首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g(s)), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l(-1) O(3) added for 7 h d(-1) over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons.  相似文献   

2.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides X nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (Experiment 1) and during 1989 and 1990 (Experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In Experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season; then the plants were grown outdoors with ambient ozone in 1989. In Experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season; then the plants were grown outdoors with ambient ozone in 1990. Shallow wounds were made into the bark tissue and inoculated with either an aqueous suspension of conidia of Mycosphaerella populorum or sterile water on 1 and 2 September 1988 (Experiment 1) or 16 and 17 August 1989 (Experiment 2). In Experiment 1, wounds were inoculated either 0, 7, or 14 days after wounding. In Experiment 2, wounds were inoculated either 0, 3, or 6 days after wounding. Canker development was measured after harvest on 16 and 17 July 1989 (Experiment 1) and 28 May 1990 (Experiment 2). In both experiments, chronic exposure to ozone significantly increased the incidence of canker formation in inoculated wounds, and no cankers formed in wounds that received only sterile water. In Experiment 1, cankers formed only on plants inoculated the same day as wounding. No cankers formed on plants inoculated either 7 or 14 days after wounding. In Experiment 2, cankers formed on plants inoculated on the same day as wounding, and on a few plants inoculated 3 days after wounding. No cankers formed on plants inoculated 6 days after wounding. Additionally, in Experiment 2, exposure to increased concentrations of ozone caused a significantly higher number of plants to die during the subsequent winter. Analysis of partial correlation coefficients among plant growth and plant disease variables suggested that the observed ozone-induced increase in the susceptibility of the plants to disease was not mediated by alterations in plant growth.  相似文献   

3.
Rooted cuttings of hybrid Populus (DN34, Populus deltoides x nigra) were grown outdoors in pots in open-top chambers at Ithaca, NY (74.5 degrees W, 42.5 degrees N), during 1988 and 1989 (experiment 1) and during 1989 and 1990 (experiment 2). Ambient air was passed through charcoal filters to produce a 0.5 times ambient ozone treatment, and ozone generated from oxygen was added to produce one and two times ambient ozone treatments. In experiment 1, treatments were applied for 8-12 h each day for 112 days of the 1988 growing season, then the plants were grown outdoors with ambient ozone in 1989. In experiment 2, treatments were applied for 9 h each day for 98 days of the 1989 growing season, then the plants were grown outdoors with ambient ozone in 1990. Chronic exposure to ozone caused the following changes (statistically significant in one or both experiments at p<0.05): (1) earlier leaf abscission, (2) decreased stem basal diameter, (3) decreased stem mass, (4) decreased internode length, (5) decreased shoot height p=0.005, and (6) decreased leaf size in the growing season following ozone treatment. There was also strong evidence that ozone increased the number of leaves produced p=0.055. Finally, there was some evidence that ozone increased the ratio of shoot mass to root mass p=0.093.  相似文献   

4.
The response to ozone (O(3)) of greenness, in terms of estimated total chlorophyll concentration (Chl), of leaves at three plant canopy levels was studied in tomato (Lycopersicon esculentum Mill.) over a 10-day period following O(3) exposure. Plants of the cultivars 'New Yorker' and 'Tiny Tim' were grown at 25/15 degrees or 30/15 degrees day/night temperatures in growth chambers and exposed to 0.00, 0.08, 0.16 or 0.24 microl litre(-1) O(3) for 7 h day(-1) for four consecutive days in controlled environment exposure chambers. Measurement of Chl in the top, middle and bottom canopy leaves with a calibrated SPAD-501 leaf greenness meter indicated that the growth temperatures tested did not significantly influence the response of Chl to O(3). Ozone-induced loss of Chl was widespread in the entire foliage canopy, including foliage which did not demonstrate visible injury. In both cultvars the Chl in leaves at all three canopy levels declined as a function of increasing O(3) concentration when measured 2, 4, 6, 8 and 10 days after the exposure period. However, the slopes for leaves in the top and middle canopies decreased with increasing time after exposure. An analysis of this apparent Chl recovery indicated that leaves in the top and middle canopies exposed to 0.16 and 0.24 microl litre(-1) increased in greenness at a rapid rate after the marked initial decline associated with O(3) treatment. The apparent recovery of the top canopy may have reflected the growth of new leaves and their inclusion in the measurements, but this was not the case for the middle canopy for which the same leaves were measured throughout the post-exposure period. Bottom canopy leaves did not demonstrate significant recovery of Chl.  相似文献   

