species) were observed at the hotspots, located mainly along cell perimeters of the conventional cell. The capacity of the cover soil for NMOC oxidation was investigated in microcosms incubated with CH(4) and oxygen (O(2)). The cover soil showed a relatively high capacity for CH(4) oxidation and simultaneous co-oxidation of the halogenated aliphatic compounds, especially at the conventional cell. Fully substituted carbons (TeCM, PCE, CFC-11, CFC-12, CFC-113, HFC-134a, and HCFC-141b) were not degraded in the presence of CH(4) and O(2). Benzene and toluene were also degraded with relative high rates. This study demonstrates that landfill soil covers show a significant potential for CH(4) oxidation and co-oxidation of NMOCs.  相似文献   

7.
Landfills that generate too little biogas for economic energy recovery can potentially offset methane (CH4) emissions through biological oxidation by methanotrophic bacteria in cover soils. This study reports on the CH4 oxidation efficiency of a 10-year old landfill cap comprising a volcanic pumice soil. Surface CH4 and CO2 fluxes were measured using field chambers during three sampling intervals over winter and summer. Methane fluxes were temporally and spatially variable (?0.36 to 3044 mg CH4 m?2 h?1); but were at least 15 times lower than typical literature CH4 fluxes reported for older landfills in 45 of the 46 chambers tested. Exposure of soil from this landfill cover to variable CH4 fluxes in laboratory microcosms revealed a very strong correlation between CH4 oxidation efficiency and CH4/CO2 ratios, confirming the utility of this relationship for approximating CH4 oxidation efficiency. CH4/CO2 ratios were applied to gas concentrations from the surface flux chambers and indicated a mean CH4 oxidation efficiency of 72%. To examine CH4 oxidation with soil depth, we collected 10 soil depth profiles at random locations across the landfill. Seven profiles exhibited CH4 removal rates of 70–100% at depths <60 cm, supporting the high oxidation rates observed in the chambers. Based on a conservative 70% CH4 oxidation efficiency occurring at the site, this cover soil is clearly offsetting far greater CH4 quantities than the 10% default value currently adopted by the IPCC.  相似文献   

8.
Micrometeorological measurements of methane (CH4) and nitrous oxide (N2O) emissions were made at the decommissioned Park Road Landfill in Grimsby, Ontario, Canada between June and August 2002. The influence of precipitation, air temperature, wind speed and barometric pressure on the temporal variability of landfill biogas emissions was assessed. Gas flux measurements were obtained using a micrometeorological mass balance measurement technique [integrated horizontal flux (IHF)] in conjunction with two tunable diode laser trace gas analyser (TDLTGA) systems. This method allows for continuous, non-intrusive measurements of gas flux at high temporal resolution. Mean fluxes of N2O were negligible over the duration of the study (-0.23 to 0.02 microg m(-2) s(-1)). In contrast, mean emissions of CH4 were much greater (80.4 to 450.8 microg m(-2) s(-1)) and varied both spatially and temporally. Spatial variations in CH4 fluxes were observed between grass kill areas (biogas 'hot spots') and the densely grass-covered areas of the landfill. Temporal variations in CH4 fluxes were also observed, due at least in part to barometric pressure, wind speed and precipitation effects.  相似文献   

9.
Landfill cover soils oxidize a considerable fraction of the methane produced by landfilled waste. Despite many efforts this oxidation is still poorly quantified. In order to reduce the uncertainties associated with methane oxidation in landfill cover soils, a simulation model was developed that incorporates Stefan-Maxwell diffusion, methane oxidation, and methanotrophic growth. The growth model was calibrated to laboratory data from an earlier study. There was an excellent agreement between the model and the experimental data. Therefore, the model is highly applicable to laboratory column studies, but it has not been validated with field data. A sensitivity analysis showed that the model is most sensitive to the parameter expressing the maximum attainable methanotrophic activity of the soil. Temperature and soil moisture are predicted to be the environmental factors affecting the methane oxidizing capacity of a landfill cover soil the most. Once validated with field data, the model will enable a year-round estimate of the methane oxidizing capacity of a landfill cover soil.  相似文献   

