首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
To perform tasks, organisms often use multiple procedures. Explaining the breadth of such behavioural repertoires is not always straightforward. During house hunting, colonies of Temnothorax albipennis ants use a range of behaviours to organise their emigrations. In particular, the ants use tandem running to recruit naïve ants to potential nest sites. Initially, they use forward tandem runs (FTRs) in which one leader takes a single follower along the route from the old nest to the new one. Later, they use reverse tandem runs (RTRs) in the opposite direction. Tandem runs are used to teach active ants the route between the nests, so that they can be involved quickly in nest evaluation and subsequent recruitment. When a quorum of decision-makers at the new nest is reached, they switch to carrying nestmates. This is three times faster than tandem running. As a rule, having more FTRs early should thus mean faster emigrations, thereby reducing the colony’s vulnerability. So why do ants use RTRs, which are both slow and late? It would seem quicker and simpler for the ants to use more FTRs (and higher quorums) to have enough knowledgeable ants to do all the carrying. In this study, we present the first testable theoretical explanation for the role of RTRs. We set out to find the theoretically fastest emigration strategy for a set of emigration conditions. We conclude that RTRs can have a positive effect on emigration speed if FTRs are limited. In these cases, low quorums together with lots of reverse tandem running give the fastest emigration.  相似文献   

2.
Trail-making ants lay pheromones on the substrate to define paths between foraging areas and the nest. Combined with the chemistry of these pheromone trails and the physics of evaporation, trail-laying and trail-following behaviours provide ant colonies with the quickest routes to food. In relatively uniform environments, such as that provided in many laboratory studies of trail-making ants, the quickest route is also often the shortest route. Here, we show that carpenter ants (Camponotus rufipes), in natural conditions, are able to make use of apparent obstacles in their environment to assist in finding the fastest routes to food. These ants make extensive use of fallen branches, twigs and lianas as bridges to build their trails. These bridges make trails significantly longer than their straight line equivalents across the forest floor, but we estimate that ants spend less than half the time to reach the same point, due to increased carriage speed across the bridges. We also found that these trails, mainly composed of bridges, are maintained for months, so they can be characterized as trunk trails. We suggest that pheromone-based foraging trail networks in field conditions are likely to be structured by a range of potentially complex factors but that even then, speed remains the most important consideration.  相似文献   

3.
 There are numerous reports of invertebrates that are visual mimics of ants, but no formal reports of mimicry of an ant, by an ant. Two endemic Australian ants, Myrmecia fulvipes and Camponotus bendigensis are remarkably similar in colour and size; both are generally black but have red legs and golden gasters. The density and hue of the pubescence of each ant's gaster are relatively uncommon in ants, but are very rare when combined with the black forebody and red legs. The ants are similarly sized but are smaller than other species closely related to M. fulvipes. The range of C. bendigensis lies entirely within that of M. fulvipes, and both species excavate ground nests in open woodland. Finally, workers of both species are crepuscular and forage solitarily. These data suggest that the relatively benign formicine C. bendigensis is a Batesian mimic of the formidable myrmeciine M. fulvipes. Received: 9 August 1999 / Accepted in revised form: 22 December 1999  相似文献   

4.
Aphids often form mutualistic associations with ants, in which the aphids provide the ants with honeydew and the ants defend the aphids from predators. In this paper, we report aphid egg protection by ants as a novel aspect of the deeply interdependent relationship between a tree-feeding aphid and its attendant ant. The ant Lasius productus harbours oviparous females, males, and eggs of the hinoki cypress-feeding aphid Stomaphis hirukawai in its nests in winter. We investigated the behaviour of ants kept with aphid eggs in petri dishes to examine whether the ants recognise the aphid eggs and tend them or only provide a refuge for the aphids. Workers carried almost all of the aphid eggs into the nest within 24 h. The ants indiscriminately tended aphid eggs collected from their own colonies and those from other ant colonies. The ants cleaned the eggs and piled them up in the nest, and egg tending by ants dramatically increased aphid egg survival rates. Starving the ants showed no significant effect on aphid egg survivorship. Without ants, aphid eggs were rapidly killed by fungi. These results suggested that grooming by the ants protected the aphid eggs, at least, against pathogenic fungi. This hygienic service afforded by the ants seems indispensable for egg survival of these aphids in an environment rich in potentially pathogenic microorganisms.Electronic supplementary material  Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

