首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of the present study was to find out if bacteria present in ancient gold mine could transform immobilized arsenic into its mobile form and increase its dissemination in the environment. Twenty-two arsenic-hypertolerant cultivable bacterial strains were isolated. No chemolithoautotrophs, which could use arsenite as an electron donor as well as arsenate as an electron acceptor, were identified. Five isolates exhibited hypertolerance to arsenic: up to 500 mM of arsenate. A correlation between the presence of siderophores and high resistance to arsenic was found. The results of this study show that detoxification processes based on arsenate reductase activity might be significant in dissemination of arsenic pollution. It was concluded that the activity of the described heterotrophic bacteria contributes to the mobilization of arsenic in the more toxic As(III) form and a new mechanism of arsenic mobilization from a scorodite was proposed.  相似文献   

2.
Major ion, trace element, and stable isotope analyses were performed on groundwater samples collected during November 2005 and 2006 in Chia-Nan plain of southwestern Taiwan to examine As mobilization in aquifers. The high concentrations of As, Fe and Mn in the groundwater is consistent with low Eh values (under moderately reduced state). Moreover, the observed Na/Cl and SO(4)/Cl molar ratios in groundwater demonstrate the influence of seawater intrusion. Seawater intrusion could provide required electron acceptors (i.e., SO(4)) for bacterial sulfate reduction and promote reducing conditions that are favorable for As mobilization. The concurrent increases in the concentrations of Fe and Mn from 2005 to 2006 may be caused by bacterial Fe(III) and Mn(IV) reduction. Geochemical modeling demonstrate that As(III) is the dominant As species and the presence of Fe-bearing carbonates, sulfides, and oxide phases may locally act as potential sinks for As. Mud volcano fluids were also collected and analyzed to assess the possible source of As in the Chia-Nan plain groundwater. The oxygen and hydrogen isotopic signatures indicate that the As-rich mud volcano fluids may have been modified by chemical exchange with (18)O-rich crustal rocks and possibly originated from mixing of deep brines with circulating meteoric water. Thus As in the Chia-Nan plain groundwater may have been evolved from deep crustal fluids or rock sources. The hydrogeochemistry and widespread As enrichment in groundwater of Chia-Nan plain result from multiple processes, e.g., de-watering of deep crustal fluids, seawater intrusion, and biogeochemical cycling of Fe, As, and S in alluvial sediments.  相似文献   

3.
The present study aims to evaluate the competitive biosorption of lead, cadmium, copper, and arsenic ions by using native algae. A series of experiments were carried out in a batch reactor to obtain equilibrium data for adsorption of single, binary, ternary, and quaternary metal solutions. The biosorption of these metals is based on ion exchange mechanism accompanied by the release of light metals such as calcium, magnesium, and sodium. Experimental parameters such as pH, initial metal concentrations, and temperature were studied. The optimum pH found for removal were 5 for Cd2+ and As3+ and 3 and 4 for Pb2+ and Cu2+, respectively. Fourier transformation infrared spectroscopy analysis was used to find the effects of functional groups of algae in biosorption process. The results showed that Pb2+ made a greater change in the functional groups of algal biomass due to high affinity to this metal. An ion exchange model was found suitable for describing the biosorption process. The affinity constants sequence calculated for single system was K Pb > K Cu > K Cd > K As; these values reduced in binary, ternary, and quaternary systems. In addition, the experimental data showed that the biosorption of the four metals fitted well the pseudo-second-order kinetics model.  相似文献   

4.
This study examined the roles of arsenic translocation and reduction, and P distribution in arsenic detoxification of Pteris vittata L. (Chinese Brake fern), an arsenic hyperaccumulator and Pteris ensiformis L. (Slender Brake fern), a non-arsenic hyperaccumulator. After growing in 20% Hoagland solution containing 0, 133 or 267 microM of sodium arsenate for 1, 5 or 10 d, the plants were separated into fronds, rhizomes, and roots. They were analyzed for biomass, and concentrations of arsenate (AsV), arsenite (AsIII) and phosphorus. Arsenic in the fronds of P. vittata was up to 20 times greater than that of P. ensiformis, yet showing no toxicity symptoms as did in P. ensiformis. While arsenic was concentrated primarily in the fronds of P. vittata as arsenite it was mainly concentrated in the roots of P. ensiformis as arsenate. Arsenic reduction in the plants took longer than 1-d. P. vittata maintained greater P in the roots while P. ensiformis in the fronds. The high arsenic tolerance of the hyperaccumulator P. vittata may be attributed to its ability to effectively reduce arsenate to arsenite in the fronds, translocate arsenic from the roots to fronds, and maintain a greater ratio of P/As in the roots.  相似文献   

