首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Overholtzer-McLeod KL 《Ecology》2006,87(4):1017-1026
The spatial configuration of habitat patches can profoundly affect a number of ecological interactions, including those between predators and prey. I examined the effects of reef spacing on predator-prey interactions within coral-reef fish assemblages in the Bahamas. Using manipulative field experiments, I determined that reef spacing influences whether and how density-dependent predation occurs. Mortality rates of juveniles of two ecologically dissimilar species (beaugregory damselfish and yellowhead wrasse) were similarly affected by reef spacing; for both species, mortality was density dependent on reef patches that were spatially isolated (separated by 50 m), and density independent on reef patches that were aggregated (separated by 5 m). A subsequent experiment with the damselfish demonstrated that a common resident predator (coney) caused a substantial proportion of the observed mortality, independent of reef spacing. Compared to isolated reefs, aggregated reefs were much more likely to be visited by transient predators (mostly yellowtail snappers), regardless of prey density, and on these reefs, mortality rates approached 100% for both prey species. Transient predators exhibited neither an aggregative response nor a type 3 functional response, and consequently were not the source of density dependence observed on the isolated reefs. These patterns suggest that resident predators caused density-dependent mortality in their prey through type 3 functional responses on all reefs, but on aggregated reefs, this density dependence was overwhelmed by high, density-independent mortality caused by transient predators. Thus, the spatial configuration of reef habitat affected both the magnitude of total predation and the existence of density-dependent mortality. The combined effects of the increasing fragmentation of coral reef habitats at numerous scales and global declines in predatory fish may have important consequences for the regulation of resident fish populations.  相似文献   

2.
Opportunity and recognition isolation can lead directly to reproductive isolation, the former via divergence in the location and timing of breeding, and the latter via differential mate preferences. We describe the potential significance of these factors in the maintenance of reproductive isolation in a clade of triplefin fishes that occur sympatrically around coastal New Zealand. Specifically, we investigate the roles of spawning time and nesting habitat in promoting opportunity isolation, and of interspecific variation in male body length and breeding colouration in promoting recognition isolation. The triplefin species investigated are reproductively active over several months and show high overlap in breeding times, thus rejecting temporal isolation as a mechanism. Differences in nesting habitats resulted in a reduced probability of encounter between some species, especially between sister-species pairs. Interspecific colour differences generally decreased during the reproductive period, and males of sister-species pairs showed no interspecific colour differences in the ultraviolet light spectrum, thus mate selection based on male colour patterns is unlikely to lead to premating isolation. Finally, males of closely related triplefin species differed in body length, a secondary sexual trait often involved in assortative mating. Thus, spatial differences in nesting habitats reduce the chances of encountering allospecific mates, which may facilitate opportunity isolation and differences in male length, possibly related to species-specific female selection on male body size, may lead to recognition isolation. The combination of limited spatial overlap in nesting habitat and differences in male body size may facilitate species assortative mating in sympatry or parapatry.  相似文献   

3.
4.
Patrick DA  Harper EB  Hunter ML  Calhoun AJ 《Ecology》2008,89(9):2563-2574
To predict the effects of terrestrial habitat change on amphibian populations, we need to know how amphibians respond to habitat heterogeneity, and whether habitat choice remains consistent throughout the life-history cycle. We conducted four experiments to evaluate how the spatial distribution of juvenile wood frogs, Rana sylvatica (including both overall abundance and localized density), was influenced by habitat choice and habitat structure, and how this relationship changed with spatial scale and behavioral phase. The four experiments included (1) habitat manipulation on replicated 10-ha landscapes surrounding breeding pools; (2) short-term experiments with individual frogs emigrating through a manipulated landscape of 1 m wide hexagonal patches; and habitat manipulations in (3) small (4-m2); and (4) large (100-m2) enclosures with multiple individuals to compare behavior both during and following emigration. The spatial distribution of juvenile wood frogs following emigration resulted from differences in the scale at which juvenile amphibians responded to habitat heterogeneity during active vs. settled behavioral phases. During emigration, juvenile wood frogs responded to coarse-scale variation in habitat (selection between 2.2-ha forest treatments) but not to fine-scale variation. After settling, however, animals showed habitat selection at much smaller scales (2-4 m2). This resulted in high densities of animals in small patches of suitable habitat where they experienced rapid mortality. No evidence of density-dependent habitat selection was seen, with juveniles typically choosing to remain at extremely high densities in high-quality habitat, rather than occupying low-quality habitat. These experiments demonstrate how prediction of the terrestrial distribution of juvenile amphibians requires understanding of the complex behavioral responses to habitat heterogeneity. Understanding these patterns is important, given that human alterations to amphibian habitats may generate extremely high densities of animals, resulting in high density-dependent mortality.  相似文献   

