首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
为研究煤层及腐朽坑木着火特性,采集巷道内腐朽坑木与煤样并进行混合,对其混合物进行燃点测定和程序升温实验;通过对不同煤木混合物在升温过程中产生气体的规律性进行分析,优选出混合物产生的单一气体指标及复合指标。研究结果表明:随朽木在混合物中的比例上升,混合物燃点呈下降趋势,且CO,C2H4等指标气体出现更早,CO产生量更大;腐朽坑木达到燃点后会发生阴燃并逐渐升温引燃煤炭,加速煤氧化进程,最终导致火灾的发生;CO,CO/CO2比值、ICO指标可作为本煤层着火主要预测指标气体及指标,C2H4,C2H6可作为辅助指标气体;该方法可准确判定煤火灾发生发展程度,对实际生产具有理论指导意义。  相似文献   

2.
Previous research showed that at certain conditions, close to the flammability range exists a regime where cool flame may develop either due to elevated temperature or it may be initiated by an ignition source. Propagation of the cool flame in a closed test vessel may double the initial pressure. Such pressure increase exceeds recommended ignition criteria for explosion limit determination that are based on 5 or 7% of pressure rise leading to inaccurate classification of the oxidation phenomena, i.e. cool flame propagation may be classified as hot flame propagation.Two mixtures were tested: n-butane-oxygen (extensively) and C1–C2–oxygen (in limited range), which represent a typical composition in ethylene oxide production, at elevated conditions at their upper explosion limits. Flame development was analysed by flame emission spectroscopy and the post-oxidation mixture was analysed by gas chromatography (GC) to characterise the oxidation mechanism of the flame. Additionally explosion pressure rise, flame temperature, and maximum rate of pressure rise were measured. In all experiments with the pressure rise ratio below two the low temperature oxidation mechanism assisted the flame propagation.  相似文献   

3.
This paper describes a numerical and experimental investigation of hydrogen self-ignition occurring as a result of the formation of a shock wave. The shock wave is formed in front of high-pressure hydrogen gas propagating in a tube. The ignition of the hydrogen–air mixture occurs at the contact surface of the hydrogen and oxidant mixture and is due to the temperature increase produced as a result of the shock wave. The required condition for self-ignition is to maintain the high temperature in the mixture for a time long enough for inflammation to take place. The experimental technique employed was based on a high-pressure chamber pressurized with hydrogen, to the point of a burst disk operating to discharge pressurized hydrogen into a tube of cylindrical or rectangular cross section containing air. A physicochemical model involving gas-dynamic transport of a viscous gas, detailed kinetics of hydrogen oxidation and heat exchange in the laminar approach was used for calculations of high-pressure hydrogen self-ignition. The reservoir pressure range, when a shock wave is formed in the air that has sufficient intensity to produce self-ignition of the hydrogen–air mixture, is found. An analysis of governing physical phenomena based on the experimental and numerical results of the initial conditions (the hydrogen pressure inside the vessel, and the shape of the tube in which the hydrogen was discharged) and physical mechanisms that lead to combustion is presented.  相似文献   

4.
The explosivity of dust clouds is greatly influenced by several parameters which depend on the operating conditions, such as the initial turbulence, temperature or ignition energy, but obviously also on the materials composition. In the peculiar case of a mixture of two combustible powders, the physical and chemical properties of both dusts have an impact on the cloud flammability and on its explosivity. Nevertheless, no satisfactory ‘mixing laws’ predicting the mixture behavior are currently available and the composition variable to be considered for such models greatly depend on the safety parameters which have to be determined: from volume ratios for some thermal exchanges and ignition phenomena, to surface proportions for some heterogeneous reactions and molar contents for chemical reactions. This study is mainly focused on graphite/magnesium mixtures as they are encountered during the decommissioning activities of UNGG reactors (Natural Uranium Graphite Gas). Due to the different nature and reactivity of both powders, these mixtures offer a wide range of interests. Firstly, the rate-limiting steps for the combustion of graphite are distinct from those of metals (oxygen diffusion or metal vaporization). Secondly, the flame can be thickened by the presence of radiation during metal combustion, whereas this phenomenon is negligible for pure graphite. Finally, the turbulence of the initial dust cloud is modified by the addition of a second powder. In order to assess the explosivity of graphite/magnesium clouds, a parametric study of the effects of storage humidity, particle size distribution, ignition energy, and initial turbulence has been carried out. In particular, it was clearly demonstrated that the turbulence significantly influences the explosion severity by speeding up the rate of heat release on the one hand and the oxygen diffusion through the boundary layer surrounding particles on the other hand. Moreover, it modifies the mean particle size and the spatial dust distribution in the test vessel, impacting the uniformity of the dust cloud. Thus, the present work demonstrates that the procedures developed for standard tests are not sufficient to assess the dust explosivity in industrial conditions and that an extensive parametric study is relevant to figure out the explosive behavior of solid/solid mixtures subjected to variations of operating conditions.  相似文献   