5.
In some countries, ozone (O3) is primarily a summer pollutant, but in much of Europe, elevated concentrations occur outside the growing season so perennials and over-wintering annuals may be subjected to the combined stresses of pollution, plus chilling, freezing, and winter desiccation. It is recognised that some air pollutants modify the response of plants to environmental stress, but little is known of interactions involving O3. This paper is part of a programme concerned with the effects of O3 on resistance to chilling, freezing, and winter desiccation. Pea (Pisum sativum L.) was used as a convenient model to confirm that O3 affects freezing resistance. The experiment also served as a further evaluation of the use of induced chlorophyll fluorescence kinetics to detect latent O3 injury. Two cultivars, 'Feltham First' and 'Conquest', were fumigated for 7 days, 7 h day(-1). Diffusive resistance and induced fluorescence were recorded daily during the period, then the plants were hardened at 4 degrees C day/2 degrees C night before exposure to 0, -2, -4, -6 and -8 degrees C. Ozone (0.075 ppm; 150 microg O3 m(-3)) caused stomatal closure in both cultivars, but the response was more rapid in 'Conquest'. There were also rapid effects on fluorescence kinetics, and it was concluded that FR, the rate of rise of induced fluorescence, is a useful parameter for indicating latent injury and for distinguishing between cultivars of different sensitivity. Exposure to O3 increased freezing injury and led to greater electrolyte leakage. The freezing resistance of 'Feltham First' was more affected than that of 'Conquest', probably because of the slower stomatal response to the pollutant leading to greater flux of O3 to the internal tissues. It is concluded that interactions involving pollutants and winter stress have implications for crop loss assessment. Perennials and over-wintering annuals should be exposed to the full range of environmental stresses.  相似文献   

6.
Tibouchina pulchra saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF) and ambient non-filtered air+40 ppb ozone (NF+O3) 8 h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12,895 ppb h(-1), respectively, for the three treatments. After 25 days of exposure (AOT40=3871 ppb h(-1)), interveinal red stippling appeared in plants in the NF+O3 chamber. In the NF chamber, symptoms were observed only after 60 days of exposure (AOT40=910 ppb h(-1)). After 60 days, injured leaves per plant corresponded to 19% in NF+O3 and 1% in the NF treatment; and the average leaf area injured was 7% within the NF+O3 and 0.2% within the NF treatment. The extent of leaf area injured (leaf injury index) was mostly explained by the accumulated exposure of ozone (r2=0.89; p<0.05).  相似文献   

7.
The lichen species Anaptychia ciliaris, Collema nigrescens, Evernia prunastri, Hypogymnia bitteri, Lobaria pulmonaria, Pseudevernia furfuracea and Usnea rigida s.l. were fumigated with site-relevant concentrations (for Central Europe) of ozone over 80 days (180 microg m(-3) during daytime, 80 microg m(-3) during the night). Chlorophyll fluorescence measurements revealed a significant reduction of Fv/Fm after ozone fumigation in five of the species investigated, indicating severe stress on photosystem II due to ozone. The physiological impairment paralleled our fine structural investigations, revealing a significantly higher percentage of collapsed photobiont cells. This indicates that the effects of ambient ozone concentrations under experimental conditions included biophysical and physiological, as well as structural impairment in the lichens studied.  相似文献   

