首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ABSTRACT: Agricultural practices such as cattle grazing and animal manure application can contribute to relatively high runoff concentrations of fecal coliform (FC) and fecal streptococcus (FS). Available information, however, is inconsistent with respect to the effects of such practices as well as to measures that can discriminate among candidate sources of FC and FS. The objective of this study was to assess the effects of grazing, time of year, and runoff amounts on FC and FS concentrations and to evaluate whether FCIFS concentration ratios are consistent with earlier values reported as characteristic of animal sources. Runoff from four Northwest Arkansas fields was sampled and analyzed for fecal coliform (FC) and fecal streptococcus (FS) for nearly three years (1991–1994). Each field was grazed and fertilized, with two fields receiving inorganic fertilizer and two receiving animal manure. Runoff amount had no effect on runoff concentrations of FC or FS. There were no consistent relationships between the presence of cattle and FC and FS runoff concentrations. Both FC and FS concentrations were affected by the season during which the runoff occurred. Higher concentrations were observed during warmer months. Runoff FC concentrations exceeded the primary contact standard of 200 cfu/100 mL during at least 89 percent of all runoff events and the secondary contact standard of 1000 cfu/100 mL during at least 70 percent of the events. Ratios of FC to FS concentrations varied widely (from near zero to more than 100), confirming earlier findings that FC/FS ratios are not a reliable indicator of the source of FC and FS.  相似文献   

2.
ABSTRACT: Fecal contamination and organic pollution of an agricultural drainage in northeast Indiana was high. Bacterial counts (total coliform, TC; fecal coliform, FC; and fecal streptococcus, FS) and biochemical oxygen demand (BOD) were used to assess waste concentrations. Coliform counts indicated that sections of the drainage receiving septic effluent had waste concentrations far in excess of public health standards (mean FC = 550,000/100 ml). Areas of drainage remote from septic tank pollution were found to occasionally meet federal public health standards for whole body contact recreation but generally these areas had twice the allowable limit of 200 FC/100 ml. Bacterial contamination was highest during runoff events when the median values for TC, FC, and FS were 5, 3, and 17 times greater, respectively, than the median values during low stream discharge. Surface flows carried contaminants from unconfined livestock operations and fecally contaminated sediment was transported by high waters. During one runoff event a BOD loading of 36.7 kg/km2 was recorded and the peak BOD concentration observed was 16 mg/l. A discharge of liquid manure from a confined livestock operation caused a major fish kill. Pollution from septic tanks and unconfined livestock is greatest at high stream discharge when dilution reduces the impact on aquatic life.  相似文献   

3.
Abstract: Dry weather runoff in arid, urban watersheds may consist entirely of treated wastewater effluent and/or urban nonpoint source runoff, which can be a source of bacteria, nutrients, and metals to receiving waters. Most studies of urban runoff focus on stormwater, and few have evaluated the relative contribution and sources of dry weather pollutant loading for a range of constituents across multiple watersheds. This study assessed dry weather loading of nutrients, metals, and bacteria in six urban watersheds in the Los Angeles region of southern California to estimate relative sources of each constituent class and the proportion of total annual load that can be attributed to dry weather discharge. In each watershed, flow and water quality were sampled from storm drain and treated wastewater inputs, as well as from in‐stream locations during at least two time periods. Data were used to calculate mean concentrations and loads for various sources. Dry weather loads were compared with modeled wet weather loads under a range of annual rainfall volumes to estimate the relative contribution of dry weather load. Mean storm drain flows were comparable between all watersheds, and in all cases, approximately 20% of the flowing storm drains accounted for 80% of the daily volume. Wastewater reclamation plants (WRP) were the main source of nutrients, storm drains accounted for almost all the bacteria, and metals sources varied by constituent. In‐stream concentrations reflected major sources, for example nutrient concentrations were highest downstream of WRP discharges, while in‐stream metals concentrations were highest downstream of the storm drains with high metals loads. Comparison of wet vs. dry weather loading indicates that dry weather loading can be a significant source of metals, ranging from less than 20% during wet years to greater than 50% during dry years.  相似文献   