5.
Chinese brake fern (Pteris vittata L.), an arsenic (As) hyperaccumulator, has shown the potential to remediate As-contaminated soils. This study investigated the effects of soil amendments on the leachability of As from soils and As uptake by Chinese brake fern. The ferns were grown for 12 weeks in a chromated-copper-arsenate (CCA) contaminated soil or in As spiked contaminated (ASC) soil. Soils were treated with phosphate rock, municipal solid waste, or biosolid compost. Phosphate amendments significantly enhanced plant As uptake from the two tested soils with frond As concentrations increasing up to 265% relative to the control. After 12 weeks, plants grown in phosphate-amended soil removed >8% of soil As. Replacement of As by P from the soil binding sites was responsible for the enhanced mobility of As and subsequent increased plant uptake. Compost additions facilitated As uptake from the CCA soil, but decreased As uptake from the ASC soil. Elevated As uptake in the compost-treated CCA soil was related to the increase of soil water-soluble As and As(V) transformation into As(III). Reduced As uptake in the ASC soil may be attributed to As adsorption to the compost. Chinese brake fern took up As mainly from the iron-bound fraction in the CCA soil and from the water-soluble/exchangeable As in the ASC soil. Without ferns for As adsorption, compost and phosphate amendments increased As leaching from the CCA soil, but had decreased leaching with ferns when compared to the control. For the ASC soil, treatments reduced As leaching regardless of fern presence. This study suggest that growing Chinese brake fern in conjunction with phosphate amendments increases the effectiveness of remediating As-contaminated soils, by increasing As uptake and decreasing As leaching.  相似文献   

6.
Excessive application of lead arsenate pesticides in apple orchards during the early 1900s has led to the accumulation of lead and arsenic in these soils. Lead and arsenic bound to soil humic acids (HA) and soil arsenic species in a western Massachusetts apple orchard was investigated. The metal-humate binding profiles of Pb and As were analyzed with size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). It was observed that both Pb and As bind "tightly" to soil HA molar mass fractions. The surface soils of the apple orchard contained a ratio of about 14:1 of water soluble As (V) to As (III), while mono-methyl (MMA) and di-methyl arsenic (DMA) were not detectable. The control soil contained comparatively very low levels of As (III) and As (V). The analysis of soil core samples demonstrated that As (III) and As (V) species are confined to the top 20 cm of the soil.  相似文献   

7.
One of the sources of trace heavy metal elements in air is emission by the oil industry, either directly through stack emissions from refineries or indirectly from emissions of combustion of hydrocarbons. Emission estimates are based mainly on the trace metal content of the crude oil processed. From a literature study carried out at the beginning of the 1990s it became clear that data on the trace metal content of crudes were scarce and showed a very large scatter. For this reason a measurement programme to assess the occurrence and concentrations of a number of trace metals, i.e. Cadmium (Cd), Zinc (Zn), Copper (Cu), Chromium (Cr), and arsenic (As), in crudes which are regularly processed in the Netherlands, was set up. By drafting strict sampling protocols and by constructing a special sampling device, as many as possible of the additional contamination sources were avoided. The study suggests that sample contamination may explain a significant amount of the scatter and some of the high concentrations reported in the literature for certain metals. The measured variation in the concentrations of Cd, Zn, and Cu is thought to be due to associated water and/or sediment particles from the producing wells or that picked up during transport. The greater consistency in our measurements for Cr and As suggests that these metals are predominantly associated with the hydrocarbon matrix. Based on the results of this work, it can be concluded that emissions of Cd, Zn, Cu, Cr, and As by the oil industry in the Netherlands are most probably significantly lower than hitherto assumed.  相似文献   

8.
This study investigated the effects of arsenic on the in vitro activities of the enzymes (nitrate reductase and nitrite reductase) involved in nitrate metabolism in the roots, rhizomes, and fronds of four-month old Pteris vittata (arsenic – hyperaccumulator) and Pteris ensiformis (non-arsenic--hyperaccumulator) plants. The arsenic treatments (0, 150, and 300 μM as sodium arsenate) in hydroponics had adverse effects on the root and frond dry weights, and this effect was more evident in P. ensiformis than in P. vittata. Nitrate reductase and nitrite reductase activities of arsenate-treated plants were reduced more in P. ensiformis than in P. vittata. This effect was accompanied by similar decreases in tissue NO3? concentrations. Therefore, this decrease is interpreted as being indirect, i.e., the consequence of the reduced NO3? uptake and translocation in the plants. The study shows the difference in the tolerance level of the two Pteris species with varying sensitivity to arsenic.  相似文献   