8.
Two modern fungicides, a strobilurin, azoxystrobin (AZO), and a triazole, epoxiconazole (EPO), applied as foliar spray on spring barley (Hordeum vulgare L. cv. Scarlett) 3 days prior to fumigation with injurious doses of ozone (150-250 ppb; 5 days; 7 h/day) induced a 50-60% protection against ozone injury on leaves. Fungicide treatments of barley plants at growth stage (GS) 32 significantly increased the total leaf soluble protein content. Additionally, activities of the antioxidative enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate-peroxidase (APX) and glutathione reductase (GR) were increased by both fungicides at maximal rates of 16, 75, 51 and 144%, respectively. Guiacol-peroxidase (POX) activity was elevated by 50-110% only in AZO treated plants, while this effect was lacking after treatments with EPO. This coincided with elevated levels of hydrogen peroxide (H2O2) only in EPO and not in AZO treated plants. The enhancement of the plant antioxidative system by the two fungicides significantly and considerably reduced the level of superoxide (O2*-) in leaves. Fumigation of barley plants for 4 days with non-injurious ozone doses (120-150 ppb, 7 h/day) markedly and immediately stimulated O2*- accumulation in leaves, while H2O2 was increased only after the third day of fumigation. Therefore, O2*- itself or as precursor of even more toxic oxyradicals appears to be more indicative for ozone-induced leaf damage than H2O2. Ozone also induced significant increases in the activity of antioxidant enzymes (SOD, POX and CAT) after 2 days of fumigation in fungicide untreated plants, while after 4 days of fumigation these enzymes declined to a level lower than in unfumigated plants, due to the oxidative degradation of leaf proteins. This is the first report demonstrating the marked enhancement of plant antioxidative enzymes and the enhanced scavenging of potentially harmful O2*- by fungicides as a mechanism of protecting plants against noxious oxidative stress from the environment. The antioxidant effect of modern fungicides widely used in intense cereal production in many countries represents an important factor when evaluating potential air pollution effects in agriculture.  相似文献   

9.
Psidium guajava 'Paluma' saplings were exposed to carbon filtered air (CF), ambient non-filtered air (NF), and ambient non-filtered air+40ppb ozone (NF+O(3)) 8h per day during two months. The AOT40 values at the end of the experiment were 48, 910 and 12 895ppbh(-1), respectively for the three treatments. After 5 days of exposure (AOT40=1497ppbh(-1)), interveinal red stippling appeared in plants in the NF+O(3) chamber. In the NF chamber, symptoms were observed only after 40 days of exposure (AOT40=880ppbh(-1)). After 60 days, injured leaves per plant corresponded to 86% in NF+O(3) and 25% in the NF treatment, and the average leaf area injured was 45% in NF+O(3) and 5% in the NF treatment. The extent of leaf area injured (leaf injury index) was explained mainly by the accumulated exposure of ozone (r(2)=0.91; p<0.05).  相似文献   

10.
In an effort to examine ozone (O3) deposition over a forest site in the Czech Republic, a low cost eddy flux experiment using slow response ozone and temperature sensors was implemented in July 1993 within the Brdy Mountains. Half-hour 2-Hz ozone and sensible heat measurements made at the Brdy Mountains for 98 days during the period 7 July 1994-20 October 1994 are analyzed and reported. While the Czech Brdy Mountains AOT40 level for the overall 104 day period was 7.6 ppm h (15.1 ppm h for the full 24-h summation), indicating a slight potential for 03 injury, the 1994 summer to autumn'measured forest O3 uptake was 2.4 (+/- 0.9) g m(-2), not unusually high compared to other studies. Average summer midday 03 fluxes and depositidn velocities were -1.0 (+/- 0.6) microg m(-2) s(-1) and 1.1 (+/- 0.7) cm s(-1). and autumn values were -0.36 (+/- 0.4) microg m(-2) s(-1) and 0.7 (+/- 0.5) cm s(-1) respectively. A unique contribution of this study is the first time demonstrated use of slow responding sensors for eddy covariance flux measurements at heights of 20 m above a forest.  相似文献   

11.
White oak (Quercus alba L.) seedlings were exposed to charcoal-filtered air or to above-ambient ozone concentrations for 19-20 weeks during each of two growing seasons in continuously stirred tank reactors in greenhouses. Ozone treatments were 0.15 ppm (300 microg m(-3)) for 8 h day(-1), 3 days week(-1) in 1988, and continuous 15% above ambient in 1989. The seedlings were grown in forest soil watered twice weekly with simulated rain of pH 5.2. Responses of net photosynthesis to photosynthetically active radiation and intercellular CO(2) concentration were measured three times each year. There were no significant differences in light-saturated net photosynthesis or stomatal conductance, dark respiration, quantum or carboxylation efficiencies, and light or CO(2) compensation points on any date between control and ozone-exposed seedlings.  相似文献   