4.
ABSTRACT: Storm runoff from four characteristic types of residential roofs and incident rainwater were monitored for 47 storm events over a six-month period at Nacogdoches, Texas, to study water quality conditions for 20 element and four chemical variables. The total element concentration in storm runoff from each roof type was greater than that of rainwater in the open. Differences in element concentrations in storm runoff among the four roof types were statistically significant (α≤ 0.05) with the differences for the wood shingle roof being the greatest and that for terra cotta clay roof being the least. The median concentrations of four element variables exceeded the Texas surface water quality standards, while 12 variables exceeded the standards at least one time in all samples collected. Zinc concentrations violated the Standard ranging from 85.7 percent of the samples for the wood shingle roof to 66.0 percent for the composite shingle, the greatest exceedances of all 24 variables studied. Storm characteristics and gutter maintenance level had some effects on these water quality conditions. The study suggested that roof types can be important to water pollution management programs. More detailed studies on roof water quality in major municipalities are required.  相似文献   

5.
ABSTRACT: Application of fertilizer can degrade quality of runoff, particularly during the first post-application, runoff-producing storm. This experiment assessed and compared runoff quality impacts of organic and inorganic fertilizer application for a single simulated storm occurring seven days following application. The organic fertilizers used were poultry (Gallus gallus domesticus) litter, poultry manure, and swine (Sus scrofa domesticus) manure. All fertilizers were applied at an application rate of 217.6 kg N/ha. Simulated rainfall was applied at 50 mm/h for an average duration of 0.8 h. Runoff samples were collected, composited, and analyzed for nitrate N (NO3-N), ammonia N (NH3-N), total Kjeldahl N (TKN), ortho-P (PO4-P), total P (TP), chemical oxygen demand (COD), total suspended solids (TSS), fecal coliforms (FC), and fecal streptococci (FS). Application of the fertilizers did not alter the hydrologic characteristics of the receiving plots relative to the control plots. Concentrations of fertilizer constituents were almost always greater from treated than from control plots and were usually much greater. Flow-weighted mean concentrations of NH3-N, PO4-P, and TP were highest for the inorganic fertilizer treatment (42.0, 26.6, and 27.9 mg/L, respectively). Runoff COD and TSS concentrations were greatest for the poultry litter treatment. Concentrations of FC and FS were greater for fertilized than for control plots with no differences among fertilized plots, but FC concentrations for all treatments were in excess of Arkansas' primary and secondary contact standards. Mass losses of fertilizer constituents were low (≤ 3 kg/ha) and were small proportions (≤ 3 percent) of amounts applied.  相似文献   

6.
Roofing as a source of nonpoint water pollution   总被引:12,自引:0,他引:12  
Sixteen wooden structures with two roofs each were installed to study runoff quality for four commonly used roofing materials (wood shingle, composition shingle, painted aluminum, and galvanized iron) at Nacogdoches, Texas. Each roof, either facing NW or SE, was 1.22 m wide x 3.66 m long with a 25.8% roof slope. Thus, there were 32 alternatively arranged roofs, consisting of four roof types x two aspects x four replicates, in the study. Runoff from the roofs was collected through galvanized gutters, downspouts, and splitters. The roof runoff was compared to rainwater collected by a wet/dry acid rain collector for the concentrations of eight water quality variables, i.e. Cu(2+), Mn(2+), Pb(2+), Zn(2+), Mg(2+), Al(3+), EC and pH. Based on 31 storms collected between October 1997 and December 1998, the results showed: (1) concentrations of pH, Cu, and Zn in rainwater already exceed the EPA freshwater quality standards even without pollutant inputs from roofs, (2) Zn and Cu, the two most serious pollutants in roof runoff, exceeded the EPA national freshwater water quality standards in virtually 100% and more than 60% of the samples, respectively, (3) pH, EC, and Zn were the only three variables significantly affected by roofing materials, (4) differences in Zn concentrations were significant among all roof types and between all roof runoff and rainwater samples, (5) although there were no differences in Cu concentrations among all roof types and between roof runoff and rainwater, all means and medians of runoff and rainwater exceeded the national water quality standards, (6) water quality from wood shingles was the worst among the roof types studied, and (7) although SE is the most frequent and NW the least frequent direction for incoming storms, only EC, Mg, Mn, and Zn in wood shingle runoff from the SE were significantly higher than those from the NW; the two aspects affected no other elements in runoff from the other three roof types. Also, Zn concentrations from new wood-shingle roofs were significantly higher than those from aged roofs of a previous study. The study demonstrated that roofs could be a serious source of nonpoint water pollution. Since Zn is the most serious water pollutant and wood shingle is the worst of the four roof types, using less compounds and materials associated with Zn along with good care and maintenance of roofs are critical in reducing Zn pollution in roof runoff.  相似文献   