9.
Goh KH  Lim TT 《Chemosphere》2004,55(6):849-859
Factors that can affect As and Se adsorption by soils influence the bioavailability and mobility of these elements in the subsurface. This research attempted to compare the adsorption capacities of As(III), As(V), Se(IV), and Se(VI) on a tropical soil commonly found in Singapore in a single-species system. The effect of reaction time, pH, and competitive anions at different concentrations on the adsorption of both As and Se species were investigated. The As and Se adsorption isotherm were also obtained under different background electrolytes. The batch adsorption experiments showed that the sequence of the As and Se adsorption capacities in the soil was As(V) > Se(IV) > As(III) > Se(VI). The adsorption kinetics could be best described by the Elovich equation. The adsorption of As(V), Se(IV), and Se(VI) appeared to be influenced by the variable pH-dependent charges developed on the soil particle surfaces. Phosphate had more profound effect than SO4(2-) on As and Se adsorption in the soil. The competition between PO4(3-) and As or Se oxyanions on adsorption sites was presumably due to the formation of surface complexes and the surface accumulation or precipitation involving PO4(3-). The thermodynamic adsorption data for As(V) and Se(IV) adsorption followed the Langmuir equation, while the As(III) and Se(VI) adsorption data appeared to be best-represented by the Freundlich equation.  相似文献   

10.
Organism-induced accumulation of iron, zinc and arsenic in wetland soils   总被引:2,自引:0,他引:2  
Four year old spruce (Picea abies (L.) Karst.) seedlings were planted in sand pots and supplied with nutrient solution. Three groups were formed, differing only in manganese nutrition (0.5 ppm, 2.5 ppm, 12.5 ppm, respectively). After three months, five individuals of each group were transferred to a dew chamber. For the next seven weeks the trees were sprayed in the evenings, the relative humidity overnight was kept high and the droplets were collected directly from the needles in the mornings. The trees were sprayed with HNO3 (pH 3.4) during the first three weeks to reduce the natural buffering capacity of the needles. After this time, the trees were sprayed with KCl (1 mM) solution, and NaHSO3 was added to the chamber resulting in SO2 concentrations usually between 50 and 150 microg m(-3). Needles and water samples were analysed. Foliar Ca seemed to be only a short-time buffer even under optimal Ca supply. A highly significant influence of managanese supply on manganese in needles and droplets was observed, as well as on sulphate, H+ and calcium concentrations in the droplets. The SO2 flux to trees treated with 12.5 ppm Mn was about twice as high as to trees treated with 0.5 ppm Mn. The conclusion is that this is due to a synergism between manganese leaching and catalysis of the SO2 oxidation by the leached Mn2+ ions. The results suggest a positive feedback between (moderate) acidification of soils and SO2 and NH3 inputs to terrestrial ecosystems.  相似文献   

11.
研究了烧结温度和烧结时间对含砷冶炼废渣烧结过程中砷的迁移特性的影响。烧结条件为在10 MPa下加压成型,进空气流量为2 000 mL/min,烧结温度1 000~1 350℃,烧结时间5~120 min。结果表明,烧结过程中存在砷的挥发,但烧结前后砷的总量变化不大,砷的固化率均保持在90%以上。毒性浸出实验表明,不同的烧结条件对烧结体中砷的毒性浸出有重要的影响,从烧结体的环境安全性考虑,最佳的烧结温度和时间分别为1 200℃和45 min。  相似文献   

12.
Bioaccumulation of As, Co, Cr and Mn by the benthic amphipod Hyalella azteca in Burlington City tap (Lake Ontario) water was measured in 4-week tests. Bioaccumulation increased with exposure concentration and demonstrated an excellent fit to a saturation model (r(2): 0.819, 0.838, 0.895 and 0.964 for As, Co, Cr and Mn, respectively). The proportion of total body Mn eliminated during a 24-h depuration period decreased as Mn body concentration increased, apparently due to a saturation of the elimination rate. The high maximum body concentration of 116,000 nmol g(-1) appears to result from the saturation of the Mn excretion which is slightly greater than the maximum Mn uptake rate. Elimination rates for As, Co and Cr were not dependent on body concentration. The four elements were not physiologically regulated in Hyalella. Their body concentrations should be good indicators of bioavailability and useful for environmental assessment.  相似文献   