5.
Quantifying the risk of accidental ignition of flammable mixtures is extremely important in industry and aviation safety. The concept of a minimum ignition energy (MIE), obtained using a capacitive spark discharge ignition source, has traditionally formed the basis for determining the hazard posed by fuels. While extensive tabulations of historical MIE data exist, there has been little work done on ignition of realistic industrial and aviation fuels, such as gasoline or kerosene. In the current work, spark ignition tests are performed in a gaseous kerosene–air mixture with a liquid fuel temperature of 60 °C and a fixed spark gap of 3.3 mm. The required ignition energy was examined, and a range of spark energies over which there is a probability of ignition is identified and compared with previous test results in Jet A (aviation kerosene). The kerosene results are also compared with ignition test results obtained in previous work for traditional hydrogen-based surrogate mixtures used in safety testing as well as two hexane–air mixtures. Additionally, the statistical nature of spark ignition is discussed.  相似文献   

6.
In this study, the dependence of minimum ignition energies (MIE) on ignition geometry, ignition source radius and mixture composition is investigated numerically for methane/air and iso-octane/air mixtures. Methane and iso-octane are both important hydrocarbon fuels, but differ strongly with respect to their Lewis numbers. Lean iso-octane air mixtures have particularly large Lewis numbers. The results show that within the flammability limits, the MIE for both mixtures stays almost constant, and increases rapidly at the limits. The MIEs for both fuels are also similar within the flammability limits. Furthermore, the MIEs of iso-octane/air mixtures with a small spherical ignition source increase rapidly for lean mixtures. Here the Lewis number is above unity, and thus, the flame may quench because of flame curvature effects. The observations show a distinct difference between ignition and flame propagation for iso-octane. The minimum energy required for initiating a successful flame propagation can be considerably higher than that required for initiating an ignition in the ignition volume. For iso-octane with a small spherical ignition source, this effect was observed at all equivalence ratios. For iso-octane with cylindrical ignition sources, the phenomenon appeared at lower equivalence ratios only, where the mixture's Lewis number is large. For methane fuel, the effect was negligible. The results highlight the significance of molecular transport properties on the decision whether or not an ignitable mixture can evolve into a propagating flame.  相似文献   

7.
The safe operation of hydrocarbon liquid-phase oxidation by air or oxygen requires the knowledge on the flammability of hydrocarbon/oxygen mixtures in both the vapor space and vapor bubbles. The latter is of particular importance in situation where pure oxygen is used as the oxidant as most bubbles are expected to be flammable and explosive. New experimental findings are presented for ignition and explosion in cyclohexane liquid under oxygen oxidation conditions. A bubble column is constructed and fitted with multiple igniters. Experiments were performed at liquid temperatures between 373.15 and 423.15 K under various flow rates of pure oxygen. Two drastic different ignition and explosion behaviors were observed. The first is a typical bubble explosion from the direct ignition of the flammable bubbles in the liquid. The explosion occurs immediate following the ignition and do not produce significant energy that endanger the system. The other is a remote, delayed ignition and explosion in the vapor space that can produce significant overpressure and endanger the system. The explosion is attributed to the ignition of flammable vapor space by active free radicals from cyclohexyl hydroperoxide decomposition. A mechanism is proposed for the remote, delayed ignition to occur in the oxidation system. It is concluded that explosion in an oxidizing, bubbly liquid is not only a likely scenario but also a severe scenario, and cyclohexane oxidation should not be carried out directly with pure oxygen and without any inerting.  相似文献   

