首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Sletvold N  Agren J 《Ecology》2011,92(12):2167-2174
Pollinators may mediate selection on traits affecting pollinator attraction and effectiveness, and while nonadditive effects of traits influencing the two components of pollination success are expected when seed production is pollen limited, they have been little studied. In a factorial design, we manipulated one putative attraction trait (number of flowers) and one putative efficiency trait (spur length) previously shown to be subject to pollinator-mediated selection in the deceptive orchid Dactylorhiza lapponica. Removal of half of the flowers reduced pollen removal, proportion of flowers receiving pollen, fruit set, and fruit mass compared to unmanipulated plants, while spur-tip removal increased fruit set and fruit mass but did not affect pollen removal or proportion of flowers receiving pollen. The effect of spur-tip removal on fruit mass was stronger among plants with intact number of flowers compared to plants with experimentally reduced number of flowers. The results demonstrate that number of flowers and spur length are direct targets of selection and may affect female fitness nonadditively. More generally, they show that the adaptive value of a given trait can depend on floral context and illustrate how experimental approaches can advance our understanding of the evolution of trait combinations.  相似文献   

2.
Native plant species that have lost their mutualist partners may require non‐native pollinators or seed dispersers to maintain reproduction. When natives are highly specialized, however, it appears doubtful that introduced generalists will partner effectively with them. We used visitation observations and pollination treatments (experimental manipulations of pollen transfer) to examine relationships between the introduced, generalist Japanese White‐eye (Zosterops japonicus) and 3 endemic Hawaiian plant species (Clermontia parviflora, C. montis‐loa, and C. hawaiiensis). These plants are characterized by curved, tubular flowers, apparently adapted for pollination by curve‐billed Hawaiian honeycreepers. Z. japonicus were responsible for over 80% of visits to flowers of the small‐flowered C. parviflora and the midsize‐flowered C. montis‐loa. Z. japonicus‐visited flowers set significantly more seed than did bagged flowers. Z. japonicus also demonstrated the potential to act as an occasional Clermontia seed disperser, although ground‐based frugivory by non‐native mammals likely dominates seed dispersal. The large‐flowered C. hawaiiensis received no visitation by any birds during observations. Unmanipulated and bagged C. hawaiiensis flowers set similar numbers of seeds. Direct examination of Z. japonicus and Clermontia morphologies suggests a mismatch between Z. japonicus bill morphology and C. hawaiiensis flower morphology. In combination, our results suggest that Z. japonicus has established an effective pollination relationship with C. parviflora and C. montis‐loa and that the large flowers of C. hawaiiensis preclude effective visitation by Z. japonicus. Remplazo Imperfecto de Especies Nativas por Especies No‐Nativas como Polinizadores de Plantas Endémicas de Hawaii  相似文献   

3.
Conservation translocation is a common method for species recovery, for which one increasingly frequent objective is restoring lost ecological functions to promote ecosystem recovery. However, few conservation translocation programs explicitly state or monitor function as an objective, limiting the ability to test assumptions, learn from past efforts, and improve management. We evaluated whether translocations of hihi (Notiomystis cincta), a threatened New Zealand passerine, achieved their implicit objective of restoring lost pollination function. Through a pollinator-exclusion experiment, we quantified, with log response ratios (lnR), the effects of birds on fruit set and seed quality in hangehange (Geniostoma ligustrifolium), a native flowering shrub. We isolated the contributions of hihi by making comparisons across sites with and without hihi. Birds improved fruit set more at sites without hihi (lnR = 1.27) than sites with hihi (lnR = 0.50), suggesting other avian pollinators compensated for and even exceeded hihi contributions to fruit set. Although birds improved seed germination only at hihi sites (lnR = 0.22–0.41), plants at sites without hihi had germination rates similar to hihi sites because they produced 26% more filled seeds, regardless of pollination condition. Therefore, although our results showed hihi improved seed quality, they also highlighted the complexity of ecological functions. When an important species is lost, ecosystems may be able to achieve similar function through different means. Our results underscore the importance of stating and monitoring the ecological benefits of conservation translocations when functional restoration is a motivation to ensure these programs are achieving their objectives.  相似文献   