7.
This study used monitoring in the waterways of agricultural fields to understand the use of the runoff curve number (CN) in continuous simulation models. The CN has a long history as a design tool for estimating runoff volumes for large, single storms on small watersheds, but its use in continuous simulation models to describe runoff from smaller storms and relatively small areas is more recent and controversial. We examined 788 nonwinter rainfall events on four agricultural fields over five years (2004‐2008) during which runoff was generated in 87 events. The largest 20 runoff events on each field generated approximately 90% of the total runoff volume. The runoff event CNs showed an inverse correlation with storm depth that could not consistently be explained by previous precipitation. We review how small areas of higher runoff generation within larger areas will systematically increase the apparent CN of the larger area as the storm size decreases. If this variation is not incorporated into a model explicitly, continuous simulation modelers must understand that when source areas are aggregated or when runoff generation is spatially variable, the overall CN is not unique when smaller storms are included in the calibration set.  相似文献   

8.
Highway stormwater runoff quality data were collected from throughout California during 2000-2003. Samples were analyzed for conventional pollutants (pH, conductivity, hardness, and temperature); aggregates (TSS, TDS, TOC, DOC); total and dissolved metals (As, Cd, Cr, Cu, Ni, Pb, and Zn); and nutrients (NO(3)-N, TKN, total P, and ortho-P). Storm event and site characteristics for each sampling site were recorded. A statistical summary for chemical characteristics of highway runoff is provided based on statewide urban and non-urban highways. Constituent event mean concentrations (EMCs) were generally higher in urban highways than in non-urban highways. The chemical characteristics of highway runoff in California were compared with national highway runoff chemical characterization data. The results obtained in California were generally similar to those found in other states. The median EMC for Pb measured in studies conducted in previous decades was much higher than the current median Pb EMC in California. The lower Pb EMC in California compared to previous highway runoff monitoring is believed to be due to the elimination of leaded gasoline. An attempt was also made to identify surrogate constituents within a general family of water quality categories using Spearman correlations and selected pairs with Spearman coefficients greater than 0.8. The strongest correlations were observed among parameters associated with dissolved minerals (EC, TDS, and chloride); organic carbon (TOC and DOC); petroleum hydrocarbons (TPH and O & G); and particulate matter (TSS and turbidity). Within the metals category, total iron concentration was highly correlated with most total metal concentrations. The correlations between total and dissolved concentrations were all less than 0.8, even between total and dissolved concentrations of the same metals. Multiple linear regression (MLR) analyses were performed to evaluate the impact of various site and storm event variables on highway runoff constituent EMCs. Parameters found to have significant impacts on highway runoff constituent EMCs include: total event rainfall (TER); cumulative seasonal rainfall (CSR); antecedent dry period (ADP); contributing drainage area (DA); and annual average daily traffic (AADT). Surrounding land use and geographic regions were also determined to have a significant impact on runoff quality. The MLR model was also used to predict constituent EMCs. Model performance determined by comparing predicted and measured values showed good agreement for most constituents.  相似文献   

9.
This study investigated how the occurrence and magnitude of first flush events in stormwater may influence the effective management of urban runoff pollution. To facilitate the understanding of the first flush phenomenon on a seasonal scale, the City of San Jose, CA carried out an investigation between May 1997 and April 2000 to characterize concentrations of pollutants in local waterbodies during eight storm events. The purpose of the investigation was twofold: (1) To determine if concentrations of specific constituents in stormwater runoff are elevated during the first substantial storm of the wet season, and (2) To identify the physical and environmental conditions surrounding such events. Concentration data for total and dissolved metals, pesticides, polyaromatic hydrocarbons, anions, total suspended solids, total organic carbon, conductivity, gasoline and diesel, and volatile and semi-volatile organics were collected at over 25 sites. Monitoring data analysis focused on identifying physical and environmental conditions yielding increased levels of pollutants during the first substantial storms of the rainy season compared to other storm events. Quantitative analysis focused on metals and anions because most observations for other constituents were below detectable levels. The results suggest that first flush phenomena did not occur consistently throughout most of the stations investigated. The results further suggest that there are specific combinations of site and storm conditions that result in a first flush effect with respect to dissolved metals. Based on the results of this and related investigations, implications for urban runoff management are discussed. For example, if dissolved metals are of principal concern, it may be worthwhile to optimize existing control strategies to minimize pollutant loading from storms that are preceded by an extended dry period.  相似文献   