5.
White JW  Warner RR 《Ecology》2007,88(12):3044-3054
In coral reef fishes, density-dependent population regulation is commonly mediated via predation on juveniles that have recently settled from the plankton. All else being equal, strong density-dependent mortality should select against the formation of high-density aggregations, yet the juveniles of many reef fishes aggregate. In light of this apparent contradiction, we hypothesized that the form and intensity of density dependence vary with the spatial scale of measurement. Individual groups might enjoy safety in numbers, but predators could still produce density-dependent mortality at larger spatial scales. We investigated this possibility using recently settled juvenile bluehead wrasse, Thalassoma bifasciatum, a small, aggregating reef fish. An initial caging experiment demonstrated that juvenile bluehead wrasse settlers suffer high predation, and spatial settlement patterns indicated that bluehead wrasse juveniles preferentially settle in groups, although they are also found singly. We then monitored the mortality of recently settled juveniles at two spatial scales: microsites, occupied by individual fish or groups of fish and separated by centimeters, and sites, consisting of approximately 2400-m2 areas of reef and separated by kilometers. At the microsite scale, we measured group size and effective population density independently and found that per capita mortality decreased with group size but was not related to density. At the larger spatial scale, however, per capita mortality increased with settler density. This shift in the form of density dependence with spatial scale could reconcile the existence of small-scale aggregative behavior typical of many reef fishes with the population-scale density dependence that is essential to population stability and persistence.  相似文献   

6.
Stier AC  Osenberg CW 《Ecology》2010,91(10):2826-2832
Increased habitat availability or quality can alter production of habitat-dependent organisms in two contrasting ways: (1) by enhancing input of new colonists to the new sites (the Field-of-Dreams Hypothesis); and (2) by drawing colonists away from existing sites (the Propagule Redirection Hypothesis), and thus reducing the deleterious effects of density. We conducted a field experiment on coral reef fishes in Moorea, French Polynesia, to quantify how differing levels of habitat availability (controlling for quality) increased and/or redirected colonizing larval fish. Focal reefs without neighboring reefs received two to four times more settlers than reefs with adjacent habitat, demonstrating that increased habitat redirected larval fish. At the scale of the entire reef array, total colonization increased 1.3-fold in response to a sixfold increase in reef area (and a 2.75-fold increase in adjusted habitat availability). Thus, propagules were both increased and redirected, a result midway between the Field-of-Dreams and Propagule Redirection Hypotheses. A recruitment model using our data and field estimates of density-dependent recruitment predicts that habitat addition increases recruitment primarily by ameliorating the negative effects of competition at existing sites rather than increasing colonization at the new sites per se. Understanding long-term implications of these effects depends upon the interplay among habitat dynamics, population connectivity, colonization dynamics, and density dependence.  相似文献   

7.
This study explores the extent to which ontogenetic habitat shifts modify spatial patterns of fish established at settlement in the Moorea Island lagoon (French Polynesia). The lagoon of Moorea Island was divided into 12 habitat zones (i.e. coral seascapes), which were distinct in terms of depth, wave exposure, and substratum composition. Eighty-two species of recently settled juveniles were recorded from March to June 2001. Visual censuses documented changes in the distribution of juveniles of each species over time among the 12 habitats. Two patterns of juvenile habitat use were found among species. Firstly, some species settled and remained in the same habitat until the adoption of the adult habitats (i.e. recruitment; e.g. Chaetodon citrinellus, Halichoeres hortulanus, Rhinecanthus aculeatus). Secondly, others settled to several habitats and then disappeared from some habitats through differential mortality and/or post-settlement movement (e.g. 65–70 mm size class for Ctenochaetus striatus, 40–45 mm size class for Epinephelus merra, 50–55 mm size class for Scarus sordidus). A comparison of the spatial distribution of juveniles to that of adults (61 species recorded at both stages) illustrated four patterns of subsequent recruitment in habitat use: (1) an increase in the number of habitats used during the adult stage (e.g. H. hortulanus, Mulloidichthys flavolineatus); (2) a decrease in the number of habitats adults used compared to recently settled juveniles (e.g. Chrysiptera leucopoma, Stethojulis bandanensis); (3) the use of different habitat types (e.g. Acanthurus triostegus, Caranx melampygus); and (4) no change in habitat use (e.g. Naso litturatus, Stegastes nigricans). Of the 20 most abundant species recorded in Moorea lagoon, 12 species modified the spatial patterns established at settlement by an ontogenetic habitat shift.Communicated by T. Ikeda, Hakodate  相似文献   

