首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dom N  Penninck M  Knapen D  Blust R 《Chemosphere》2012,87(7):742-749
In this study, it was illustrated that even for certain simple organic compounds with a designated mode of action (MOA) (i.e. narcotic toxicity) unexpected differences in acute and chronic toxicity can be observed. In a first part of the study, species sensitivity distributions (SSDs) based on either acute or chronic toxicity data of three narcotic test compounds (methanol, ethanol and 2-propanol) were constructed. The results of the acute SSDs were as expected for narcotic compounds: rather similar sensitivity and small differences in toxicity were observed among different species. On the contrary, the chronic SSDs of methanol and ethanol indicated larger interspecies variation in sensitivity. Furthermore, the chronic toxicity trend (ethanol > methanol > 2-propanol) was unexpectedly different from the acute toxicity trend (2-propanol > ethanol > methanol) and acute versus chronic extrapolation could not be successfully described for methanol and ethanol using an ACR of 10 (as suggested for narcotic compounds). In contrast to the interspecies approach in the first part of this study, the second part of the study was focused on the assessment of acute and chronic toxicity of the three test compounds in Daphnia magna, which was identified as one of the most sensitive organisms to methanol and ethanol. Here, the differences in acute and chronic toxicity trend were in accordance to the results of the SSDs. The enhancement of membrane penetration due to the small molecular size of methanol and ethanol, in combination with the higher toxicity of their respective biotransformation products were suggested as potential causes of the increased chronic toxicity. Furthermore, it was stressed that larger awareness of these irregularities in acute to chronic extrapolations of narcotic compounds is required and should receive additional attention in further environmental risk assessment procedure.  相似文献   

2.
The discrimination of excess toxicity from narcotic effect plays a crucial role in the study of modes of toxic action for organic compounds. In this paper, the toxicity data of 758 chemicals to Daphnia magna and 993 chemicals to Tetrahymena pyriformis were used to investigate the excess toxicity. The result showed that mode of toxic action of chemicals is species dependent. The toxic ratio (TR) calculated from baseline model over the experimentally determined values showed that some classes (e.g. alkanes, alcohols, ethers, aldehydes, esters and benzenes) shared same modes of toxic action to both D. magna and T. pyriformis. However, some classes may share different modes of toxic action to T. pyriformis and D. magna (e.g. anilines and their derivatives). For the interspecies comparison, same reference threshold need to be used between species toxicity. The excess toxicity indicates that toxicity enhancement is driven by reactive or specific toxicity. However, not all the reactive compounds exhibit excess toxicity. In theory, the TR threshold should not be related with the experimental uncertainty. The experimental uncertainty only brings the difficulty for discriminating the toxic category of chemicals. The real threshold of excess toxicity which is used to identify baseline from reactive chemicals should be based on the critical concentration difference inside body, rather than critical concentration outside body (i.e. EC50 or IGC50). The experimental bioconcentration factors can be greatly different from predicted bioconcentration factors, resulting in different toxic ratios and leading to mis-classification of toxic category and outliers.  相似文献   

3.
[3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone] (MX) and chlorinated acetic acids such as dichlorinated acetic acid (DCA) and trichlorinated acetic acid (TCA) have always been the focus of disinfection by-products (DBPs) studies. In order to find out the influences of reaction time, TOC, chlorine dose, pH and temperature on the formation of MX, DCA and TCA, we extracted fulvic acid (FA) from the sediment of Tai Lake, and conducted simulated chlorination of samples rich in FA. Results showed positive relationship between TOC and the yields of MX, DCA and TCA. But the influences of pH, chlorine dose, reaction time, and temperature are quite complex. The optimal chlorination condition for the formation of MX is pH = 2, T = 45 degrees C, C/Cl2 = 1/4, t = 12 h. Lower pH, longer time, greater chlorine dose can result in greater yield of both DCA and TCA, and there is a strong linear relationship between the formation of DCA and TCA.  相似文献   