10.
Landfill gas (LFG) emissions from municipal solid waste (MSW) landfills are an important environmental concern in Brazil due to the existence of several uncontrolled disposal sites. A program of laboratory and field tests was conducted to investigate gas generation in and emission from an Experimental Cell with a 36,659-ton capacity in Recife/PE - Brazil. This investigation involved waste characterisation, gas production and emission monitoring, and geotechnical and biological evaluations and was performed using three types of final cover layers. The results obtained in this study showed that waste decomposes 4-5 times faster in a tropical wet climate than predicted by traditional first-order models using default parameters. This fact must be included when considering the techniques and economics of projects developed in tropical climate countries. The design of the final cover layer and its geotechnical and biological behaviour proved to have an important role in minimising gas emissions to the atmosphere. Capillary and methanotrophic final cover layers presented lower CH4 flux rates than the conventional layer.  相似文献   

11.
Many developed countries have targeted landfill methane recovery among greenhouse gas mitigation strategies, since methane is the second most important greenhouse gas after carbon dioxide. Major questions remain with respect to actual methane production rates in field settings and the relative mass of methane that is recovered, emitted, oxidized by methanotrophic bacteria, laterally migrated, or temporarily stored within the landfill volume. This paper presents the results of extensive field campaigns at three landfill sites to elucidate the total methane balance and provide field measurements to quantify these pathways. We assessed the overall methane mass balance in field cells with a variety of designs, cover materials, and gas management strategies. Sites included different cell configurations, including temporary clay cover, final clay cover, geosynthetic clay liners, and geomembrane composite covers, and cells with and without gas collection systems. Methane emission rates ranged from -2.2 to >10,000 mg CH(4) m(-2) d(-1). Total methane oxidation rates ranged from 4% to 50% of the methane flux through the cover at sites with positive emissions. Oxidation of atmospheric methane was occurring in vegetated soils above a geomembrane. The results of these studies were used as the basis for guidelines by the French environment agency (ADEME) for default values for percent recovery: 35% for an operating cell with an active landfill gas (LFG) recovery system, 65% for a temporary covered cell with an active LFG recovery system, 85% for a cell with clay final cover and active LFG recovery, and 90% for a cell with a geomembrane final cover and active LFG recovery.  相似文献   

12.
Landfilling is one of the most common ways of municipal solid waste disposal. Degradation of organic waste produces CH(4) and other landfill gases that significantly contribute to global warming. However, before entering the atmosphere, part of the produced CH(4) can be oxidised while passing through the landfill cover. In the present study, the oxidation rate of CH(4) was studied with various types of compost as possible landfill cover. The influence of incubation time, moisture content and temperature on the CH(4) oxidation capacity of different types of compost was examined. It was observed that the influence of moisture content and temperature on methane oxidation is time-dependent. Maximum oxidation rates were observed at moisture contents ranging from 45% to 110% (dry weight basis), while the optimum temperature ranged from 15 to 30 degrees C.  相似文献   

13.
Bioreactor landfills are designed to accelerate municipal solid waste biodegradation and stabilization; however, the uncaptured methane gas escapes to the atmosphere during their filling. This research investigates the implementation of a novel methane emission control technique that involves thin biocovers (TBC) placed as intermediate waste covers to oxidize methane without affecting the operation of bioreactor landfills. Batch incubation experiments were conducted for selecting the optimum TBC materials, capable of oxidizing methane to carbon dioxide by methanotrophic bacteria. Column experiments were performed to investigate the TBC performance under varying moisture content, compost-to-sawdust ratio, methane flow rate, and biocover thickness. Overall, the optimum TBC is comprised of a 30-cm thick bed of 0-10mass% sawdust mixed with compost, having a moisture content of 52% ww, which showed 100% CH4 oxidation efficiency over an extended period of time even at a relatively high methane inlet load of 9.4gm(-3)h(-1).  相似文献   

14.
We are presenting here a multi-isotope approach (δ13C and δ18O of CO2; δ13C and δD of CH4) to assess (i) the level(s) of methane oxidation during waste biodegradation and its migration through a landfill cover in Sonzay (France), and (ii) its contribution to the atmospheric CO2 levels above the surface. The isotope approach is compared to the more conventional mass balance approach. Results from the two techniques are comparable and show that the CH4 oxidation under the landfill cover is heterogenous, with low oxidation percentages in samples showing high biogas fluxes, which was expected in clay covers presenting fissures, through which CH4 is rapidly transported. At shallow depth, more immobile biogas pockets show a higher level of CH4 oxidation by the methanotrophic bacteria. δ13C of CO2 samples taken at different heights (from below the cover up to 8 m above the ground level) were also used to identify and assess the relative contributions of its main sources both under the landfill cover and in the surrounding atmosphere.  相似文献   