12.
Cotton plants were investigated to ascertain the growth period of maximum sensitivity to ozone. Plants were grown from seed in the greenhouse to obtain a two-day interval age series to about three months old. Before fumigation with 0.2 to 1.0 ppm ozone for 1 hr, plants were preconditioned under standard growth chamber conditions with day temperatures of 32°, night temperatures of 21°, relative humidity of 50%, and a light intensity of 6 X 104 ergs/cm2/sec. Also, stomatal opening was monitored with a resistance hygrometer. Ozone damage to leaves was assessed by rating per cent visible damage with an arbitrary scale. Approximately 0.6-0.7 ppm ozone exposure for 1 hr was necessary for visible damage. Leaves were susceptible to ozone when about three-quarters fully expanded. Leaves appearing on older plants became progressively less sensitive. Diurnally, susceptible leaves were only sensitive after several hours in the light and then lost sensitivity toward the end of a normal day. The two most critical questions concerning the nature of ozone sensitivity and susceptibility are: (7) what is the nature of susceptibility, and (2) what is the nature of sensitivity of susceptible leaves?  相似文献   

13.
Two-year-old beech and Norway spruce seedlings were exposed to a combination of ozone and acid mist treatments in open-top chambers in Scotland during the months of July through to September 1988. Replicate pairs of chambers received charcoal-filtered air (control), ozone-enriched air (140 nl ozone litre(-1)) or 140 nl ozone litre(-1) plus a synthetic acid mist (pH 2.5) composed of ammonium nitrate and sulphuric acid. Field measurements of assimilation and stomatal conductance were made during August. In addition, measurements of assimilation and conductance were made during September in the laboratory. Light response curves of assimilation and conductance were determined using a GENSTAT nonrectangular hyperbolic model. During February 1988/9 the Norway spruce were subject to a four day warming period at 12 degrees C and the light response of assimilation determined. The same plants were then subject to a 3-h night-time frost of -10 degrees C. The following day the time-course of the recovery of assimilation was determined. It was found that ozone fumigation did not influence the light response of assimilation of beech trees in the field, although stomatal conductance was reduced in the ozone-fumigated trees. The rate of light-saturated assimilation of Norway spruce was increased by ozone fumigation when measured in the field. Measurements of assimilation of Norway spruce made during the winter showed that prior to rewarming there was no difference in the rate of light-saturated assimilation for control and ozone-fumigated trees. However, the ozone plus acid mist-treated trees exhibited a significantly higher rate. The 4-day period of warming to 12 degrees C increased the rate of light-saturated assimilation in all treatments but only the ozone plus acid mist-treated trees showed a significant increase. Following a 3-h frost to -10 degrees C the control trees exhibited a reduction in the rate of light-saturated assimilation (Amax) to 80% of the pre-frost value. In comparison, following the frost, the ozone-fumigated trees showed an Amax of 74% of the pre-frost value. The ozone plus acid mist-treated trees showed an Amax of 64% of the pre-frost trees. The time taken for Amax to attain 50% of the pre-frost value increased from 30 min (control) to 85 min for ozone-fumigated trees to 190 min (ozone plus acid mist). These results are discussed in relation to the impact of mild, short-term frosts, which are known to occur with greater frequency than extreme, more catastrophic frost events. A simple conceptual framework is proposed to explain the variable results obtained in the literature with respect to the impact of ozone upon tree physiology.  相似文献   

14.
The effects of CO(2) enrichment and O(3) induced stress on wheat (Triticum aestivum L.) and corn (Zea mays L.) were studied in field experiments using open-top chambers to simulate the atmospheric concentrations of these two gases that are predicted to occur during the coming century. The experiments were conducted at Beltsville, MD, during 1991 (wheat and corn) and 1992 (wheat). Crops were grown under charcoal filtered (CF) air or ambient air + 40 nl liter(-1) O(3) (7 h per day, 5 days per week) having ambient CO(2) concentration (350 microl liter(-1) CO(2)) or + 150 microl liter(-1) CO(2) (12 h per day.). Averaged over O(3) treatments, the CO(2)-enriched environment had a positive effect on wheat grain yield (26% in 1991 and 15% in 1992) and dry biomass (15% in 1991 and 9% in 1992). Averaged over CO(2) treatments, high O(3) exposure had a negative impact on wheat grain yield (-15% in 1991 and -11% in 1992) and dry biomass (-11% in 1991 and -9% in 1992). Averaged over CO(2) treatments, high O(3) exposure decreased corn grain yield by 9%. No significant interactive effects were observed for either crop. The results indicated that CO(2) enrichment had a beneficial effect in wheat (C(3) crop) but not in corn (C(4) crop). It is likely that the O(3)-induced stress will be diminished under increased atmospheric CO(2) concentrations; however, maximal benefits in crop production in wheat in response to CO(2) enrichment will not be materialized under concomitant increases in tropospheric O(3) concentration.  相似文献   