4.
The acute and chronic toxicity of monocrotophos (MCP), the binary joint toxicity of MCP and bifenthrin (BF), and sodium dodecyl benzene sulfonate (SDBS) to Daphnia magna (D. magna) was evaluated. The 24 h-median effective concentration (24 h-EC50) and 48 h-median lethal concentration (48 h-LC50) of MCP towards D. magna were 161 and 388 μ g/L, respectively. In addition, the lowest-observed effective concentration (LOEC) and non-observed effective concentration (NOEC) of MCP to D. magna were 10 and 5 μ g/L, respectively. Furthermore, the chronic value (ChV) of MCP against D. magna was 7 μ g/L and the acute chronic ratio (ACR) was 55. The number of offspring per female and the intrinsic rate of natural increase (r) were identified as the parameters that were most sensitive to MCP. In addition, toxic unit (TU) analysis was employed to evaluate the joint toxicities. The calculated TUmix values of binary equitoxic mixtures of MCP + BF and MCP + SDBS were 1.47 and 1.63, respectively, which suggests that both equitoxic mixtures exert a limited antagonistic effect. The results of this study revealed that the toxic threshold of MCP towards D. magna is higher than its reported highest residue (4 μ g/L) in the ordinary aquatic environment, and that concurrent exposure to BF or SDBS may exert a slight antagonistic effect.  相似文献   

5.
Although silver nanoparticles (NPs) are increasingly used in various consumer products and produced in industrial scale, information on harmful effects of nanosilver to environmentally relevant organisms is still scarce. This paper studies the adverse effects of silver NPs to two aquatic crustaceans, Daphnia magna and Thamnocephalus platyurus. For that, silver NPs were synthesized where Ag is covalently attached to poly(vinylpyrrolidone) (PVP). In parallel, the toxicity of collargol (protein-coated nanosilver) and AgNO3 was analyzed. Both types of silver NPs were highly toxic to both crustaceans: the EC50 values in artificial freshwater were 15–17 ppb for D. magna and 20–27 ppb for T. platyurus. The natural water (five different waters with dissolved organic carbon from 5 to 35 mg C/L were studied) mitigated the toxic effect of studied silver compounds up to 8-fold compared with artificial freshwater. The toxicity of silver NPs in all test media was up to 10-fold lower than that of soluble silver salt, AgNO3. The pattern of the toxic response of both crustacean species to the silver compounds was almost similar in artificial freshwater and in natural waters. The chronic 21-day toxicity of silver NPs to D. magna in natural water was at the part-per-billion level, and adult mortality was more sensitive toxicity test endpoint than the reproduction (the number of offspring per adult).  相似文献   

6.
Zaldívar JM  Baraibar J 《Chemosphere》2011,82(11):1547-1555
There is the need to integrate existing toxicity data in a coherent framework for extending their domain of applicability as well as their extrapolation potential. This integration would also reduce time and cost-consuming aspects of these tests and reduce animal usage. In this work, based on data extracted from literature, we have assessed the advantages that a dynamic biology-toxicant fate coupled model for Daphnia magna could provide when assessing toxicity data, in particular, the possibility to obtain from short-term (acute) toxicity test long-term (chronic) toxicity values taking into account the inherent variability of D. magna populations and the multiple sources of data. The results show that this approach overcomes some of the limitations of existing toxicity tests and that the prediction errors are considerably reduced when compared with the factor from 2 to 5 obtained using acute-to-chronic ratios.  相似文献   