8.
Risk evaluation of mixtures of asphalt and inorganic salts such as sodium nitrate, sodium nitrite, sodium carbonate and sodium dihydrogenphosphate was conducted. The ignition and the combustion characteristics of mixtures of asphalt and oxidizing salts were obtained. Quasi-heat-accumulation experiments of asphalt–salt mixtures were conducted using about 1 kg samples. Six types of asphalt–salt mixtures were made and their ignition characteristics were examined in the quasi-heat-accumulation experiments. Then to clarify burning behavior of the asphalt–salt mixtures, experiments for understanding their combustion characteristics were conducted using a cone calorimeter.

The main results are as follows.

(1) In the quasi-heat-accumulation experiment, a region with high concentration of the salt mixture particles was made at the bottom of the sample vessel through the process of their sedimentation. An exothermic reaction started in this region. Just before the asphalt–salt mixture was ignited, a huge amount of white smoke was released. A kind of jet flame of a few meters in height was created.

(2) Based on the data of ignition temperature from the cone calorimeter experiments, ignition of asphalt was caused by a chemical reaction of asphalt with an oxidizing salt. The combustion of the asphalt–salt mixture contained the self-heating reaction.  相似文献   


9.
The aim of this work is to present a simple modelling in order to predict the evolution of the thermodynamical characteristics of the combustion of kerosene droplets in each compartment of a closed or a vented vessel.A simple representation of the combustion phenomena based on energy transfers and the action of specific molecular species is presented.The fuel ratio of the mixture is defined by the experimental determination of the partial pressure of the kerosene vapors. The total mass rate of gaseous substances due to the difference of pressure between adjacent compartments or the surrounding atmosphere is calculated by the standard orifice equations. A calculation methodology is developed to simulate the transmission of the explosion from one compartment to another adjacent compartment in simple structures with a possible extension to complex multi-partitioned structures. The model allows the study in each compartment of the influence of various parameters such as the fuel ratio of the mixture, the size of the inner openings or the venting effects.Calculation and experimental results show that in all cases, overpressures appear in the adjoining areas to the ignition compartment.  相似文献   

10.
Low-temperature (at T < 900–950 K) ignition delays of hydrogen–air mixtures are mainly measured in rapid compression machines (RCM). This communication is aimed at numerical simulation of ignition delays of hydrogen–air mixtures in the RCM by means of a coupled three-dimensional (3D) Unsteady Reynolds-Averaged Navier–Stokes (URANS) – Particle Method (PM) simulation of RCM operation capable of catching turbulence–chemistry interaction. The study indicates that the time history of piston motion in an RCM affects the final state of a test mixture at the end of compression stroke and therefore influences the phenomena relevant to test mixture ignition. More specifically, the calculations show that different laws of piston motion at a fixed average piston velocity (i.e., fixed piston displacement and fixed compression time) and fixed compression ratio result in different evolution of mean pressure, temperature and velocity fields in the RCM test section leading to different ignition behavior. The reasons for the arising differences lie in the fact that the local instantaneous piston velocity determines the roll-up vortex structure, strength and turbulence dissipation in it, heat transfer in test-section walls, and mass leakage through piston rings.  相似文献   

11.
The paper reviews large scale experiments with various fuels in air where successful deflagration to detonation transition (DDT) took place. This includes a recent experiment disclosed in the Buncefield R&D program, where DDT developed in the propane/air mixture. The DDT occurred in branches of deciduous trees in a premixed stagnant mixture. An internal R&D investigation programme was initiated to better understand the phenomena. A large scale experiment in an open space with ethane air mixture is presented in the paper. The premixed mixture was ignited at the edge of the congested three-dimensional rigs which consisted of vertical and horizontal pipes. After ignition, the flame accelerated in the congestion and transitioned to detonation at the end of congestion. Stable detonation propagated through the remaining open and uncongested space.The flame acceleration process leading to DDT is scale dependent. It also depends on many parameters leading to a large investigation array and, significant cost. However, such R&D efforts aimed toward a safer plant design, i.e. the prevention of occurrence of a major accident, are a small fraction of a real accident cost.  相似文献   

