首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Abstract

This paper concerns the incineration of isopropyl alcohol (IPA) using the ferrospinel catalyst MnFe2O4. It covers the preparation of the ferrospinel catalyst, the screening of catalytic activity, catalytic incineration testing, and 72-hr decay testing of the catalyst. The experimental results of catalyst screening reveal that the Mn/Fe catalyst is the best of five prepared catalysts (chromium/iron [Cr/Fe], manganese/iron [Mn/Fe], zinc/iron [Zn/Fe], nickel/iron [Ni/Fe], and pure magnetite [Fe3O4]). In tests of the catalytic incineration system used to convert IPA, 98% conversion was obtained at a space velocity of 24,000 hr?1, an oxygen (O2) content of 21%, 1700 ppm of IPA, and a reaction temperature of 200 °C.  相似文献   

2.
In this study, styrene monomer (SM) was treated by a commercial catalyst, Mn2O3/Fe2O3, in a fixed-bed reactor. The study can be classified into two major parts. First, the effects of operating factors, such as temperature, SM concentration, space velocity, and O2 concentration, on the performance of the catalyst were investigated. Second, two catalyst life tests were carried out to characterize the deactivation effect of SM. The results show that the catalyst results in higher conversion of SM at a higher inlet temperature and higher O2 concentrations. The conversion of SM decreases with increasing SM concentration and space velocity. From the statistical analysis of the data, we find that temperature is the most important factor on the catalytic incineration. Oxygen concentration, SM concentration, and space velocity are significant parameters as well. This paper also provides information on the deactivation effect of SM. The catalysts were characterized by surface and pore-size analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron spectroscopy for chemical analysis (ESCA) before and after the tests. The results show that the catalytic deactivation may be caused by carbon coating, and the pore size and surface area of the catalyst are smaller after deactivation.  相似文献   

3.
The catalytic incineration of dimethyl sulfide and dimethyl disulfide [(CH3)2S and (CH3)2S2] over an MnO/Fe2O3 catalyst was carried out in a bench-scale catalytic incinerator. Three kinetic models (i.e., the power-rate law, the Mars and Van Krevelen model, and the Langmuir-Hinshelwood model) were used to analyze the results. A differential reactor design was used for best fit of kinetic models in this study. The results show that the Langmuir-Hinshelwood model may be feasible to describe the catalytic incineration of (CH3)2S and (CH3)2S2. This suggests that the chemical adsorption of O2 molecules is important in this incineration.  相似文献   

4.
Wang CH  Lin SS  Liou SB  Weng HS 《Chemosphere》2002,49(4):389-394
The CuO-MoO3/gamma-Al2O3 catalyst, confirmed previously as having good activity in the catalytic incineration of (CH3)2S2, was employed as the principal catalyst in this study. With the aim of improving catalyst activity and resistance to deactivation by sulfur compounds, a promoter was added either before adding the precursors of Cu and Mo or together with Cu and Mo onto the gamma-Al2O3. Promoters included transition metals and elements from groups IA-VIIA in the chemical periodic table. Experimental results reveal Cr2O3 as the most effective promoter, with an optimal composition of 5 wt.% Cu, 6 wt.% Mo and 4 wt.% Cr (designated as Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3). Knowing that higher acidity can improve activity, we further investigated the effect of acid treatment on the performance of the Cu(5)-Mo(6)-Cr(4)/gamma-Al2O3 catalyst. Experimental results indicate the H2SO4-treated catalyst (Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3) has a better activity and durability. A study for finding an appropriate rate expression for the catalytic incineration of (CH3)2S2 by Cu(5)-Mo(6)-Cr(4)/sulfated-gamma-Al2O3 was carried out in a differential reactor. The results show that the Mars-Van Krevelen model is applicable to this destructive oxidation reaction. Results additionally reveal that competitive adsorption of CH4 reduces conversion of (CH3)2S2.  相似文献   