13.
Accumulation, transformation and toxicity of arsenic compounds to Japanese Medaka, Oryzias latipes were investigated. For sodium arsenite [As(II)] and disodium arsenate [As(V)], the mean value for 7-day lethal concentration LC50 for O. latipes were 14.6 and 30.3 mg As/l, respectively. Direct accumulation of arsenic in O. latipes increased as a function of As(III) concentration in water. A small proportion of accumulated arsenic was transformed to methylated arsenic. As much as 70% of the total arsenic accumulated in tissue was depurated. Accumulation and transformation of As(III) by O. latipes in a simple freshwater food chain were also investigated. The transformation of As(III) to As(V) by organisms was more prevalent than biomethylation of accumulated arsenic in organisms of the three steps of the food chain.  相似文献   

14.
Yang G  Ma L  Xu D  Li J  He T  Liu L  Jia H  Zhang Y  Chen Y  Chai Z 《Chemosphere》2012,87(8):845-850
Arsenic levels and speciation in the total suspended particles (TSPs) were quantitatively determined by high performance liquid chromatography on-line coupled with hydride generation atomic fluorescence spectrometry in Beijing, China from February 2009 to March 2011. The high TSP levels fluctuated between 0.07 and 0.79 mg m−3, with a mean level of 0.32 ± 0.17 mg m−3. The total arsenic concentrations ranged from 0.03 to 0.31 μg m−3 (mean: 0.13 ± 0.06 μg m−3) in Beijing‘s air. The concentrations of As(III) and As(V) ranged from 0.73 to 20 ng m−3 (mean: 4.7 ± 3.6 ng m−3) and from 14 to 2.5 × 102 ng m−3 (mean: 67 ± 35 ng m−3), respectively. As levels and speciation demonstrated relative higher levels in spring and autumn and lower values in summer and winter. As(V) accounted for 81-99% of the extractable species in the TSP samples which showed that As(V) was the major fraction of the extractable As. Organoarsenic species, monomethylarsonate (MMA) and dimethylarsinate (DMA) were not found in all samples. Higher values of enrichment factors demonstrated that arsenic in TSP mainly come from anthropogenic sources. High As and its species levels in air and respiratory exposure (0.30-0.84 μg d−1) attributed to higher excess cancer risk ((4.2 ± 2.0) × 10−4) for people in Beijing.  相似文献   

15.
Stabilization of soil contaminated with trace elements is a remediation practice that does not reduce the total content of contaminants, but lowers the amounts of mobile and bioavailable fractions. This study evaluated the efficiency of Fe(0) to reduce the mobility and bioavailability of Cr, Cu, As and Zn in a chromated copper arsenate (CCA)-contaminated soil using chemical, biochemical and biotoxicity tests. Contaminated soil was stabilized with 1% iron grit. This treatment decreased As and Cr concentrations in leachates (by 98% and 45%, respectively), in soil pore water (by 99% and 94%, respectively) and in plant shoots (by 84% and 95%, respectively). The stabilization technique also restored most of analyzed soil enzyme activities and reduced microbial toxicity, as evaluated by the BioTox test. After stabilization, exchangeable and bioaccessible fractions of Cu remained high, causing some residual toxicity in the treated soil.  相似文献   

16.
Earlier studies documented the loss of wood preservatives from new wood. The objective of this study was to evaluate losses from weathered treated wood under field conditions by collecting rainfall leachate from 5 different wood types, all with a surface area of 0.21 m2. Wood samples included weathered chromate copper arsenate (CCA) treated wood at low (2.7 kg/m3), medium (4.8 kg/m3) and high (35.4 kg/m3) retention levels, new alkaline copper quat (ACQ) treated wood (1.1 kg/m3 as CuO) and new untreated wood. Arsenic was found to leach at a higher rate (100 mg in 1 year for low retention) than chromium and copper (<40 mg) in all CCA-treated wood samples. Copper leached at the highest rate from the ACQ sample (670 mg). Overall results suggest that metals' leaching is a continuous process driven by rainfall, and that the mechanism of release from the wood matrix changes as wood weathers.  相似文献   