12.
The critical temperature as well as the critical flux for ignition of a dust layer of cornflour and a mixture of wheatflour and cornflour (80% wheatflour+20% cornflour) on a hot plate have been determined. The moulded sample was cylindrical in shape and of different heights and diameters. The particle size of dusts ranged between 63 μm to 150 μm. The temperature–time histories for self-heating without ignition and with ignition are offered, showing the critical boundaries between them. Also the times to ignition for each dust, showing the effect of sample size on their values, are determined. Certain experimental correlations which relate to times to ignition, as well as the critical temperature for ignition and thermal and geometrical dimensions of sample are presented.  相似文献   

13.
Previously, an extensive study has been carried out in order to assess the ignition sensitivity and explosivity of aluminum nanopowders. It showed notably that, as the particle size decreases, minimum ignition temperature and minimum ignition energy decrease, indicating higher potential inflammation. However, the explosion severity decreases for diameters lower than 1 μm. As a consequence, this study leads to the conclusions that the ignition sensitivity and explosion severity of aluminum nanopowders may be affected by various phenomena, as pre-ignition, agglomeration/aggregation degree and the intrinsic alumina content. The presence of wall-quenching effects and the predominance of radiation compared to conduction in the flame propagation process have to be discussed to ensure the validity of the 20 L sphere and of the results extrapolation. Based on the peculiar behaviours that had been previously highlighted, a specific risk analysis has been developed in order to assess the fire and explosion risks of such materials. It has been applied to an industrial plant of aluminum nanopowders production. The hazard identification and the consequence modelling steps, especially the quantification of the likelihood and consequences, have been designed specifically. The application of this method has led to the definition of the most adequate safety barriers.  相似文献   

14.
为更好地探索多相混合物的爆炸特性,以铝粉、乙醚、空气为研究对象,基于20 L球型爆炸罐建立三维计算模型,对气固两相和气液固三相混合物的分散过程进行数值模拟,以分析不同多相混合物分散过程的差异,并为测量多相混合物爆炸下限时的点火延迟时间设定提供参考。监测分析铝粉浓度粒子分布、流场内部湍流动能以及液相体积百分数等的演化过程,讨论混合物分散效果的差异,并确定测量爆炸下限的点火延迟时间。研究结果表明:实验工况下,液相的存在会降低粉尘云团的湍流动能、降低其扩散速度,并使粉尘云内部浓度更均匀。测量多相混合物爆炸下限时,三相混合物的最佳点火延迟时间早于气固两相混合物10~20 ms。  相似文献   

15.
In the work presented in this paper, the explosion and flammability behavior of combustible dust mixtures was studied. Lycopodium, Nicotinic acid and Ascorbic acid were used as sample dusts.In the case of mixtures of two dusts, the minimum explosive concentration is reproduced well by a Le Chatelier's rule-like formula, whereas the minimum ignition energy is a linear combination of the ignition energies of the pure dusts.An unexpected behavior has been found in relation to the explosion behavior and the reactivity. When mixing Lycopodium and Nicotinic acid or Ascorbic acid, the rate of pressure rise of the mixture is much higher than the rate of pressure rise obtained by linearly averaging the values of the pure dusts (according to their weight proportions), thus suggesting that strong synergistic effects arise; but it is comparable to that of the most reactive dust in the mixture.The observed behavior seems to be linked to the presence of minerals in the Lycopodium particles which catalyze oxidation reactions of Nicotinic acid and Ascorbic acid, as suggested by TG analysis.In the case of mixtures of three dusts, a similar behavior is observed when the concentration of Lycopodium is twice that of the other two dusts.  相似文献   