10.
While storm water detention basins are widely used for controlling increases in peak discharges that result from urbanization, recent research has indicated that under certain circumstances detention storage can actually cause increases in peak discharge rates. Because of the potential for detrimental downstream effects, storm water management policies often require downstream effects to be evaluated. Such evaluation requires the design engineer to collect additional topographic and land use data and make costly hydrologic analyses. Thus, a method, which is easy to apply and which would indicate whether or not a detailed hydrologic analysis of downstream impacts is necessary, should decrease the average cost of storm water management designs. A planning method that does not require either a large data base or a computer is presented. The time co-ordinates of runoff hydrographs are estimated using the time-of-concentration and the SCS runoff curve number; the discharge coordinates are estimated using a simple peak discharge equation. While the planning method does not require a detailed design of the detention basin, it does provide a reasonably accurate procedure for evaluating whether or not the installation of a detention basin will cause adverse downstream flooding.  相似文献   

11.
ABSTRACT: Intensive temporal sampling of rainfall, surface runoff and subsurface drainage, and stream flow upstream and downstream of a suburban mall parking lot yielded expected patterns in time and space. Variations in temperature and conductivity showed strong dilution effects, while patterns of nine elemental concentrations in surface runoff showed a flushing effect early in the storm, following by dilution. Heavy nitrate loads in surface runoff were apparently from rainfall, not surficial sources. For the magnitude of storm studied and the existing study site, local impact on stream flow and water quality, like the run-off itself, is rather ephemeral, and dissipates after about five hours.  相似文献   

12.
城市化对水环境污染是一个具有普遍性和严重性的问题.城市水环境污染分为点污染和面污染两类.本文针对城市降雨径流污染(城市面源污染)作了系统分析.其内容包括城市化对降雨径流的影响,城市面污染的积累和暴雨径流的冲刷,以及推求城市暴雨径流污染负荷过程的模拟途径.  相似文献   

13.
ABSTRACT: Historically, storm water management programs and criteria have focused on quantity issues related to flooding and drainage system design. Traditional designs were based on large rainfall‐runoff events such as those having two‐year to 100‐year return periods. While these are key criteria for management and control of peak flows, detention basin designs based on these criteria may not provide optimal quality treatment of storm runoff. As evidenced by studies performed by numerous public and private organizations, the water quality impacts of storm water runoff are primarily a function of more frequent rainfall‐runoff events rather than the less frequent events that cause peak flooding. Prior to this study there had been no detailed investigations to characterize the variability of the more frequent rainfall events on Guam. Also, there was a need to develop some criteria that could be applied by designers, developers, and agency officials in order to reduce the impact of storm water runoff on the receiving bodies. The objectives of this paper were three‐fold: (1) characterize the hourly rainfall events with respect to volume, frequency, duration, and the time between storm events; (2) evaluate the rainfall‐runoff characteristics with respect to capture volume for water quality treatment; and (3) prepare criteria for sizing and designing of storm water quality management facilities. The rainfall characterization studies have provided insight into the characteristics of rainstorms that are likely to produce non‐point source pollution in storm water runoff. By far the most significant fmdings are the development of a series of design curves that can be used in the actual sizing of storm water detention and treatment facilities. If applied correctly, these design curves could lead to a reduction of non‐point source pollution to Guam's streams, estuaries, and coastal environments.  相似文献   

14.
Wadzuk, Bridget M., Matthew Rea, Gregg Woodruff, Kelly Flynn, and Robert G. Traver, 2010. Water-Quality Performance of a Constructed Stormwater Wetland for All Flow Conditions. Journal of the American Water Resources Association (JAWRA) 46(2):385-394. DOI: 10.1111/j.1752-1688.2009.00408.x Abstract: Results from a multiyear study demonstrate that a constructed stormwater wetland (CSW) improves urban stormwater runoff quality mitigating downstream impacts. Best management practices, such as CSWs, can comprehensively treat the various scales of stormwater runoff issues. Discrete sample analysis was used to investigate the CSW effect for storm events and base-flow periods on water-quality parameters [i.e., total suspended solids, total dissolved solids, total nitrogen, phosphorous (total and reactive), chloride, heavy metals (zinc, lead, and copper), and Escherichia coli]. The primary finding was that stormwater sediment load was removed through the CSW for all flow conditions during all seasons. The mechanisms responsible for the removal of suspended solids, including slower flow velocity, longer retention times, and vegetative contact, also reduced the mass of nutrients discharged downstream throughout the year. Exceedance probabilities were used to evaluate the expected pollutant reductions of nutrients and to incorporate the effect of natural flow variation on quality. Other findings included the observation that there was no significant difference in the performance of the CSW over two-year-long periods four years apart, indicating that a CSW is effective for an extended period.  相似文献   