5.
Multiple behavioral and chemical studies indicate that ant nestmate recognition cues are low-volatile substances, in particular hydrocarbons (HCs) located on the cuticular surface. We tested the hypothesis that in the ant Camponotus fellah, nest environment, in particular nest volatile odors, can modulate nestmate-recognition-mediated aggression. Workers were individually confined within their own nest in small cages having either a single mesh (SM = limited physical contact permitted) or a double mesh (DM = exposed to nest volatiles only) screen. Individual workers completely isolated outside their nest (CI) served as control. When reintroduced into a group of 50 nestmates, the CI workers were attacked as alien ants after only 2 weeks of separation, whereas the SM workers were treated as nestmates even after 2 months of separation. Aggression towards DM ants depended on the period of isolation. Only DM workers isolated for over 2 months were aggressed by their nestmates, which did not significantly differ from the CI nestmates. Cuticular HC analyses revealed that the profile of the non-isolated ants (NI) was clearly distinct from that of CI, SM and DM ants. Profile differences matched the aggressive response in the case of CI ants but were uncorrelated in the case of SM or DM ants. This suggests that keeping the ants within the nest environment affected nestmate recognition in additional ways than merely altering their HC profile. Nest environment thus appears to affect label–template mismatch by modulating aggressive behavior, as well as the direction at which cuticular HCs diverged during the separation period.  相似文献   

6.
Animal lifespans range from a few days to many decades, and this life history diversity is especially pronounced in ants. Queens can live for decades. Males, in contrast, are often assumed to act as ephemeral sperm delivery vessels that die after a brief mating flight—a view developed from studies of lekking species in temperate habitats. In a tropical ant assemblage, we found that males can live days to months outside the nest, a trait hypothesized to be associated with female calling, another common mating system. We combined feeding experiments with respirometry to show that lifespan can be enhanced over 3 months by feeding outside the nest. In one focal female calling species, Ectatomma ruidum, feeding enhanced male lifespan, but not sperm content. Extended lifespans outside the nest suggest stronger than expected selection on premating traits of male ants, although the ways these traits shape male mating success remain poorly understood.  相似文献   

7.
Cataglyphis iberica is a polydomous ant species in which adult transports between nests are frequently observed. When pairs of workers were captured and released at the same location, the transporters (Ts) fled directly towards their destination nest and reached it in most of the cases. The transportees (Te), on the other hand, fled in the opposite direction and only a third of them eventually reached their nest of departure. Additional experiments suggest that this result may be explained by the fact that the Ts ants have a memory of the compass direction of the nest they are heading to and that they adjust their course by using a sequence of memorised landmarks. As regards to the Te, the reversal of their direction of transport seems to be based essentially on celestial cues. Received: 20 October 1999 / Accepted in revised form: 10 May 2000  相似文献   

8.
Living in groups raises important issues concerning waste management and related sanitary risks. Social insects such as ants live at high densities with genetically related individuals within confined and humid nests, all these factors being highly favorable for the spread of pathogens. Therefore, in addition to individual immunity, a social prophylaxis takes place, namely, by the removal of risky items such as corpses and their rejection at a distance from the ant nest. In this study, we investigate how Myrmica rubra workers manage to reduce encounters between potentially hazardous corpses and nestmates. Using both field and laboratory experiments, we describe how the spatial distribution and the removal distance of waste items vary as a function of their associated sanitary risks (inert item vs. corpse). In the field, corpse-carrying ants walked in a rather linear way away from the nest entrance and had an equal probability of choosing any direction. Therefore, they did not aggregate corpses in dedicated areas but scattered them in the environment. In both field and laboratory experiments, ants carrying corpses dropped their load in more remote—and less frequented—areas than workers carrying inert items. However, for equidistant areas, ants did not avoid dropping corpses at a location where they perceived area marking as a cue of high occupancy level by nestmates. Our results suggest that ants use distance to the nest rather than other occupancy cues to limit sanitary risks associated with dead nestmates.  相似文献   