8.
Successful settlement of pelagic fish larvae into benthic juvenile habitats may be enhanced by a shortened settlement period, since it limits larval exposure to predation in the new habitat. Because the spatial distribution of marine fish larvae immediately prior to settlement versus during settlement was unknown, field experiments were conducted at Ishigaki Island (Japan) using light trap sampling and underwater visual belt transect surveys to investigate the spatial distribution patterns of selected pre- and post-settlement fishes (Acanthuridae, Pomacentridae, Chaetodonidae and Lethrinidae) among four habitats (seagrass bed, coral rubble, branching coral and tabular coral). The results highlighted two patterns: patterns 1, pre- and post-settlement individuals showing a ubiquitous distribution among the four habitats (Acanthuridae) and pattern 2, pre-settlement individuals distributed in all habitats, but post-settlement individuals restricted to coral (most species of Pomacentridae and Chaetodontidae) or seagrass habitats (Lethrinidae). The first pattern minimizes the transition time between the larval pelagic stage and acquisition of a benthic reef habitat, the latter leading immediately to a juvenile lifestyle. In contrast, the second pattern is characterized by high settlement habitat selectivity by larvae and/or differential mortality immediately after settlement.  相似文献   

9.
10.
I investigated the ability of predators to influence the patterns of species richness and abundance of non-piscivorous fishes on small, artificial reefs replenished by natural recruitment. Periodic removal of predators effectively reduced the species richness and abundance of predators on removal reefs. The difference between the number of predators on control and removal reefs was greatest immediately following the removal of predators and attenuated between removals. During periods of recruitment, species richness and total abundance of recently-recruited, non-piscivorous fishes were generally greater on predator-removal reefs than on control reefs. Species richness and total abundance of resident non-piscivorous fishes were not affected by the removal of predators in the first year of the experiment. Both abundance and species richness of residents, however, were greater on the removal reefs during the second year of the experiment. The difference in the responses of the two age classes to the removal of predators suggests that predators may affect community patterns of older age classes through time-lagged effects on the survivorship of younger age classes. At the end of the experiment, species richness was positively related to abundance for recruits and residents. The effects of removing piscivorous fishes on the abundance of non-piscivorous fishes were similar for species considered separately. A greater number of species of recruit and resident fishes were more abundant on reefs from which predators had been removed. These data suggest that predators can play an important role in structuring communities of fishes on coral reefs.  相似文献   