5.
Jin GZ  Lee SJ  Kang JH  Chang YS  Chang YY 《Chemosphere》2008,70(9):1568-1576
Polyethylene (PE) and polyvinyl chloride (PVC) are the leading plastics in total production in the world. The incineration of plastic-based materials forms many chlorinated compounds, such as polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs). In this study the addition of goethite (alpha-FeOOH) was investigated to determine its suppressing effect on the emission of PCDD/Fs and hexachlorobenzene (HCB) during the combustion of wastes containing PE and PVC. Goethite was being considered since it acts as a dioxin-suppressing catalyst during incineration. Results showed that incorporation of goethite greatly reduced the generation of PCDD/Fs and HCB in the exhaust gas and fly ash. The concentration of PCDD/Fs in flue gas decreased by 45% for lab-scale and 52% for small incinerator combustion experiments, where the goethite ratios in feed samples were 0.54% and 0.34%, respectively. Under the same conditions, the concentration of HCB in flue gas decreased by 88% and 62%, respectively. The present study showed a possible mechanism of the suppressing effect of the goethite for PCDD/F formation. It is likely that iron chlorides react with particulate carbon to form organo-chlorine compounds and promote PCDD/F formation in the gas phase. XRD analysis of combustion ash revealed that the goethite was partially dehydrated and converted to alpha-Fe(2)O(3) and Fe(3)O(4) but no iron chlorides formation. Therefore the goethite impregnated plastics can contribute the reduction of PCDD/Fs and HCB in the exhaust gas during incineration of MSW.  相似文献   

6.
Fe(3+)-, Cr(3+)-, Cu(2+)-, Mn(2+)-, Co(2+)-, and Ni(2+)-exchanged Al2O3-pillared interlayer clay (PILC) or TiO2-PILC catalysts are investigated for the selective catalytic reduction (SCR) of nitric oxide by ammonia in the presence of excess oxygen. Fe(3+)-exchanged pillared clay is found to be the most active. The catalytic activity of Fe-TiO2-PILC could be further improved by the addition of a small amount of cerium ions or cerium oxide. H2O and SO2 increase both the activity and the product selectivity to N2. The maximum activity on the Ce-Fe-TiO2-PILC is more than 3 times as active as that on a vanadium catalyst. Moreover, compared to the V2O5-WO3/TiO2 catalyst, the Fe-TiO2-PILC catalysts show higher N2/N2O product selectivities and substantially lower activities (by approximately 85%) for SO2 oxidation to SO3 under the same reaction conditions. A 100-hr run in the presence of H2O and SO2 for the CeO2/Fe-TiO2-PILC catalyst showed no decrease in activity.  相似文献   

7.
Manganese acetate (MnAc) and manganese nitrate (MnN) were employed as precursors for the preparation of MnAc)/TiO2, Mn (N)/TiO2, Mn(Ac)-Ce/TiO2, and Mn(N)-Ce/TiO2 by impregnation. These complexes were used as catalysts in the low-temperature selective catalytic reduction of NO with NH3. The influence of manganese precursors on catalyst characteristics, the reduction activity, and the stability of the catalysts to poisoning by H2O and SO2 were studied. Experiments showed that Mn(N) produced MnO2 with large grain sizes in Mn(N)/TiO2 catalyst. On the contrary, Mn(Ac) led to highly dispersed and amorphous Mn2O3 in Mn (Ac)/TiO2 catalyst, which had better catalytic activity and stability to SO2 at low temperatures. The doping of cerium reduced the differences in catalytic performance between the catalysts derived from different Mn precursors.  相似文献   