9.
Mechanical defence in seeds to avoid predation by a granivorous ant   总被引:1,自引:0,他引:1  
Harvester ants have traditionally been considered as seed predators that negatively affect plants. In some cases, however, they can also act as positive seed dispersers. During field observations, we noted that a portion of Psoralea bituminosa seeds that were collected and carried to the nest by the granivorous harvester ant Messor barbarus were discarded intact in refuse piles outside the nest. We analyzed and compared the physical characteristics of size, mass and toughness in P. bituminosa seeds from two different origins: intact seeds found in the ant's refuse piles and seeds collected directly from the plants. Seeds from refuse piles were similar in width but lighter and tougher than seeds from the plant. Our results point to a mechanical defence based on seed toughness to avoid predation by M. barbarus and suggest that an elevated proportion (~69%) of the seeds produced by P. bituminosa could be too tough to be consumed by this ant. These transported but uneaten seeds could benefit by being moved far from the mother plant and this could act as a selective evolutionary pressure towards tough seeds.  相似文献   

10.
The integrity of social insect colonies is maintained by members recognising and responding to the chemical cues present on the cuticle of any intruder. Nevertheless, myrmecophiles use chemical mimicry to gain access to these nests, and their mimetic signals may be acquired through biosynthesis or through contact with the hosts or their nest material. The cuticular hydrocarbon profile of the myrmecophilous salticid spider Cosmophasis bitaeniata closely resembles that of its host ant Oecophylla smaragdina. Here, we show that the chemical resemblance of the spider does not arise through physical contact with the adult ants, but instead the spider acquires the cuticular hydrocarbons by eating the ant larvae. More significantly, we show that the variation in the cuticular hydrocarbon profiles of the spider depends upon the colony of origin of the ant larvae prey, rather than the parentage of the spider.  相似文献   

11.
The fungus gardens of fungus-growing ants are a potentially valuable resource for exploitation by natural enemies, but few of these antagonistic interactions have been studied. Here we describe key aspects of the behavioral ecology of Gnamptogenys hartmani (Ponerinae: Ectatommini), a specialized agro-predator of Trachymyrmex and Sericomyrmex fungus-growing ants in Panama. Raiding columns of G. hartmani attack and usurp nests with remarkably little effort: a few intruding workers are sufficient to cause panic among the attine ants and make them abscond from the nest. Both G. hartmani larvae and adults consume the fungus and the host brood, after which the colony migrates to a new fungus-growing ant nest discovered by scouting workers. The morphology of the G. hartmani larval mouthparts is similar to that of Gnamptogenys species with a non-fungal diet. However, we suggest that the presence of long spinules on the larval mandibles in the genus Gnamptogenys, comparable to those found in attine larvae, may have pre-adapted G. hartmani to fungus eating. G. hartmani workers do not actively maintain or modify fungus gardens, which makes them less efficient exploiters than Megalomyrmex, the only other agro-predatory ant species known so far.  相似文献   

12.
Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant–beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.
Stefanie F. GeiselhardtEmail:
  相似文献   

13.
 The behavioral response of the obligate bamboo-nesting ant Cataulacus muticus to nest flooding was studied in a perhumid tropical rainforest in Malaysia and in the laboratory. The hollow internodes of giant bamboo, in which C. muticus exclusively nests, are prone to flooding by heavy rains. The ants showed a two-graded response to flooding. During heavy rain workers block the nest entrances with their heads to reduce water influx. However, rainwater may still intrude into the nest chamber. The ants respond by drinking the water, leaving the nest and excreting water droplets on the outer stem surface. This cooperative 'peeing' behavior is a new survival mechanism adaptive to the ants' nesting ecology. Laboratory experiments conducted with two other Cataulacus species, C. catuvolcus colonizing small dead twigs and C. horridus inhabiting rotten wood, did not reveal any form of water-bailing behavior. Received: 3 August 2000 / Accepted in revised form: 6 November 2000  相似文献   