11.
Demographic plasticity in tropical reef fishes   总被引:2,自引:0,他引:2  
N. Gust  J. Choat  J. Ackerman 《Marine Biology》2002,140(5):1039-1051
We use age-based analyses to demonstrate consistent differences in growth, mortality, and longevity of coral reef fishes from similar habitats (exposed reef crests) 20 km apart. On outer-shelf reef crests of the northern Great Barrier Reef (GBR), size in four taxa of reef fishes (Chlorurus sordidus, Scarus frenatus, and S. niger and the acanthurid Acanthurus lineatus) was systematically and significantly smaller when compared with the same taxa on adjacent mid-shelf reef crests. Differences in size could be attributed to differences in growth between habitats (shelf positions). On outer reef crests the species examined had consistently lower size at age profiles and also reduced life spans compared with populations from mid-shelf reefs. To confirm this relationship, two of the most abundant species (C. sordidus and S. frenatus) were selected for more detailed spatial analysis of demographic patterns. Sampling adults of both taxa from reef crests on three mid- and three outer-shelf reefs revealed that most of the variation in growth was explained by shelf position, although C. sordidus also displayed differences in growth among mid-shelf reefs. We conclude that differences in body sizes across the continental shelf of the northern GBR are primarily determined by these trends in growth. Strong spatial patterns also existed in the mean ages of populations and longevity estimates for C. sordidus and S. frenatus between shelf positions. Both species on outer-shelf reefs displayed less variable cohort sizes, significantly reduced mean ages, and foreshortened longevity compared with populations on mid-shelf reefs. Furthermore, differences in these parameters were rare among replicate reefs within mid- and outer-continental-shelf positions. Age-based catch curves suggested that rates of S. frenatus natural mortality on the outer shelf were nearly twice as high as on the mid shelf. Visual surveys indicated that total scarid densities on outer-shelf reef crests are on average fourfold higher than for equivalent mid-shelf habitats. This fact, coupled with significantly reduced growth rates, reduced mean ages, and increased mortality rates, suggests that density-dependent processes may be responsible for observed differences among localities.  相似文献   

12.
There are two types of organisms’ grouping in nature: mono-species populations and multi-species communities. Here at during the process of evolution the adaptability of a trait is to be tested both at population and ecocenotic levels. Size of a genome is one of the major adaptive traits, which widely varies in eukaryotic species. By contrast, prokaryotes with their small genomes are considered to have genome reduction evolutionary trend. Domination of this trend is mostly founded on population-level models. In this paper we in silico study interactions of ecocenotic and population levels. The trend of genome and metabolism reduction in prokaryotic communities was shown to be major only in comfortable environmental conditions. In subcomfortable conditions, genome and metabolism reduction leads to community simplification (in extreme case to community death). Pessimum conditions promote metabolism integration of a community and induce reciprocal genes acquiring.  相似文献   

13.
This study explores the types of changes in pigmentation and morphology that occur immediately after settlement in 13 families of tropical reef fishes encompassing 34 species. The morphology of individual fishes was recorded daily from when they were first caught at night as they came into the vicinity of a reef to settle. Changes in pigmentation and morphology were species specific and often varied greatly among species within a family or genus. Pigmentation changes were typically rapid (<36 h) and dramatic. Morphological changes involved the elongation and regression of fin spines and changes in head shape and body depth. Eighteen percent of species experienced changes in snout shape and dorsal spine length of greater than 5%. Similarly, 15% experienced changes in pectoral fin length and head length of greater than 5%. Changes typically occurred gradually over 6 or more days, although in about 44% of the species the major change in one of the measured body dimensions occurred rapidly (within 36 h). Moderately strong positive relationships were found between both growth and developmental rates and the extent of metamorphosis in the damselfishes (Pomacentridae) (r=0.48 and 0.63, respectively). This suggests there may be a minimum level of development necessary to be a fully functional demersal juvenile. Although many of the changes that occur are subtle compared to the preceding development, these changes occur at an important ecological transition. Published online: 16 August 2002  相似文献   

14.
Fishes were trawled from Albatross Bay, on the west coast of Cape York, north Queensland (12°45S; 141°30E) during 4 yr, from August 1986 to April 1989. Penaeids were the first or second most important prey item by dry weight in 14 of the 34 penaeid-eating fish species, and in 12 of the species by frequency of occurrence. Eighteen species of Penaeidae were identified in fish stomachs. The five commercially important species comprised over 70% by dry weight of all the penaeids eaten by all the fishes;Metapenaeus ensis, Penaeus semisulcatus andP. merguiensis comprised 22, 28 and 11%, respectively. Commercially unimportant penaeids comprised 85% by numbers of all penaeids eaten. Larger fishes ate larger penaeids, mainly commercially important species, while smaller fishes ate smaller penaeids, mainly commercially unimportant species. All penaeid-eating fishes also ate some teleost prey and many were primarily piscivorous. Most penaeid-eating fish species took more benthic prey than bentho-pelagic and pelagic prey combined. The fishes with the strongest predation impact on commercially important penaeids wereCaranx bucculentus and four species of elasmobranchs. The highest impact on commercially unimportant penaeids was made by several species of smaller but abundant fishes. An overall annual estimate of 2950 t yr–1 of commercially important penaeids is eaten by all fishes, a much higher figure than the average 870 t yr–1 taken by the fishery. This study highlights the need for accurate measurement of the abundance of penaeid predators as well as analyses of their diets when assessing the impact of predators on prawn stocks.  相似文献   