7.
Chlorinated aliphatic hydrocarbons are common groundwater contaminants. One possible remediation option is in-situ reductive dechlorination by zero-valent iron, either by direct injection or as reactive barriers. Chlorinated ethenes (tetrachloroethene: PCE; trichloroethene: TCE) have received extensive attention in this context. However, another common groundwater pollutant, 1,1,1-trichlorethane (TCA), has attracted much less attention. We studied TCA reduction by three types of granular zero-valent irons in a series of batch experiments using polluted groundwater, with and without added aquifer material. Two types of iron were able to reduce TCA completely with no daughter product concentration increases (1,1-dichloroethane: DCA; chloroethane: CA). One type of iron showed slower reduction, with intermediate rise of DCA and CA concentrations. When evaluating the formation of daughter products, the tests on the groundwater alone showed different results than the groundwater plus aquifer batches: DCA did not temporarily accumulate in the batches with added aquifer material, contrary to the batches without added aquifer material. 1,1-dichloroethene (DCE, also present in the groundwater as an abiotic degradation product of TCA) was also reduced slower in the batches without added aquifer material than in the batches with aquifer material. Redox potentials gradually decreased to low values in batches with aquifer material without iron, while the batches with groundwater alone maintained a constant higher redox potential. Either adsorption processes or microbiological activity in the samples could explain these phenomena. Polymerase Chain Reaction (PCR: a targeted gene probe technique) for chlorinated aliphatic compound (CAH)-degrading bacteria confirmed the presence of Dehalococcoides sp. (chloroethene-degraders) but was negative for Desulfobacterium autotrophicum (a known co-metabolic TCA degrader). DCA reduction was rate determining: first-order half-lives of 300-350 h were observed. TCA was fully removed within hours. CA is resistant to reduction by zero-valent iron but it is known to hydrolyze easily. Since CA did not accumulate in our batches, it may have disappeared by the latter mechanism or it may not have formed as a major daughter product.  相似文献   

8.
The widely used ECOSAR computer programme for QSAR prediction of chemical toxicity towards aquatic organisms was evaluated by using large data sets of industrial chemicals with varying molecular structures. Experimentally derived toxicity data covering acute effects on fish, Daphnia and green algae growth inhibition of in total more than 1,000 randomly selected substances were compared to the prediction results of the ECOSAR programme in order (1) to assess the capability of ECOSAR to correctly classify the chemicals into defined classes of aquatic toxicity according to rules of EU regulation and (2) to determine the number of correct predictions within tolerance factors from 2 to 1,000. Regarding ecotoxicity classification, 65% (fish), 52% (Daphnia) and 49% (algae) of the substances were correctly predicted into the classes "not harmful", "harmful", "toxic" and "very toxic". At all trophic levels about 20% of the chemicals were underestimated in their toxicity. The class of "not harmful" substances (experimental LC/EC(50)>100 mg l(-1)) represents nearly half of the whole data set. The percentages for correct predictions of toxic effects on fish, Daphnia and algae growth inhibition were 69%, 64% and 60%, respectively, when a tolerance factor of 10 was allowed. Focussing on those experimental results which were verified by analytically measured concentrations, the predictability for Daphnia and algae toxicity was improved by approximately three percentage points, whereas for fish no improvement was determined. The calculated correlation coefficients demonstrated poor correlation when the complete data set was taken, but showed good results for some of the ECOSAR chemical classes. The results are discussed in the context of literature data on the performance of ECOSAR and other QSAR models.  相似文献   

9.
10.
The variability of species sensitivity distribution (SSD) due to contaminant bioavailability in soil was explored by using nickel as metal of concern. SSDs of toxicity test results of Avena sativa L. originating from different soils and expressed as total content and available (0.01 M CaCl2) extractable concentration were compared to SSDs for terrestrial plants derived from literature toxicity data. Also the 'free' nickel (Ni2+) concentration was calculated and compared. The results demonstrated that SSDs based on total nickel content highly depend on the experimental conditions set up for toxicity testing (i.e. selected soil and pH value) and thus on metal bioavailability in soil, resulting in an unacceptable uncertainty for ecological risk estimation. The use in SSDs of plant toxicity data expressed as 0.01 M CaCl2 extractable metal strongly reduced the uncertainty in the SSD curve and thus can improve the ERA procedure remarkably by taking bioavailability into account.  相似文献   