8.
With the advances made in the past decade, catalytic incineration of volatile organic compounds (VOCs) has become the technology of choice in a wide range of pollution abatement strategies. In this study, a test was undertaken for the catalytic incineration, over a chromium oxide (Cr2O3) catalyst, of n-hexane, benzene, and an emission air/vapor mixture collected from an oil/water separator of a refinery. Reactions were carried out by controlling the feed stream to constant VOC concentrations and temperatures, in the ranges of 1300-14,700 mg/m3 and 240-400 degrees C, respectively. The destruction efficiency for each of the three VOCs as a function of influent gas temperature and empty bed gas residence time was obtained. Results indicate that n-hexane and the oil vapor with a composition of straight- and branch-chain aliphatic hydrocarbons exhibited similar catalytic incineration effects, while benzene required a higher incineration temperature or longer gas retention time to achieve comparable results. In the range of the VOC concentrations studied, at a given gas residence time, increasing the operating temperature of the catalyst bed increased the destruction efficiency. However, the much higher temperatures required for a destruction efficiency of over 99% may be not cost-effective and are not suggested. A first-order kinetics with respect to VOC concentration and an Arrhenius temperature dependence of the kinetic constant appeared to be an adequate representation for the catalytic oxidation of these volatile organics. Activation energy and kinetic constants were estimated for each of the VOCs. Low-temperature destruction of the target volatile organics could be achieved by using the Cr2O3 catalyst.  相似文献   

9.
Chen J  Zhu L 《Chemosphere》2006,65(7):1249-1255
Although homogeneous photo-Fenton system is a very efficient method for organic wastewater treatment, it suffers from costly pH adjustment as well as difficult separation of catalysts from aqueous in practical application. Through cation exchange reaction, hydroxyl-Fe-pillared bentonite (H-Fe-P-B) was successfully prepared as a solid catalyst for UV-Fenton to degrade non-biodegradable azo-dye Orange II. Compared with raw bentonite, the content of iron, interlamellar distance and external surface area of H-Fe-P-B increased remarkably. H-Fe-P-B had good photosensitivity and catalyst reactivity. And the catalytic activity of H-Fe-P-B for H(2)O(2) came from hydroxyl-Fe between sheets rather than Fe(3+) or Fe(2+) in tetrahedral or octahedral sheets of bentonite. In UVA-H(2)O(2) system, H(2)O(2) could destroy the azo bond of excited Orange II molecules but could not effectively mineralize it. After 120 min treatment, 83% discoloration was obtained while only 2% of TOC was removed. When H-Fe-P-B was used as catalyst, a significant degradation of Orange II was observed at the same condition as UVA-H(2)O(2) system. Almost 100% discoloration and more than 60% TOC removal of Orange II could be achieved after 120 min treatment. Because of the strong surface acidity and the electronegativity of H-Fe-P-B, the pH range of this catalyst in the Orange II discoloration could be extended up to 9.5. And this catalyst showed good stability during Orange II degradation in water in wide range of pH (3.0-9.5). These results indicated that the H-Fe-P-B was a promising catalyst for UV-Fenton system.  相似文献   

10.
采用共沉淀法,以Al2O3为载体制备Mn/γ-Al2O3和Mn—Ce/Mn/γ-Al2O3催化剂,并分别在N2气氛和O2气氛下焙烧。采用固定床连续流动反应器,研究所制备催化剂在室温条件下催化臭氧氧化甲苯的性能。通过XRD、XPS和FTIR等手段对催化剂的结构和组成进行表征。结果表明,Mn/Mn/γ-Al2O3催化剂具有良好的催化臭氧氧化甲苯和催化臭氧自身分解的性能,共沉淀法制备催化剂的最佳Mn负载量为20%。O2气氛焙烧和Ce的加入,可以有效提高催化剂的活性和寿命。原因是O2气氛焙烧和Ce的加入可以提高Mn的氧化价态。催化剂失活的主要原因是有机副产物在催化剂表面吸附堆积,失活催化剂在550℃、空气气氛下焙烧可恢复催化性能。  相似文献   

11.
The issue of investigations in this study was an application of heterogeneous Fenton-type catalyst, Fe-exchanged zeolite FeZSM5, for the minimization of phenol and overall organic content in the model wastewater. Applied treatment systems included variation of heterogeneous and homogeneous Fenton-type catalyst with and without the assistance of UV irradiation, FeZSM5/H2O2, Fe2+/H2O2/NH4ZSM5, Fe3+/H2O2/NH4ZSM5, UV/FeZSM5/H2O2, UV/Fe2+/H2O2/NH4ZSM5 and UV/Fe3+/H2O2/NH4ZSM5. Processes efficiency was evaluated on the basis of phenol removal, mineralization extent, H2O2 consumption and concentration of iron ions in the bulk after the treatment. By all applied systems, complete phenol removal was achieved in less than 30 min of treatment time. Systems including heterogeneous Fenton-type catalyst showed somewhat lower mineralization efficiency in comparison to the corresponding systems applying homogeneous Fenton-type catalysts and the addition of synthetic zeolite NH4ZSM5. Significantly lower concentration of iron ions in the bulk after the treatment could give these systems, particularly UV/FeZSM5/H2O2, a great advantage over the homogeneous Fenton-type systems.  相似文献   