15.
Ozone remains one of the most recalcitrant air pollution problems in the US. Hourly emissions fields used in air quality models (AQMs) generally show less temporal variability than corresponding measurements from continuous emissions monitors (CEM) and field campaigns would imply. If emissions control scenarios to reduce emissions at peak ozone forming hours are to be assessed with AQMs, the effect of emissions' daily variability on modeled ozone must be understood. We analyzed the effects of altering all anthropogenic emissions' temporal distributions by source group on 2002 summer-long simulations of ozone using the Community Multiscale Air Quality Model (CMAQ) v4.5 and the Carbon Bond IV (CBIV) chemical mechanism with 12 km resolution. We find that when mobile source emissions were made constant over the course of a day, 8-h maximum ozone predictions changed by ±7 parts per billion by volume (ppbv) in many urban areas on days when ozone concentrations greater than 80 ppbv were simulated in the base case. Increasing the temporal variation of point sources resulted in ozone changes of +6 and −6 ppbv, but only for small areas near sources. Changing the daily cycle of mobile source emissions produces substantial changes in simulated ozone, especially in urban areas at night; results suggest that shifting the emissions of NOx from day to night, for example in electric powered vehicles recharged at night, could have beneficial impacts on air quality.  相似文献   

16.
Seedlings of a sorghum x sudangrass hybrid in pots of non-sterile soil-sand mix were exposed to ozone (O(3)) at 0, 0.15, or 0.30 microl litre(-1) (7 h day(-1), 3 days week(-1)) and simulated rain (SR) adjusted with H(2)SO(4) + HNO(3) to pH 5.5, 4.0, or 2.5 (2 cm in 1.5 h per event; 2 events week(-1)) over 3 weeks in a greenhouse. Ozone suppressed shoot and root growth, but increased acid content (i.e. pH < 5.5) of SR stimulated shoot growth and had inconsistent effects on root growth. Ozone x SR chemistry interactions significantly affected plant growth. Data for 'total' bacterial populations in the rhizosphere (number of colony-forming units per gram of rhizosphere soil) exhibited a curvilinear relationship with O(3) (maximum at 0.15 microl liter(-1)). Increased acid content of SR stimulated numbers of 'total' bacteria but suppressed populations of amylolytic bacteria. Ozone and acid content of SR tended to stimulate numbers of fungal propagules in the rhizosphere, but this effect was not significant. Numbers of rhizosphere bacteria capable of phosphatase activity increased linearly with O(3), but only when SR chemistry was characterised by pH 4.0. Data for other populations of rhizosphere microorganisms did not exhibit significant relationships to O3 x SR chemistry interactions.  相似文献   

17.
Perennial ryegrass plants (Lolium perenne L.) were exposed in "Closed-Top Chambers" to different ozone concentrations and to charcoal filtered ambient air to study the effect of ozone on the development of pollen. Ozone at ambient (65 nl l(-1), 8h) and elevated (110 nl l(-1), 4h) concentrations affected the maturing of pollen by inhibiting starch accumulation in pollen throughout the anther. Affected pollen persisted in the vacuolated state while normal pollen in the same anther were filled with amyloplasts. The percentage of underdeveloped pollen-determined in transversal sections-was significantly higher in exposed plants than in plants grown in filtered air. Results indicate that ozone stress was responsible for the disrupted development of pollen in L. perenne.  相似文献   