11.
12.
Derivation of ambient water quality criteria for formaldehyde.   总被引:2,自引:0,他引:2  
D W Hohreiter  D K Rigg 《Chemosphere》2001,45(4-5):471-486
This paper describes the derivation of aquatic life water quality criteria for formaldehyde, developed in accordance with United States Environmental Protection Agency's (USEPA's) Guidelines for Deriving Numerical National Water Quality Criteria for the Protection of Aquatic Organisms and Their Uses. The initial step in deriving water quality criteria was to conduct an extensive literature search to assemble available acute and chronic toxicity data for formaldehyde. The literature search identified a large amount of information on acute toxicity of formaldehyde to fish and aquatic invertebrates. These acute data were evaluated with respect to data quality, and poor quality or uncertain data were excluded from the data base. The resulting data base met the USEPA requirements for criteria derivation by having data for at least one species in at least eight different taxonomic families. One shortcoming of the literature-derived data base, however, was that few studies involved analytical confirmation of nominal formaldehyde concentrations and reported toxicity endpoints. Also, there were relatively few data on chronic toxicity. The acute toxicity data set consisted of data for 12 species of fish, 3 species of amphibians, and 11 species of invertebrates. These data were sufficient, according to USEPA guidelines, to calculate a final acute value (FAV) of 9.15 mg/l, and an acute aquatic life water quality criterion (one-half the FAV) of 4.58 mg/l. A final acute-chronic ratio (ACR) was calculated using available chronic toxicity data and USEPA-recommended conservative default assumptions to account for missing data. Using the FAV and the final ACR (5.69), the final chronic aquatic life water quality criterion was determined to be 1.61 mg/l.  相似文献   

13.
The risk of chemicals for ecological communities is often forecast with species sensitivity distributions (SSDs) which are used to predict the concentration which will protect p% of species (PCp value). However, at the PCp value, species richness in nature would not necessary be p% less than at uncontaminated sites. The definition of species richness inherent to SSDs (contaminant category richness) contrasts with species richness typically measured in most field studies (point richness). We determine, for salinity in eastern Australia, whether these definitions of stream macroinvertebrate species richness are commensurable. There were strong relationships (r2 ≥ 0.87) between mean point species, family and Ephemeroptera, Trichoptera and Plecoptera species richness and their respective contamination category richness. Despite differences in the definition of richness used by SSDs and field biomonitoring, their results in terms of relative species loss from salinity in south-east Australia are similar. We conclude that in our system both definitions are commensurable.  相似文献   

14.
尹倩  张薛  陆韻  赵璇 《环境工程学报》2014,8(4):1692-1698
大型蚤是一种国际公认的标准实验生物,广泛应用于污水、地表水等水质毒性检测。毒性水平较低的城市二级出水,对大型蚤往往无急性毒性效应,而具有慢性毒性效应,但慢性毒性检测周期过长,因此探索一种更灵敏的指标,实现快速检测,对于控制二级出水的水质风险具有重要意义。本研究考察了大型蚤在短期暴露于城市二级出水条件下,其体内乙酰胆碱酯酶、超氧化物歧化酶、过氧化氢酶、ATP酶、羧酸酯酶和碱性磷酸酯酶的酶活变化特征,从中筛选出对二级出水毒性响应灵敏的标志酶指标。实验结果表明,碱性磷酸酯酶、过氧化氢酶对二级出水毒性响应相对较灵敏,具有成为标志酶的潜力,研究结果为城市二级出水生物毒性评价方法优化提供新的思路。  相似文献   