12.
Seol Y  Javandel I 《Chemosphere》2008,72(4):537-542
Fenton's reagent, a solution of hydrogen peroxide and ferrous iron catalyst, is used for an in situ chemical oxidation of organic contaminants. Sulfuric acid is commonly used to create an acidic condition needed for catalytic oxidation. Fenton's reaction often involves pressure buildup and precipitation of reaction products, which can cause safety hazards and diminish efficiency. We selected citric acid, a food-grade substance, as an acidifying agent to evaluate its efficiencies for organic contaminant removal in Fenton's reaction, and examined the impacts of using citric acid on the unwanted reaction products. A series of batch and column experiments were performed with varying H2O2 concentrations to decompose selected chlorinated ethylenes. Either dissolved iron from soil or iron sulfate salt was added to provide the iron catalyst in the batch tests. Batch experiments revealed that both citric and sulfuric acid systems achieved over 90% contaminant removal rates, and the presence of iron catalyst was essential for effective decontamination. Batch tests with citric acid showed no signs of pressure accumulation and solid precipitations, however the results suggested that an excessive usage of H2O2 relative to iron catalysts (Fe2+/H2O2<1/330) would result in lowering the efficiency of contaminant removal by iron chelation in the citric acid system. Column tests confirmed that citric acid could provide suitable acidic conditions to achieve higher than 55% contaminant removal rates.  相似文献   

13.
将Fe3+负载在活性炭上制得载铁催化剂Fe/AC,并研究了该催化剂对邻苯二甲酸二甲酯(DMP)的催化降解性能。通过正交实验和单因素实验,探讨了催化剂投加量、H2O2投加量、溶液pH值和反应温度对水中DMP降解率的影响,同时对DMP矿化度进行了分析。实验结果表明,制得的载铁催化剂具有较高的催化活性;降解效果的影响顺序是反应温度〉催化剂投加量〉H2O2投加量〉溶液pH值;在反应温度为80℃、催化剂投加量为4 g/L、H2O2投加量为20 mL/L和溶液pH值为3的条件下反应120 min后,质量浓度为10 mg/L的DMP降解率最高可达97.73%;在优化的实验条件下反应150 min,DMP矿化度可达62.73%;催化剂反复使用5次仍具有较好的催化活性,DMP降解率仍可达到77%以上;反应过程中溶液Fe3+浓度的变化维持在1.07 mg/L左右,且可推测催化降解DMP主要是由非均相和均相催化氧化反应共同作用的。  相似文献   

14.
用液相催化氧化法对低浓度H2S净化进行实验研究.实验结果表明,对H2S浓度在1500-2500mg/m3之间,氧含量为5%的H2S尾气,Fe+、Zn2+和Mn2+在液相中对H2S具有催化氧化作用,其催化性能大小顺序为Fe2+>Zn2+>Mn2+,且Fe2+催化性能远远大于其他两种离子;用Fe2+作催化剂,溶液的净化效率可达99%以上,且硫容量也较大,对低浓度H2S的净化相当有利.  相似文献   