4.
Irwin RE  Adler LS 《Ecology》2008,89(8):2207-2217
Pollen movement within and among plants affects inbreeding, plant fitness, and the spatial scale of genetic differentiation. Although a number of studies have assessed how plant and floral traits influence pollen movement via changes in pollinator behavior, few have explored how nectar chemical composition affects pollen transfer. As many as 55% of plants produce secondary compounds in their nectar, which is surprising given that nectar is typically thought to attract pollinators. We tested the hypothesis that nectar with secondary compounds may benefit plants by encouraging pollinators to leave plants after visiting only a few flowers, thus reducing self-pollen transfer. We used Gelsemium sempervirens, a plant whose nectar contains the alkaloid gelsemine, which has been shown to be a deterrent to foraging bee pollinators. We found that high nectar alkaloids reduced the total and proportion of self-pollen received by one-half and one-third, respectively. However, nectar alkaloids did not affect female reproduction when we removed the potential for self-pollination (by emasculating all flowers on plants). We then tested the assumption that self-pollen in combination with outcrossed pollen depresses seed set. We found that plants were weakly self-compatible, but self-pollen with outcrossed pollen did not reduce seed set relative to solely outcrossed flowers. Finally, an exponential model of pollen carryover suggests that high nectar alkaloids could benefit plants via increased pollen export (an estimate of male function), but only when pollinators were efficient and abundant and plants had large floral displays. Results suggest that high nectar alkaloids may benefit plants via increased pollen export under a restricted set of ecological conditions, but in general, the costs of high nectar alkaloids in reducing pollination balanced or outweighed the benefits of reducing self-pollen transfer for estimates of female and male reproduction.  相似文献   

5.
Experimental Demonstration of an Allee Effect in American Ginseng   总被引:6,自引:0,他引:6  
Abstract: Harvesting of wild American ginseng (   Panax quinquefolius ) for the herbal trade has lowered natural population sizes. We tested for reproductive limitation due to small population size (a form of the Allee effect) by experimentally planting "natural" populations numbering 4, 16, and 64 using 4-year-old cultivated plants. Plant size traits and reproductive traits ( bud, flower, green fruit, and mature fruit) were recorded through the ensuing summer. Fruit production per flower and per plant increased in proportion to flowering population size (  p = 0.0063 and p = 0.0017, respectively), strongly suggesting that an Allee effect occurs in very small populations. The increase in fruit production was not explained by either plant or inflorescence size differences. Although population size-dependent pollination, through insufficient pollinator visitation rate or pollen transfer rate, seems the most likely cause of the observed effects, our limited observations of pollinators were not sufficient to demonstrate a change in pollination rates as a function of population size. Knowledge of the presence as well as the mechanism underlying this Allee effect may be especially useful for management and determination of minimum viable population size of the species in the wild.  相似文献   

6.
Loranthaceous mistletoes are interesting because of their complex dependence on suitable host trees and avian dispersers and because of their patchy distribution at the landscape level. Although their over- and under-abundance in Australia and New Zealand have been widely documented, little attention has been given to the need for an ecosystem approach to their management. Although the current status of mistletoes is very different in Australia and New Zealand, some of the causal factors and the long-term effects of changes in mistletoe abundance are similar in the two countries. We suggest that mistletoe abundance in pre-European landscapes was dependent on a series of evolutionary and environmental filters relating to host specificity, pollination, dispersal, infection, environmental habitat quality, predation, and disturbance. European settlement modified these filters in a number of ways, resulting in either increases or decreases in mistletoe abundance. The three broad groups of changes that have occurred with European settlement involve fragmentation, predation, and altered disturbance regimes. Although managers have usually addressed mistletoe over- or under-abundance with short-term solutions (e.g., pruning infected trees), we suggest that management must address the underlying causes of the problems involving mistletoes. This requires an ecosystem approach to management that addresses both the direct and indirect causes of the current status of mistletoes.  相似文献   