15.
Anaerobic digestion does not efficiently reduce ionic compounds present in swine slurry, which could present a potential risk to aquatic ecosystems (surface runoff) and terrestrial ambient (irrigation). The objective of this study was to evaluate the ecotoxicological characteristics of anaerobically treated swine slurry using acute and chronic (epicotyl elongation) toxicity tests with Daphnia magna and Raphanus sativus and identification of suspected toxic compounds using the Toxicity Identification Evaluation (TIE) method. The evaluation was performed in three phases: physicochemical characterization of the slurry; acute/chronic toxicity testing with Daphnia magna and Raphanus sativus for each fraction of the TIE (cation and anion exchange columns, activated carbon, pH modification/aeration and EDTA) and identification of suspected toxic compounds. The anaerobically treated slurry contained concentrations of ammonium of 1,072 mg L?1, chloride of 815 mg L?1 and metals below 1 mg L?1 with a D. magna acute toxicity (48h-LC50) of 5.3% and R. sativus acute toxicity (144h-LC50) of 48.1%. Epicotyl elongation of R. sativus was inhibited at concentrations above 25% (NOEC). The cation exchange reduced the toxicity and free ammonia by more than 90% for both bio-indicators. Moreover, this condition stimulated the epicotyl growth of R. sativus between 10% and 37%. In conclusion, the main compound suspected of causing acute toxicity in D. magna and acute/chronic toxicity in R. sativus is the ammonium. The findings suggest the need the ammonium treatment prior to the agricultural reuse of swine slurry given the high risk to contaminate the aquatic environment by runoff and toxicity of sensitive plants.  相似文献   

16.
Fuels derived from non-petroleum renewable resources have raised interest due to their potential in replacing petroleum-based fuels, but information on their fate and effects in the terrestrial and aquatic environments in accidental spill scenario is limited. In this study, migration of four fuels (conventional diesel, conventional gasoline, renewable diesel NExBTL, and ethanol-blended gasoline RE85 containing maximum 85 % ethanol) as non-aqueous phase liquids (NAPL) in soil was demonstrated in a laboratory-scale experiment. Ecotoxicity data was produced for the same fuels. There was no significant difference in migration of conventional and renewable diesel, but gasoline migrated 1.5 times deeper and 7–9 times faster in sand than diesel. RE85 spread horizontally wider but not as deep (p?Eisenia fetida followed by ethanol-blended gasoline (LC50 1,643 mg/kg THC) and conventional diesel (LC50 2,432 mg/kg THC), although gasoline evaporated fast from soil. For comparison, the toxicity of the water-accommodated fractions (WAF) of the fuels was tested with water flea Daphnia magna and Vibrio fischeri, also demonstrating groundwater toxicity. The WAF of conventional gasoline and RE85 showed almost similar toxicity to both the aquatic test species. EC50 values of 1:10 (by volume) WAF were 9.9 %WAF (gasoline) and 9.3 %WAF (RE85) to D. magna and 9.3 %WAF (gasoline) and 12.3 %WAF (RE85) to V. fischeri. Low solubility decreased toxicity potential of conventional diesel in aquatic environment, but direct physical effects of oil phase pose a threat to organisms in nature. Renewable diesel NExBTL did not show clear toxicity to any test species.  相似文献   

17.
A congeneric set of 58 substituted anilines and phenols was tested using the 72-h algal growth inhibition assay with Pseudokirchneriella subcapitata and 15-min Vibrio fischeri luminescence inhibition assay. The set contained molecules substituted with one, two or three groups chosen from -chloro, -methyl or -ethyl. For 48 compounds there was no REACH-compatible algal toxicity data available before. The experimentally obtained EC50 values (mg L−1) for algae ranged from 1.43 (3,4,5-trichloroaniline) to 197 (phenol) and for V. fischeri from 0.37 (2,3,5-trichlorophenol) to 491 (aniline). Only five of the tested 58 chemicals showed inhibitory effect to algae at concentrations >100 mg L−1, i.e. could be classified as “not harmful”, 32 chemicals as “harmful” (10-100 mg L−1) and 21 as “toxic” (1-10 mg L−1). The occupied para-position tended to increase toxicity whereas most of the ortho-substituted congeners were the least toxic. As a rule, the higher the number of substituents the higher the hydrophobicity and toxicity. However, in case of both assays, the compounds of similar hydrophobicity showed up to 30-fold different toxicities. There were also assay/organism dependent tendencies: phenols were more toxic than anilines in the V. fischeri assay but not in the algal test. The comparison of the experimental toxicity data to the data available from the literature as well as to QSAR predictions showed that toxicity of phenols to algae can be modeled based on hydrophobicity, whereas the toxicity of anilines to algae as well as toxicity of both anilines and phenols to V. fischeri depended on other characteristics in addition to logKow.  相似文献   