17.
Arsenic (As) as a major hazardous metalloid was affected by phytoplankton in many aquatic environments. The toxic dominant algae Microcystis aeruginosa was exposed to different concentrations of inorganic arsenic (arsenate or arsenite) for 15 days in BG11 culture media. Arsenic accumulation, toxicity, and speciation in M. aeruginos as well as the changes of As species in media were examined. M. aeruginosa has a general well tolerance to arsenate and a definite sensitivity to arsenite. Additionally, arsenate actively elevated As methylation by the algae but arsenite definitely inhibited it. Interestingly, the uptake of arsenite was more pronounced than that of arsenate, and it was correlated to the toxicity. Arsenate was the predominant species in both cells and their growth media after 15 days of exposure to arsenate or arsenite. However, the amount of the methylated As species in cells was limited and insignificantly affected by the external As concentrations. Upon uptake of the inorganic arsenic, significant quantities of arsenate as well as small amounts of arsenite, DMA, and MMA were produced by the algae and, in turn, released back into the growth media. Bio-oxidation was the first and primary process and methylation was the minor process for arsenite exposures, while bioreduction and the subsequent methylation were the primary metabolisms for arsenate exposures. Arsenic bioaccumulation and transformation by M. aeruginosa in aquatic environment should be paid more attention during a period of eutrophication.  相似文献   

18.
Ten different Gram-negative arsenic (As)-resistant and As-transforming bacteria isolated from As-rich groundwater of West Bengal were characterized to assess their role in As mobilization. 16S rRNA gene analysis confirmed the affiliation of these bacteria to genera Achromobacter, Brevundimonas, Rhizobium, Ochrobactrum, and Pseudoxanthomonas. Along with superior As-resistance and As-transformation abilities, the isolates showed broad metabolic capacity in terms of utilizing a variety of electron donors and acceptors (including As) under aerobic and anaerobic conditions, respectively. Arsenic transformation studies performed under various conditions indicated highly efficient As3+ oxidation or As5+ reduction kinetics. Genes encoding As3+ oxidase (aioA), cytosolic As5+ reductase (arsC), and As3+ efflux pump (arsB and acr3) were detected within the test isolates. Sequence analyses suggested that As homeostasis genes (particularly arsC, arsB, and acr3) were acquired by most of the bacteria through horizontal gene transfer. A strong correlation between As resistance phenotype and the presence of As3+ transporter genes was observed. Microcosm study showed that bacterial strain having cytosolic As5+ reductase property could play important role in mobilizing As (as As3+) from subsurface sediment.  相似文献   

19.
Arsenic (As) accumulation in food crops such as rice is of major concern. To investigate whether phytoremediation can reduce As uptake by rice, the As hyperaccumulator Pteris vittata was grown in five contaminated paddy soils in a pot experiment. Over a 9-month period P. vittata removed 3.5-11.4% of the total soil As, and decreased phosphate-extractable As and soil pore water As by 11-38% and 18-77%, respectively. Rice grown following P. vittata had significantly lower As concentrations in straw and grain, being 17-82% and 22-58% of those in the control, respectively. Phytoremediation also resulted in significant changes in As speciation in rice grain by greatly decreasing the concentration of dimethylarsinic acid (DMA). In two soils the concentration of inorganic As in rice grain was decreased by 50-58%. The results demonstrate an effective stripping of bioavailable As from contaminated paddy soils thus reducing As uptake by rice.  相似文献   

20.
This study examined the effects of heavy metals and plant arsenic uptake on soil arsenic distribution. Chemical fractionation of an arsenic-contaminated soil spiked with 50 or 200mg kg(-1) Ni, Zn, Cd or Pb was performed before and after growing the arsenic hyperaccumulator Pteris vittata L for 8weeks using NH(4)Cl (water-soluble plus exchangeable, WE-As), NH(4)F (Al-As), NaOH (Fe-As), and H(2)SO(4) (Ca-As). Arsenic in the soil was present primarily as the recalcitrant forms with Ca-As being the dominant fraction (45%). Arsenic taken up by P. vittata was from all fractions though Ca-As contributed the most (51-71% reduction). After 8weeks of plant growth, the Al-As and Fe-As fractions were significantly (p<0.01) greater in the metal-spiked soils than the control, with changes in the WE-As fraction being significantly (p=0.007) correlated with plant arsenic removal. The plant's ability to solubilize soil arsenic from recalcitrant fractions may have enhanced its ability to hyperaccumulate arsenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号