15.
A technique to measure biological methane oxidation in landfill cover soils that is gaining increased interest is the measurement of stable isotope fractionation in the methane. Usually to quantify methane oxidation, only fractionation by oxidation is taken into account. Recently it was shown that neglecting the isotope fractionation by diffusion results in underestimation of the methane oxidation. In this study a simulation model was developed that describes gas transport and methane oxidation in landfill cover soils. The model distinguishes between (12)CH(4), (13)CH(4), and (12)CH(3)D explicitly, and includes isotope fractionation by diffusion and oxidation. To evaluate the model, the simulations were compared with column experiments from previous studies. The predicted concentration profiles and isotopic profiles match the measured ones very well, with a root mean square deviation (RMSD) of 1.7vol% in the concentration and a RMSD of 0.8 per thousand in the delta(13)C value, with delta(13)C the relative (13)C abundance as compared to an international standard. Overall, the comparison shows that a model-based isotope approach for the determination of methane oxidation efficiencies is feasible and superior to existing isotope methods.  相似文献   

16.
Landfill aeration by means of low pressure air injection is a promising tool to reduce long term emissions from organic waste fractions through accelerated biological stabilization. Top covers that enhance methane oxidation could provide a simple and economic way to mitigate residual greenhouse gas emissions from in situ aerated landfills, and may replace off-gas extraction and treatment, particularly at smaller and older sites. In this respect the installation of a landfill cover system adjusted to the forced-aerated landfill body is of great significance. Investigations into large scale lysimeters (2 × 2 × 3 m) under field conditions have been carried out using different top covers including compost materials and natural soils as a surrogate to gas extraction during active low pressure aeration. In the present study, the emission behaviour as well as the water balance performance of the lysimeters has been investigated, both prior to and during the first months of in situ aeration. Results reveal that mature sewage sludge compost (SSC) placed in one lysimeter exhibits in principle optimal ambient conditions for methanotrophic bacteria to enhance methane oxidation. Under laboratory conditions the mature compost mitigated CH4 loadings up to 300 l CH4/m2 d. In addition, the compost material provided high air permeability even at 100% water holding capacity (WHC). In contrast, the more cohesive, mineral soil cover was expected to cause a notably uniform distribution of the injected air within the waste layer. Laboratory results also revealed sufficient air permeability of the soil materials (TS-F and SS-Z) placed in lysimeter C. However, at higher compaction density SS-Z became impermeable at 100% WHC.Methane emissions from the reference lysimeter with the smaller substrate cover (12–52 g CH4/m2 d) were significantly higher than fluxes from the other lysimeters (0–19 g CH4/m2 d) during in situ aeration. Regarding water balance, lysimeters covered with compost and compost-sand mixture, showed the lowest leachate rate (18–26% of the precipitation) due to the high water holding capacity and more favourable plant growth conditions compared to the lysimeters with mineral, more cohesive, soil covers (27–45% of the precipitation).On the basis of these results, the authors suggest a layered top cover system using both compost material as well as mineral soil in order to support active low-pressure aeration. Conventional soil materials with lower permeability may be used on top of the landfill body for a more uniform aeration of the waste due to an increased resistance to vertical gas flow. A compost cover may be built on top of the soil cover underlain by a gas distribution layer to improve methane oxidation rates and minimise water infiltration. By planting vegetation with a high transpiration rate, the leachate amount emanating from the landfill could be further minimised. The suggested design may be particularly suitable in combination with intermittent in situ aeration, in the later stage of an aeration measure, or at very small sites and shallow deposits. The top cover system could further regulate water infiltration into the landfill and mitigate residual CH4 emissions, even beyond the time of active aeration.  相似文献   