14.
Newly mated queens of monogynous (single queen) ants usually found their colonies independently, without the assistance of workers. In polygynous (multiple queen) species queens are often adopted back into their natal nest and new colonies are established by budding. We report that the Australian 'living-fossil' ant, Nothomyrmecia macrops, is exceptional in that its single queen can be replaced by one of the colony's daughters. This type of colony founding is an interesting alternative reproductive strategy in monogynous ants, which maximizes fitness under kin selection. Successive queen replacement results in a series of reproductives over time (serial polygyny), making these colonies potentially immortal. Workers raise nieces and nephews (relatedness h 0.375) the year after queen replacement. Although N. macrops is 'primitive' in many other respects, colony inheritance is likely to be a derived specialization resulting from ecological constraints on solitary founding.  相似文献   

15.
Evolutionary co-option of existing structures for new functions is a powerful yet understudied mechanism for generating novelty. Trap-jaw ants of the predatory genus Odontomachus are capable of some of the fastest self-propelled appendage movements ever recorded; their devastating strikes are not only used to disable and capture prey, but produce enough force to launch the ants into the air. We tested four Odontomachus species in a variety of behavioral contexts to examine if their mandibles have been co-opted for an escape mechanism through ballistic propulsion. We found that nest proximity makes no difference in interactions with prey, but that prey size has a strong influence on the suite of behaviors employed by the ants. In trials involving a potential threat (another trap-jaw ant species), vertical jumps were significantly more common in ants acting as intruders than in residents (i.e. a dangerous context), while horizontal jumps occurred at the same rate in both contexts. Additionally, horizontal jump trajectories were heavily influenced by the angle at which the substrate was struck and appear to be under little control by the ant. We conclude that while horizontal jumps may be accidental side-effects of strikes against hard surfaces, vertical escape jumps are likely intentional defensive behaviors that have been co-opted from the original prey-gathering and food-processing functions of Odontomachus jaws.  相似文献   

16.
 The ant Eutetramorium mocquerysi (Myrmicinae) is endemic to the island of Madagascar. During foraging and nest emigration the ants lay recruitment trails with secretions from the poison gland. We identified three pyrazine compounds in the poison gland secretion: 2,3-dimethyl-5-(2-methylpropyl)pyrazine 1, 2,3-dimethyl-5-(3-methylbutyl)pyrazine 3, 2,3-dimethyl-5-(2-methylbutyl)pyrazine 4. Only the first component elicited trail-following behavior in the ants. We were unable to investigate whether the other pyrazine components have a synergistic function. Received: 21 February 2000 / Accepted in revised form: 27 June 2000  相似文献   

17.
Ovipositing adult females of myrmecophilous lycaenids are expected to select plants based on ant presence in order to maximize the survivorship of immature stages. Usually, larvae feed ants with honey-like solutions and, in turn, ants ward off parasitoids. Nonetheless, a rarely investigated approach is whether ant partners can also extend their protective behavior towards lycaenids eggs. Here, we investigated the ant-related oviposition pattern of Allosmaitia strophius and Rekoa marius; then, we compared egg parasitism according to the presence of ants. Lycaenid oviposition and egg parasitism (in percent) were experimentally compared in ant-present and ant-excluded treatments. The study plant, Heteropterys byrsonimifolia, is an extrafloral nectaried shrub which supports several ant species. We sampled 280 eggs, of which 39.65 % belonged to A. strophius and 60.35 % to R. marius. Both lycaenids eggs were significantly more abundant on branches with ants, especially those with Camponotus crassus and Camponotus blandus, two ant species known to attend to lycaenids. A. strophius and R. marius parasitism was 4.5- and 2.4-fold higher, respectively, in ant-present treatments, but the results were not statistically significant. Our study shows that ant-mediated host plant selection in lycaenids might be much more widespread than previously thought, and not restricted to obligate myrmecophilous species. Tending ants may be inefficient bodyguards of lycaenid eggs, because unlike larvae which release sugared liquids, eggs do not offer obvious rewards to ants. Ants can ward off parasitoids of larvae, as observed elsewhere, but our findings show that positive ant–lycaenid interactions are conditional and depend on immature ontogeny.  相似文献   