15.
The EPA Storm Water Management Model was used to model the effects of urban and agricultural development on storm water runoff from uplands bordering a Louisiana swamp forest. Using this model, we examined the effects of changing land use patterns. By 1995 it is projected that urban land on the uplands bordering the swamp will increase by 321 percent, primarily at the expense of land currently in agriculture. Simulation results indicate that urbanization will cause storm water runoff rates to be up to 4.2 times greater in 1995 than in 1975. Nutrient runoff will increase 28 percent for nitrogen (N) and 16 percent for phosphorus (P) during the same period. The environmental effects of these changes in the receiving swamp forest are examined.  相似文献   

16.
ABSTRACT: This study presents the results of fecal coliform (FC) sampling in the Rawls Creek, South Carolina, watershed during 1999 and 2000. The work was undertaken because the watershed is listed on the 303(d) list for South Carolina due to FC excursions. The watershed is 43.8 percent residential, 35 percent forest, 5.7 percent mixed urban, 4.9 percent commercial, and 4.8 percent agriculture. Samples were taken at 15 stations during eight field trips divided into two phases to characterize FC inputs from subbasins and to integrate results from upstream sampling. FC concentrations ranged from 135 to 730 colonies/100 ml. Results suggest that retention ponds in the area are a significant factor in attenuation of FC concentrations. Catchments with the largest contiguous impervious areas are the greatest source of FC. The highest concentrations of FC were observed at stations just downstream from a large detention basin that intercepts storm runoff from a large commercial area. Further analysis of the design and performance of that structure is suggested. The Koon Branch tributary is less than 20 percent of the land area in the watershed but may contribute 40 percent of the fecal loading. The results of this study confirm the importance of site assessments to aid understanding of nonpoint source pollution in complex watersheds.  相似文献   

17.
ABSTRACT: Land application of organic soil amendments can increase runoff concentrations of metals such as Fe and Zn, metalbids such as B and As, and non-metals such as P and S that have the potential for causing adverse environmental impacts. Aluminum sulfate, or alum (Al2(SO4)3*(14H2O), can reduce concentrations of some materials in runoff from sites treated with organic amendments. The objectives of this study were to (a) quantify concentrations of selected constituents (Al, As, B, Ca, Cd, Co, Fe, K, Mg, Mn, Mo, Na, P, Pb, 5, Se, Ti, and Zn) in runoff from plots treated with horse manure (mixed with stall bedding) and municipal sludge, (b) assess runoff quality effects of alum addition to those treatments, and (c) determine time variations in concentrations of the constituents. Horse manure and municipal sludge were applied to twelve 2.4 by 6.1 m fescue plots (six each for the manure and sludge). Alum was added to three of the manure-treated and three of the sludge-treated plots. Simulated rainfall (64 mm/h) was applied to the 12 treated plots and to three control (no treatment) plots. The first 0.5 h runoff was sampled and analyzed for the constituents described above. Addition of manure or sludge had no effect on runoff concentrations of the majority of constituents. In some cases (e.g., Al, As, Fe, Zn), however, concentrations were near or in excess of threshold values recommended for marine wildlife protection. Alum addition increased runoff of Al, Ca, K, and 5, due likely to its composition and by the addition of lime to counteract the acidity of alum. Concentration decreases of more than 50 percent were noted for P for the horse manure treatment. No alum effect was detected for P in runoff from the sludge-treated plots, possibly due to relatively stable P forms in the sludge. Runoff concentrations of Al, As, Fe, K, Mn, and P followed an approximately first-order decline with respect to time. Runoff concentrations of Ca and 5, however, peaked during the second runoff sample (four minutes following initiation of runoff), suggesting that differences in mobility and/or transport mechanisms exist among the materials investigated.  相似文献   