18.
In this study, we compared the usefulness of a long-living sponge (Hymeniacidon heliophila, Class Demospongiae) and a short-living one (Paraleucilla magna, Class Calcarea) as biomonitors of metallic pollution. The concentrations of 16 heavy metals were analyzed in both species along a gradient of decreasing pollution from the heavily polluted Guanabara Bay to the less impacted coastal islands in Rio de Janeiro, SE Brazil (SW Atlantic). The levels of most elements analyzed were higher in H. heliophila (Al, Co, Cr, Cu, Fe, Mn, Ni, Hg, Ni, and Sn) and P. magna (Ni, Cu, Mn, Al, Ti, Fe, Pb, Co, Cr, Zn, and V) collected from the heavily polluted bay when compared with the cleanest sites. Hymeniacidon heliophila accumulates 11 elements more efficiently than P. magna. This difference may be related to their skeleton composition, histological organization, symbiont bacteria and especially to their life cycle. Both species can be used as a biomonitors of metallic pollution, but while Hymeniacidon heliophila was more effective in concentrating most metals, Paraleucilla magna is more indicated to detect recent pollutant discharges due to its shorter life cycle. We suggest that the complementary use of species with contrasting life histories can be an effective monitoring strategy of heavy metals in coastal environments.  相似文献   

19.
China has recently commenced water quality criteria (WQC) research using the species sensitivity distribution (SSD) method; however, it is difficult to obtain sufficient native species toxicity data for thousands of contaminants. In this study, the feasibility of using non-native toxicity data in deriving native WQC was analyzed. We constructed SSDs based on acute toxicity data of species from China and the USA for eight priority pollutants, and compared the sensitivities of different taxonomic groups between the two countries. The results showed that the SSD method of log-logistic distribution fit the toxicity data of different taxa well. The comparison of sensitivity distribution and hazardous concentration for 5 % of the species and 50 % of the species showed that there was no significant difference between Chinese and American taxa. It could be feasible to use toxicity data from the USA to provide a temporary way to protect organisms in China in emergency situations or for management of priority pollutants when native toxicity data are lacking.  相似文献   

20.
Cleuvers M 《Chemosphere》2005,59(2):199-205
Daphnia magna, Desmodesmus subspicatus and Lemna minor were used to determine the ecotoxicity of beta-blockers. Propranolol was the most toxic substance, with EC50s of 7.7 mg l-1 in the Daphnia test and 0.73 mg l-1 in the algal test. The toxicity of atenolol and metoprolol in the Daphnia test was very low, with EC50s of 313 and 438 mg l-1, respectively. In the algal test, metoprolol (EC50: 7.9 mg l-1) was more toxic than atenolol (EC50: 620 mg l-1). Lemna minor was the least sensitive species. All substances showed PEC/PNEC ratios <1, whereas propranolol with a ratio of 0.81 seems to be the most relevant substance and I recommend to perform chronic biotests to refine the estimate of the environmental risk. Taking bioconcentration factors (BCF) into account, resulting internal effect concentrations (IEC) differ only slightly, which means that the differences in the EC50 depend mainly on the diverse logP levels causing narcosis via disruption of membrane integrity. Predictions of toxicity using ECOSAR were close to the empirically measured data. Mixture toxicity of the three compounds could be predicted accurately using the concept of concentration addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号