15.
Wang CH  Lin SS  Chen CL  Weng HS 《Chemosphere》2006,64(3):503-509
A fixed bed reactor was used to assess the catalytic incineration of toluene by various transition-metal oxide species supported on gamma-Al(2)O(3). CuO/gamma-Al(2)O(3) was found to be the most active of seven catalysts investigated. The CuO species, with a Cu content of 5% (wt), was hence used with four different supports (CeO(2), gamma-Al(2)O(3), TiO(2) and V(2)O(5)) in order to define the optimal combination. Results of the catalytic incineration of toluene, X-ray diffraction (XRD) analysis, oxygen-temperature programmed desorption (O(2)-TPD), toluene-temperature programmed desorption (toluene-TPD) and hydrogen-temperature programmed reduction (H(2)-TPR) showed that CuO/CeO(2) was the most active catalyst, followed by CuO/gamma-Al(2)O(3). The activity of CuO/CeO(2) with respect to the VOC molecule was observed to follow this sequence: toluen>p-xylene>benzene. The addition of water vapor or CO(2) significantly inhibited the activity of the CuO/CeO(2) and CuO/gamma-Al(2)O(3) catalysts. The inhibiting effect of both was reversible for CuO/gamma-Al(2)O(3). For CuO/CeO(2), the inhibiting effect of CO(2) was reversible and even insignificant at a higher temperature (220 degrees C), but the effect of H(2)O vapor was somewhat irreversible at lower incineration temperatures (220 degrees C). For complete oxidation of toluene, the required reaction temperature increased with gas hourly space velocity (GHSV) and toluene inlet concentration.  相似文献   

16.
Three treatment cells were operated at a site near Durango, CO. One treatment cell operated for more than 3 years. The treatment cells were used for passive removal of contamination from groundwater at a uranium mill tailings repository site. Zero-valent iron [Fe(0)] that had been powdered, bound with aluminosilicate and molded into plates was used as a reactive material in one treatment cell. The others used granular Fe(0) and steel wool. The treatment cells significantly reduced concentrations of As, Mn, Mo, Se, U, V and Zn in groundwater that flowed through it. Zero-valent iron [Fe(0)], magnetite (Fe3O4), calcite (CaCO3), goethite (FeOOH) and mixtures of contaminant-bearing phases were identified in the solid fraction of one treatment cell. A reaction progress approach was used to model chemical evolution of water chemistry as it reacted with the Fe(0). Precipitation of calcite, ferrous hydroxide [Fe(OH)2] and ferrous sulfide (FeS) were used to simulate observed changes in major-ion aqueous chemistry. The amount of reaction progress differed for each treatment cell. Changes in contaminant concentrations were consistent with precipitation of reduced oxides (UO2, V2O3), sulfides (As2S3, ZnS), iron minerals (FeSe2, FeMoO4) and carbonate (MnCO3). Formation of a free gas phase and precipitation of minerals contributed to loss of hydraulic conductivity in one treatment cell.  相似文献   

17.
The object of this study is to investigate the effect of different operation conditions on the catalytic oxidation of trace organic compounds [i.e., benzene, toluene, ethylbenzene, and xylene (BTEX); and polyaromatic hydrocarbons (PAHs)] in incineration flue gas. A commercial Pd-based honeycomb catalyst, which is applied to treat flue gas with low organic concentrations and high gas velocity, is employed in this study. The investigated parameters include (1) effect of different space velocities, (2) effect of heavy metals, (3) effect of acid gas, and (4) effect of water vapor and ash particles. In this work, an effective catalyst oxidation system is constructed and expected to purify the incineration flue gas. Catalyst oxidation is a potential purification system that will meet the stricter regulations on the emissions of incineration systems. Experimental results showed that the destruction efficiency of PAHs and BTEX in Pd catalyst was generally greater than 80%. Decreasing the space velocity increased the decomposition efficiency of organic compounds. When the feedstock contained the heavy metals Pb and Cr, the oxidation of organic compounds was not inhibited. But the presence of Cd significantly decreased the oxidation efficiency. The acid gases SO2 and HCl in the flue gas could have influenced the crystal structure of PdO and subsequently deactivated/poisoned the Pd catalyst. The effect of water vapor on the catalytic destruction of PAHs and BTEX was not obvious.  相似文献   