18.
Farmstead runoff poses significant environmental impacts to ground and surface waters. Three vegetated filter strips were assessed for the treatment of dairy farmstead runoff at the soil surface and subsurface at 0.3- or 0. 46-m and 0. 76-m depths for numerous storm events. A medium-sized Michigan dairy was retrofitted with two filter strips on sandy loam soil and a third filter strip was implemented on a small Michigan dairy with sandy soil to collect and treat runoff from feed storage, manure storage, and other impervious farmstead areas. All filter strips were able to eliminate surface runoff via infiltration for all storm events over the duration of the study, eliminating pollutant contributions to surface water. Subsurface effluent was monitored to determine the contributing groundwater concentrations of numerous pollutants including chemical oxygen demand (COD), metals, and nitrates. Subsurface samples have an average reduction of COD concentrations of 20, 11, and 85% for the medium dairy Filter Strip 1 (FS1), medium dairy Filter Strip 2 (FS2), and the small Michigan dairy respectively, resulting in average subsurface concentrations of 355, 3960, and 718 mg L COD. Similar reductions were noted for ammonia and total Kjeldahl nitrogen (TKN) in the subsurface effluent. The small Michigan dairy was able to reduce the pollutant leachate concentrations of COD, TKN, and ammonia over a range of influent concentrations. Increased influent concentrations in the medium Michigan dairy filter strips resulted in an increase in COD, TKN, and ammonia concentrations in the leachate. Manganese was leached from the native soils at all filter strips as evidenced by the increase in manganese concentrations in the leachate. Nitrate concentrations were above standard drinking water limits (10 mg L), averaging subsurface concentrations of 11, 45, and 25 mg L NO-N for FS1, FS2, and the small Michigan dairy, respectively.  相似文献   

19.
Runoff water management is among the inherent challenges which face the sustainability of the development of arid urban centers. These areas are particularly at risk from flooding due to rainfall concentration in few heavy showers. On the other hand, they are susceptible to drought. The capital of Sudan (Khartoum) stands as exemplary for these issues. Hence, this research study aims at investigating the potential of applying rainwater harvesting (RWH) in Khartoum City Center as a potential urban runoff management tool. Rapid urbanization coupled with the extension of impervious surfaces has intensified the heat island in Khartoum. Consequently, increased frequency of heat waves and dust storms during the dry summer and streets flooding during the rainy season have led to environmental, economical, and health problems. The study starts with exposing the rainfall behavior in Khartoum by investigating rainfall variability, number of raindays, distribution of rain over the season, probability of daily rainfall, maximum daily rainfall and deficit/surplus of rain through time. The daily rainfall data show that very strong falls of >30 mm occur almost once every wet season. Decreased intra- and inter-annual rainfall surpluses as well as increased rainfall concentration in the month of August have been taking place. The 30-year rainfall variability is calculated at decade interval since 1941. Increasing variability is revealed with 1981–2010 having coefficients of variation of 66.6% for the annual values and 108.8–118.0% for the wettest months (July–September). Under the aforementioned rainfall conditions, this paper then explores the potential of RWH in Khartoum City Center as an option for storm water management since the drainage system covers only 40% of the study area. The potential runoff from the 6.5 km2 center area is computed using the United States Natural Resources Conservation Services method (US-NRCS), where a weighted Curve Number (CN) of 94% is found, confirming dominant imperviousness. Rainfall threshold for runoff generation is found to be 3.3 mm. A 24,000 m3 runoff generated from a 13.1 mm rainfall (with 80% probability and one year return period) equals the drainage system capacity. An extreme rainfall of 30 mm produces a runoff equivalent to fourfold the drainage capacity. It is suggested that the former and latter volumes mentioned above could be harvested by applying the rational method from 18% and 80% rooftops of the commercial and business district area, respectively. Based on the above results, six potential sites can be chosen for RWH with a total roof catchment area of 39,558 m2 and potential rooftop RWH per unit area of 0.033 m3. These results reflect the RWH potential for effective urban runoff management and better water resources utilization. RWH would provide an alternative source of water to tackle the drought phenomenon.  相似文献   

20.
ABSTRACT: Rainfall is a significant source of some constituents, particularly nitrogen species, in storm runoff from urban catchments. Median contributions of rainfall to storm runoff loads of 12 constituents from 31 urban catchments, representing eight geographic locations within the United States, ranged from 2 percent for suspended solids to 74 percent for total nitrite plus nitrate nitrogen. The median contribution of total nitrogen in rainfall to runoff loads was 41 percent. Median contributions of total-recoverable lead in rainfall to runoff loads varied by as much as an order of magnitude between catchments in the same geographic location. This indicates that average estimates of rainfall contributions to constituent loading in storm runoff may not be suitable in studies requiring accurate constituent mass-balance computations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号