18.
Experiments have been conducted to determine diel variations in photoinduced Hg0 oxidation in lake water under natural Hg0(aq) concentrations. Pseudo-first-order rates of photooxidation (k') were calculated for water freshly collected in a Canadian Shield lake, Lake Croche (45 degrees 56' N, 74 degrees 00' W), at different periods of the day and subsequently incubated in the dark. Hg0 oxidation rates ranged from 0.02 to 0.07 h(-1), increasing from sunrise to noon and then decreasing throughout the remainder of the day. These changes paralleled those in sunlight intensity integrated over 1 h preceding water collection, and suggested that the water freshly collected in daylight was rich in photochemically produced Hg0 oxidants. It was also estimated that under intense solar radiation, even if oxidation rates reached a peak, reduction of Hg(II) was the prevalent redox process. Inversely, Hg0 oxidation overcame DGM production during the night or at periods of weaker light intensity. Overall, these findings explain the decreases in the DGM pool generally observed overnight. They also support previous reports that, during summer days, volatilization of Hg0 from water represent an important step in the Hg cycle in freshwater systems.  相似文献   

19.
The effect of ozone on below-ground carbon allocation in wheat   总被引:15,自引:0,他引:15  
Short-term (14)CO(2) pulse and chase experiments were conducted in order to investigate the effect of ozone on below-ground carbon allocation in spring wheat seedlings (Triticum aestivum L. 'ANZA'). Wheat seedlings were grown in a sand-hydroponic system and exposed to either high ozone (38-40 ppm-h) or low ozone (23-31 ppm-h) for 21 days in a series of replicated experiments. Following the ozone exposures, the plants were pulsed with (14)CO(2) and allocation of (14)C-labeled photosynthate was measured in the plant and growth media. Soluble root exudates were measured, without disturbing the plant roots, 24 h after the (14)CO(2) pulse. Shoot biomass was reduced by 17% for the high ozone and 9% for the low ozone exposures, relative to control treatments. Root biomass was reduced by 9% for the high ozone exposures, but was not significantly different than the controls for the low ozone. The amount of (14)C activity in the shoot and root tissue 24 h after the (14)CO(2) pulse, normalized to tissue weight, total (14)CO(2) uptake, or the total (14)C retention in each plant, was not affected by either high or low ozone exposures. The amount of (14)C activity measured in the growth media solution surrounding the roots increased 9% for the high ozone exposures, and after normalizing to root size or root (14)C activity, the growth media solution (14)C activity increased 29 and 40%, respectively. Total respiration of (14)CO(2) from the ozone-treated plants decreased, but the decrease was not statistically significant. Our results suggest that soluble root exudation of (14)C activity to the surrounding rhizosphere increases in response to ozone. Increased root exudation to the rhizosphere in response to ozone is contrary to reports of decreased carbon allocation below ground and suggests that rhizosphere microbial activity may be initially stimulated by plant exposure to ozone.  相似文献   

20.
The effects of various ozone exposures in predisposing bean leaves (Phaseolus vulgaris L.) to Botrytis cinerea have been investigated under laboratory conditions. Seedlings of two bean cultivars were exposed to incremental ozone concentrations (120, 180 and 270 microg m(-3) for 8-h day(-1)) for five days and primary leaves were subsequently inoculated with conidia suspended in water or in an inorganic phosphate solution (Pi), and with mycelium. Ozone injury increased with increasing ozone concentration and was much higher in the ozone-sensitive cultivar 'Pros' than in the ozone-insensitive 'Groffy'. Ozone only increased the number of lesions on leaves of Pros after inoculation with either of the conidial suspensions. The Pi-stimulated infection in Groffy was reduced by the lower ozone concentrations. Ozone decreased lesion expansion after inoculation with mycelium. In a chronic fumigation experiment, plants of the two cultivars were exposed to 90 microg m(-3) (7-h day(-1)) and the primary and the oldest tree trifoliate leaves were inoculated after five and seven weeks of exposure. Ozone enhanced the senescence-related injury only in Pros. The number of lesions was not influenced by ozone for either cultivar, conidial suspension or inoculation date. Lesion expansion after inoculation with mycelium was generally reduced in exposed plants. Thus, contrasting effects of ozone on the susceptibility of bean leaves to B. cinerea were observed depending on the cultivar, the conidial suspension, the disease parameter and the ozone exposure pattern. In extrapolating the laboratory results to the field, it is suggested that episodic and chronic exposures to ambient ozone are of minor importance in increasing the susceptibility of bean leaves to B. cinerea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号