18.
Chou S  Liao CC  Perng SH  Chang SH 《Chemosphere》2004,54(7):859-866
Our previous work applied a novel supported iron oxyhydroxide (FeOOH) catalyst to effectively treat benzoic acid by hydrogen peroxide. The FeOOH catalyst was prepared via the oxidation of Fe2+ by H2O2 in the acidic condition using a fluidized-bed crystallization reactor. The major components coated on the surface were identified as amorphous FeOOH and gamma-FeOOH. In terms of the crystallization conditions of FeOOH, some parameters including the operational pH, superficial velocity, specific iron loading, and influent H2O2 concentration were investigated to quantify their effects on the crystallization efficiency. All these parameters were found to significantly influence the crystallization efficiency. Two types of FeOOH catalysts were synthesized: FeOOH I was prepared at pH 3.5, and FeOOH II was formed by aging FeOOH I at pH 13. The percentages of surface amorphous FeOOH reduced from 70% to 30% after aging. The FeOOH II catalyst presented a higher reactivity toward H2O2 but lower stoichiometric efficiency in oxidizing benzoic acid than FeOOH I, similar to the result of the commercial goethite. Therefore, it is concluded that the crystalline property significantly affects the performance of catalytic oxidation.  相似文献   

19.
The effect of nitrate on the reduction of TCE by commercial granular iron was investigated in column experiments designed to allow for the in situ monitoring of the iron surface film with Raman spectroscopy. Three column experiments were conducted; one with an influent solution of 100 mg/l nitrate+1.5 mg/l TCE, and two control columns, one saturated directly with 100 mg/l nitrate solution, the other pre-treated with Millipore water prior to the introduction of a 100 mg/l nitrate solution. In the presence of nitrate, TCE adsorbed onto the iron, but there was little TCE reduction to end-products ethene and ethane. The iron used (Connelly, GPM, Chicago) is a product typical of those used in permeable granular iron walls. The material is covered by an air-formed high-temperature oxidation film, consisting of an inner layer of Fe(3)O(4), and an outer, passive layer of Fe(2)O(3). In the control column pre-treated with Millipore water, the passive Fe(2)O(3) layer was removed upon contact with the water in a manner consistent with an autoreduction reaction. In the TCE+nitrate column and the direct nitrate saturation column, nitrate interfered with the removal of the passive layer and maintained conditions such that high valency protective corrosion species, including Fe(2)O(3) and FeOOH, were stable at the iron surface. The lack of TCE reduction is explained by the presence of these species, as they inhibit both mechanisms proposed for TCE reduction by iron, including catalytic hydrogenation, and direct electron transfer.  相似文献   

20.
Chen IP  Lin SS  Wang CH  Chang SH 《Chemosphere》2007,66(1):172-178
The effect of promoter addition on activity of CeO(2)/gamma-Al(2)O(3) was assessed via the CWAO of phenol. Adding Cu as the promoter rendered the most effective performance, followed by Mn, although the performance of Mn-promoted catalyst was inferior to CeO(2)/gamma-Al(2)O(3). Mineralization of phenol was effectively implemented at 160 degrees C using Cu-promoted catalyst (Ce15Cu5). Furthermore, at 180 degrees C this catalyst produced about 100% conversion of phenol (1h) and 95% removal of chemical oxygen demand (4h), higher than that of CeO(2)/gamma-Al(2)O(3). In contrast, Mn-promoted catalyst (Ce15Mn5) required a temperature above 220 degrees C for acceptable performance. Activity of re-used catalyst declined noticeably, due to deposits of carbonaceous compounds and leaching of metal ions. Regeneration with acetone rinsing after the first run was effective in recovering activity of Ce15Cu5, although after a second run further regeneration with acetone rinsing had only a moderate effect, due to residual carbonaceous deposits and the additive effect of leached metal species in each run. As an alternative to acetone, HCl or HNO(3) solution (0.01 M) was less effective at regenerating activity. In promoted catalysts, leached metal ions accounted for the majority of mineralization of phenol, while the solid catalyst played a dual role of initiator and terminator of free radicals. Despite a superior catalytic performance, leaching of Cu(2+) from the promoted catalyst caused a severe decline in activity and poses the problem of secondary pollution of treated wastewater. Therefore, addition of Cu, as well as other metal species, is unfavorable in promoting the CeO(2)/gamma-Al(2)O(3) catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号