16.
For the development of a standardized method for measuring the explosion safety characteristics of combustible hybrid dust/vapor mixtures, the influence of the ignition delay time needs to be investigated. The ignition delay time, defined as the time between the injection of dust and the activation of the ignition source, is related to the turbulence of the mixture and thus to the pressure rise rate. The ignition source for pure vapors, however, has to be activated in a quiescent atmosphere according to the standards. Nevertheless, when measuring the explosion safety characteristics of hybrid mixtures, it is important that the dust be in suspension around the igniter. Like pure dust/air mixtures, hybrid dust/vapor/air mixtures need to be ignited in a turbulent atmosphere to keep the dust in suspension.This work will therefore investigate the influence of ignition delay times on the severity of hybrid explosions. It was generally found that at shorter ignition delay times, (dp/dt)ex increased due to higher turbulence and decreases as the dust sinks to the bottom of the 20 L-sphere. This effect is more pronounced for hybrid mixtures with higher vapor content compared to dust content.  相似文献   

17.
Although the minimum ignition temperature is an important safety characteristic and of practical relevance in industrial processes, actually only standard operation procedures are available for pure substances and single-phase values. Nevertheless, combinations of substances or mixtures are used in industrial processes and up to now it is not possible to provide a standardised minimum ignition temperature and in consequence to design a process safely with regard to the substances used.In order to get minimum ignition temperatures for frequently used hybrid mixtures, first, the minimum ignition temperatures and ignition frequencies were determined in the modified Godbert-Greenwald furnace for two single phase solids and a liquid substance. Second, minimum ignition temperatures and ignition frequencies were determined for several combinations as hybrid mixture of dust and liquid.In parallel to the determination of ignition temperatures a new camera and computer system to differentiate ignition from non-ignition is developed. First results are promising that such a system could be much less operator depended.By a high number of repetitions to classify regions of ignition the base is laid to decide about a new procedure for a hybrid standard and updating existing ones, too. This is one of the necessary aims to be reached in the Nex-Hys project.A noticeable decrease of minimum ignition temperatures below the MIT of the pure solids was observed for the one hybrid mixture tested, yet. Furthermore more widely dispersed area of ignition is shown. In accordance to previously findings, the results demonstrate a strong relationship between likelihood of explosion and amount of added solvent. In consequence the hybrid mixture is characterized by a lower minimum ignition temperature than the single dust.  相似文献   

18.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

19.
This paper is devoted to the numerical and experimental investigation of hydrogen self-ignition as a result of the formation of a primary shock wave in front of a cold expanding hydrogen gas jet. Temperature increase, as a result of this shock wave, leads to the ignition of the hydrogen–air mixture formed on the contact surface. The required condition for hydrogen self-ignition is to maintain the high temperature in the area for a time long enough for hydrogen and air to mix and inflammation to take place.

Calculations of the self-ignition of a hydrogen jet are based on a physicochemical model involving the gas-dynamic transport of a viscous gas, the kinetics of hydrogen oxidation, the multi-component diffusion, and the heat exchange. We found that the reservoir pressure range, when a shock wave formed in the air during depressurization, has sufficient intensity to produce self-ignition of the hydrogen–air mixture formed at the front of a jet of compressed hydrogen. We present an analysis of the initial conditions (the hydrogen pressure inside the vessel, the temperature of the compressed hydrogen and the surrounding air, and the diameter of the hole through which the jet was emitted), which leads to combustion.  相似文献   


20.
瓦斯对煤尘爆炸特性影响的实验研究   总被引:2,自引:3,他引:2  
瓦斯的存在对煤尘爆炸特性的理论计算和数值仿真的结果与实际数据有一定差距,因此,通过不同浓度瓦斯与煤尘共存条件下爆炸实验研究,得出了矿井瓦斯对煤尘的最低着火温度、最小点火能量、爆炸下限浓度、最大爆炸压力和最大爆炸压力上升速度等爆炸特性影响的规律即瓦斯对煤尘最低着火温度影响不大;瓦斯可使煤尘的最小点火能量减小,尤其是对难于点燃的煤尘;混合物的爆炸下限浓度随瓦斯浓度的增加而降低;混合物的最大爆炸压力上升速度由于瓦斯的存在而增强,而最大爆炸压力几乎没有变化。同时研究了瓦斯对无爆炸性煤尘的影响。实验研究的结论对于现场防止煤尘爆炸的发生具有指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号