17.
The influence of atmospheric pressure on landfill methane emissions   总被引:3,自引:0,他引:3  
Landfills are the largest source of anthropogenic methane (CH4) emissions to the atmosphere in the United States. However, few measurements of whole landfill CH4 emissions have been reported. Here, we present the results of a multi-season study of whole landfill CH4 emissions using atmospheric tracer methods at the Nashua, New Hampshire Municipal landfill in the northeastern United States. The measurement data include 12 individual emission tests, each test consisting of 5-8 plume measurements. Measured emissions were negatively correlated with surface atmospheric pressure and ranged from 7.3 to 26.5 m3 CH4 min(-1). A simple regression model of our results was used to calculate an annual emission rate of 8.4 x 10(6) m3 CH4 year(-1). These data, along with CH4 oxidation estimates based on emitted landfill gas isotopic characteristics and gas collection data, were used to estimate annual CH4 generation at this landfill. A reported gas collection rate of 7.1 x 10(6) m3 CH4 year(-1) and an estimated annual rate of CH4 oxidation by cover soils of 1.2 x 10(6) m3 CH4 year(-1) resulted in a calculated annual CH4 generation rate of 16.7 x 10(6) m3 CH4 year(-1). These results underscore the necessity of understanding a landfill's dynamic environment before assessing long-term emissions potential.  相似文献   

18.
The effect of leachate irrigation on methanotrophic activity in sandy loam-based landfill cover soil with vegetation was investigated. Laboratory-scale experiments were conducted to investigate the methane oxidation reaction in cover soil with and without plants (tropical grass). The methane oxidation rate in soil columns was monitored during leachate application at different organic concentrations and using different irrigation patterns. The results showed that the growth of plants on the final cover layer of landfill was promoted when optimal supplement nutrients were provided through leachate irrigation. The vegetation also helped to promote methane oxidation in soil, whereas leachate application helped increase the methane oxidation rate in nonvegetated cover soil. Intermittent application of leachate (once every 4 days) improved the methane oxidation activity as compared to daily application. Nevertheless, the adverse effects of organic overloading on methane oxidation rate and plant growth were also observed.  相似文献   

19.
Izmir is a large metropolitan city with a population of 3,114,860. The city consists of 27 townships, each township has a population of not less than 10,000 inhabitants. The two major solid waste disposal sites are in the townships of Uzundere and Harmandali. The amount of solid waste that is disposed at each of these sites is about 800 and 1800 t/day, respectively. In Uzundere, compost is produced from the organic fraction of urban solid wastes while the residual material is deposited at a disposal site with a remaining capacity of 700,000 m(3) as of 2001. Gas monitoring and measurements were carried out at the disposal site in Uzundere. For this purpose, nine sampling wells were drilled on selected locations. Each well was furnished with perforated metal pipes suitable for gas monitoring and measurements. The following gases were monitored: O(2), CH(4), CO, CO(2), and H(2)S. The most important finding was that the concentrations of CH(4) in the wells ranged from 7 to 57%. Dilution of the CH(4) by O(2) down to the LEL levels (5-15%) is always possible and poses a continuing risk at the site. Furthermore, the levels of O(2) require that access to the site be limited to only authorized personnel.  相似文献   

20.
Methane (CH(4)), which is one of the most abundant anthropogenic greenhouse gases, is produced from landfills. CH(4) is biologically oxidized to carbon dioxide, which has a lower global warming potential than methane, when it passes through a cover soil. In order to quantify the amount of CH(4) oxidized in a landfill cover soil, a soil column test, a diffusion cell test, and a mathematical model analysis were carried out. In the column test, maximum oxidation rates of CH(4) (V(max)) showed higher values in the upper part of the column than those in the lower part caused by the penetration of O(2) from the top. The organic matter content in the upper area was also higher due to the active microbial growth. The dispersion analysis results for O(2) and CH(4) in the column are counter-intuitive. As the upward flow rate of the landfill gas increased, the dispersion coefficient of CH(4) slightly increased, possibly due to the effect of mechanical dispersion. On the other hand, as the upward flow rate of the landfill gas increased, the dispersion coefficient of O(2) decreased. It is possible that the diffusion of gases in porous media is influenced by the counter-directional flow rate. Further analysis of other gases in the column, N(2) and CO(2), may be required to support this hypothesis, but in this paper we propose the possibility that the simulations using the diffusion coefficient of O(2) under the natural condition may overestimate the penetration of O(2) into the soil cover layer and consequently overestimate the oxidation of CH(4).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号