18.
Among social insects, maintaining a distinct colony profile allows individuals to distinguish easily between nest mates and non-nest mates. In ants, colony-specific profiles can be encoded within their cuticular hydrocarbons, and these are influenced by both environmental and genetic factors. Using nine monogynous Formica exsecta ant colonies, we studied the stability of their colony-specific profiles at eight time points over a 4-year period. We found no significant directional change in any colony profile, suggesting that genetic factors are maintaining this stability. However, there were significant short-term effects of season that affected all colony profiles in the same direction. Despite these temporal changes, no significant change in the profile variation within colonies was detected: each colony’s profile responded in similar manner between seasons, with nest mates maintaining closely similar profiles, distinct from other colonies. These findings imply that genetic factors may help maintain the long-term stability of colony profile, but environmental factors can influence the profiles over shorter time periods. However, environmental factors do not contribute significantly to the maintenance of diversity among colonies, since all colonies were affected in a similar way.  相似文献   

19.
Prey-specialised predators have evolved specific cognitive adaptations that increase their prey searching efficiency. In particular, when the prey is social, selection probably favours the use of prey intraspecific chemical signals by predatory arthropods. Using a specialised ant-eating zodariid spider, Zodarion rubidum, which is known to prey on several ant species and possesses capture and venom adaptations more effective on Formicinae ants, we tested its ability to recognise chemical cues produced by several ant species. Using an olfactometer, we tested the response of Z. rubidum towards air with chemical cues from six different ant species: Camponotus ligniperda, Lasius platythorax and Formica rufibarbis (all Formicinae); and Messor structor, Myrmica scabrinodis and Tetramorium caespitum (all Myrmicinae). Z. rubidum was attracted to air carrying chemical cues only from F. rufibarbis and L. platythorax. Then, we identified that the spiders were attracted to airborne cues coming from the F. rufibarbis gaster and Dufour's gland, in particular. Finally, we found that among several synthetic blends, the decyl acetate and undecane mixture produced significant attraction of spiders. These chemicals are produced only by three Formicine genera. Furthermore, we investigated the role of these chemical cues in the communication of F. rufibarbis and found that this blend reduces their movement. This study demonstrates the chemical cognitive capacity of Z. rubidum to locate its ant prey using chemical signals produced by the ants. The innate capacity of Z. rubidum to olfactory detect different ant species is narrow, as it includes only two ant genera, confirming trophic specialisation at lower than subfamily level. The olfactory cue detected by Zodarion spiders is probably a component of the recruitment or trail pheromone.  相似文献   

20.
Ant-garden (AG) associations are systems of epiphytic plants and arboricolous (i.e., tree-living) ants, in which the ants build fragile carton nests containing organic material. They collect and incorporate seeds or fruits of epiphytes that then germinate and grow on the nest [sensu Corbara et al. (1999) 38:73–89]. The plant roots stabilize the nest carton. AGs have been well-known in the neotropics for more than 100 years. In contrast, reports on similar associations in the paleotropics are scarce so far. After discovering a first common AG system on giant bamboo [Kaufmann et al. (2001) 48:125–133], we started a large-scale survey for AGs in Peninsular Malaysia, Borneo, Java, and southern Thailand. A great variety of AG systems (altogether including 18 ant species and 51 plant species) was discovered and is described in the present paper. The high number of species participating in AG associations was reflected by a great variability in the specific appearances of the nest gardens. Frequently, further groups of organisms (e.g., hemipteran trophobionts, fungi) were also involved. Preference patterns of particular ant and epiphyte species for each other and for particular phorophytes (carrier trees) were detected. We integrate domatia-producing, so-called ant-house epiphytes in our study and compare their phases of establishment, as well as other characteristics, to “classical” AGs, coming to the conclusion that they should be regarded only as a special type of AG epiphyte and not as a separate ecological category.Electronic Supplementary Materials  Supplementary material is available for this article at  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号