15.
Morris DW  MacEachern JT 《Ecology》2010,91(11):3131-3137
Density-dependent habitat selection has numerous and far-reaching implications to population dynamics and evolutionary processes. Although several studies suggest that organisms choose and occupy high-quality habitats over poorer ones, definitive experiments demonstrating active selection, by the same individuals at the appropriate population scale, are lacking. We conducted a reciprocal food supplementation experiment to assess whether voles would first occupy a habitat receiving extra food, then change their preference to track food supplements moved to another habitat. Meadow voles, as predicted, were more abundant in food-supplemented habitat than in others. Density declined when food supplements ceased because the voles moved to the new habitat receiving extra food. Although males and females appeared to follow different strategies, meadow-vole densities reflected habitat quality because voles actively selected the best habitat available. It is thus clear that behavioral decisions on habitat use can motivate patterns of abundance, frequency, and gene flow that have widespread effects on subsequent evolution.  相似文献   

16.
Although predation by fishes is thought to structure benthic invertebrate communities on coral reefs, evidence to support this claim has been difficult to obtain. We deployed an array of eight sponge species on Conch Reef (16 m depth) off Key Largo, Florida, USA, and used a remote video-camera to record fish activity near the array continuously during five daylight periods (6 h for 1 d, at least 11.5 h for 4 d) and one night period (11 h). Of the eight sponge species, four were from adjacent reefs (Agelas wiedenmayeri, Geodia neptuni, Aplysina fistularis, and Pseudaxinella lunaecharta), and four were from a nearby mangrove habitat (Chondrosia collectrix, Geodia gibberosa, Halichondria sp., andTedania ignis). Each species of reef sponge was chosen to match the corresponding mangrove species in form and color (black, brown, yellow, and red, respectively). Predation events only occurred during daylight hours. Tallies of the number of times fishes bit sponges revealed intense feeding by the expected species of sponge-eating fishes, such as the angelfishHolacanthus bermudensis, H. tricolor, andPomacanthus arcuatus, the cowfishLactophrys quadricornis, and the filefishCantherhines pullus, but surprisingly also by the parrotfishSparisoma aurofrenatum andS. chrysopterum. Of 35 301 bites recorded, 50.8% were taken by angelfish, 34.8% by parrotfish, and 13.7% by trunkfish and filefish. Mangrove sponges were preferred by all reef fishes; 96% of bites were taken from mangrove species, with angelfish preferringChondrosia collectrix and parrotfish preferringGeodia gibberosa. Fishes often bit the same sponge repetitively, and frequently consumed entire samples within 30 min of their deployment. Sponge color did not influence fish feeding. Two of the four mangrove sponge-species deployed on the array were also found living in cryptic habitats on adjacent reefs and were rapidly consumed by fishes when exposed. Our results demonstrate the importance of fish predation in controlling the distribution of sponges on Caribbean reefs.  相似文献   

17.
J. M. Lacson 《Marine Biology》1992,112(2):327-331
Intraspecific genetic variation among samples of six species of reef fishes,Chromis cyanea, Stegastes partitus, S. planifrons, S. leucostictus, S. dorsopunicans, andThalassoma bifasciatum collected over a 2 wk period in 1990 at La Parguera, Puerto Rico, USA and Discovery Bay, Jamaica, was evaluated using starch-gel electrophoresis. On average, products of 33 protein-coding loci were resolved in each species. Levels of polymorphism (0.95 criterion) ranged from 3.1% inS. dorsopunicans to 42.4% inC. cyanea. Estimates of genetic divergence among samples and indices of genetic subdivision were small in all six study species: mean genetic distances ranged from 0.000 to 0.002 and mean fixation indices ranged from 0.004 to 0.035. Estimates of numbers of migrants per generation (mN e) ranged from 5.1 to 11.6, indicating that substantial genetic exchange probably occurs over the relatively large geographic distance (ca. 1000 km) separating coral reef communities of La Parguera and Discovery Bay. The estimates ofmN e may be biased by a sampling strategy involving only two localities, and should therefore be interpreted with caution. With inferences based solely on allozyme frequency data under a primary assumption of neutrality, genetic substructuring of populations of the six study species on a macrogeographic scale appears virtually nonexistent.  相似文献   

18.
Most presettlement reef fish settled at night at One Tree Island, Great Barrier Reef. Fish were sampled day and night using channel nets located on the reef crest, and a plankton-mesh purse-seine net in the lagoon (1992–1994). Catches of fish at night were generally tens to hundreds of times greater than those taken during the day. Preflexion fish, as well as postflexion and pelagic juveniles, were taken in greater numbers at night. Preflexion forms were a combination of those that had hatched from demersal eggs and later stages that had been transported over the reef crest. Highest numbers of postflexion and pelagic juvenile forms of Apogonidae, Blenniidae, Gobiesocidae, Gobiidae, Labridae, Lutjanidae, Mugiloididae, Mullidae, Pomacentridae, Scaridae, Serranidae and Tripterygiidae were found at night. Observations, while SCUBA diving, and purse-seine samples in the lagoon indicated that the only resident larvae were of the genera Spratelloides and Hypoatherina; most of the fishes caught in nets, therefore, were immigrants. Patch reefs, sampled for new settlers early in the morning and late in the day, indicated that the majority of apogonids (Apogon doederleini, >95%) settled at night. Although greater numbers of pomacentrids were found in morning counts (e.g. Pomacentrus wardi), if data were converted to an hourly rate, many pomacentrids showed a similar hourly rate of settlement day and night. Depth-stratified sampling in waters near One Tree Island (to 20 m) indicated that some taxa rise to the surface at night. This behaviour, perhaps combined with avoidance of diurnal predators may explain on-reef movement of potential settlers soon after dark. Studies on settlement cues, therefore, need to focus on night-related phenomena. Received: 3 March 2000 / Accepted: 20 June 2000  相似文献   

19.
The spatial dynamics of species are the result of complex interactions between density-independent and density-dependent sources of variability. Disentangling these two sources of variability has challenged ecologists working in both terrestrial and aquatic ecosystems. Using a novel spatially explicit statistical model, we tested for the presence of density-independent and density-dependent habitat selection in yellowfin sole (Limanda aspera) in the eastern Bering Sea. We found specificities in the density-dependent processes operating across ontogeny and particularly with gender. Density-dependent habitat expansion occurred primarily in females, and to a lesser degree in males. These patterns were especially evident in adult stages, while juvenile stages of both sexes exhibited a mix of different dynamics. Association of yellowfin sole with substrate type also varied by sex and to a lesser degree with size, with large females distributed over a wider range of substrates than males. Moreover, yellowfin sole expanded northward as cold subsurface waters retracted in summer, suggesting high sensitivity to arctic warming. Our findings illustrate how marginal habitats can play an important role in buffering density-dependent habitat expansion, with direct implications for resource management. Our spatially explicit modeling approach is effective in evaluating density-dependent spatial dynamics, and can easily be used to test similar hypotheses from a variety of aquatic and terrestrial ecosystems.  相似文献   

20.
The ability of young coral reef fishes to feed using solely ultraviolet-A (UV-A) radiation during ontogeny was examined using natural prey in experimental tanks. Larvae and juveniles of three coral reef fish species (Pomacentrus amboinensis, Premnas biaculeatus and Apogon compressus) are able to feed successfully using UV-A radiation alone during the later half of the pelagic larval phase. The minimum UV radiation intensities required for larval feeding occur in the field down to depths of 90–130 m in oceanic waters and 15–20 m in turbid inshore waters. There was no abrupt change in UV sensitivity after settlement, indicating that UV photosensitivity may continue to play a significant role in benthic juveniles on coral reefs. Tests of UV sensitivity in the field using light traps indicate that larval and juvenile stages of 16 coral reef fish families are able to detect and respond photopositively to UV wavelengths. These include representatives from families that are unlikely to possess UV sensitivity as adults due to the UV transmission characteristics of the ocular media. Functional UV sensitivity may be more widespread in young coral reef fishes than in the adults, and may play a significant role in detecting zooplanktonic prey.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号