7.
Although predators can affect foraging behaviors of floral visitors, rarely is it known if these top-down effects of predators may cascade to plant fitness through trait-mediated interactions. In this study we manipulated artificial crab spiders on flowers of Rubus rosifolius to test the effects of predation risk on flower-visiting insects and strength of trait-mediated indirect effects to plant fitness. In addition, we tested which predator traits (e.g., forelimbs, abdomen) are recognized and avoided by pollinators. Total visitation rate was higher for control flowers than for flowers with an artificial crab spider. In addition, flowers with a sphere (simulating a spider abdomen) were more frequently visited than those with forelimbs or the entire spider model. Furthermore, the presence of artificial spiders decreased individual seed set by 42% and fruit biomass by 50%. Our findings indicate that pollinators, mostly bees, recognize and avoid flowers with predation risk; forelimbs seem to be the predator trait recognized and avoided by hymenopterans. Additionally, predator avoidance by pollinators resulted in pollen limitation, thereby affecting some components of plant fitness (fruit biomass and seed number). Because most pollinator species that recognized predation risk visited many other plant species, trait-mediated indirect effects of spiders cascading down to plant fitness may be a common phenomenon in the Atlantic rainforest ecosystem.  相似文献   

8.
Galen C  Geib JC 《Ecology》2007,88(5):1202-1209
Mutualisms are commonly exploited by cheater species that usurp rewards without providing reciprocal benefits. Yet most studies of selection between mutualist partners ignore interactions with third species and consequently overlook the impact of cheaters on evolution in the mutualism. Here, we explicitly investigate how the abundance of nectar-thieving ants (cheaters) influences selection in a pollination mutualism between bumble bees and the alpine skypilot, Polemonium viscosum. As suggested in past work with this species, bumble bees accounted for most of the seed production (78% +/- 6% [mean +/- SE]) in our high tundra study population and, in the absence of ants, exerted strong selection for large flowers. We tested for indirect effects of ant abundance on seed set through bumble bee pollination services (pollen delivery and pollen export) and a direct effect through flower damage. Ants reduced seed set per flower by 20% via flower damage. As ant density increased within experimental patches, the rate of flower damage rose, but pollen delivery and export did not vary significantly, showing that indirect effects of increased cheater abundance on pollinator service are negligible in this system. To address how ants affect selection for plant participation in the pollination mutualism we tested the impact of ant abundance on selection for bumble bee-mediated pollination. Results show that the impact of ants on fitness (seed set) accruing under bumble bee pollination is density dependent in P. viscosum. Selection for bumble bee pollination declined with increasing ant abundance in experimental patches, as predicted if cheaters constrain fitness returns of mutualist partner services. We also examined how ant abundance influences selection on flower size, a key component of plant investment in bumble bee pollination. We predicted that direct effects of ants would constrain bumble bee selection for large flowers. However, selection on flower size was significantly positive over a wide range of ant abundance (20-80% of plants visited by ants daily). Although high cheater abundance reduces the fitness returns of bumble bee pollination, it does not completely eliminate selection for bumble bee attraction in P. viscosum.  相似文献   

9.
Kessler A  Halitschke R  Poveda K 《Ecology》2011,92(9):1769-1780
Although induced plant responses to herbivory are well studied as mechanisms of resistance, how induction shapes community interactions and ultimately plant fitness is still relatively unknown. Using a wild tomato, Solanum peruvianum, native to the Peruvian Andes, we evaluated the disruption of pollination as a potential ecological cost of induced responses. More specifically, we tested the hypothesis that metabolic changes in herbivore-attacked plants, such as the herbivore-induced emission of volatile organic compounds (VOCs), alter pollinator behavior and consequentially affect plant fitness. We conducted a series of manipulative field experiments to evaluate the role of herbivore-induced vegetative and floral VOC emissions as mechanisms by which herbivory affects pollinator behavior. In field surveys and bioassays in the plants' native habitat, we found that real and simulated herbivory (methyl jasmonate application) reduced attractiveness of S. peruvianum flowers to their native pollinators. We show that reduced pollinator preference, not resource limitation due to leaf tissue removal, resulted in reduced seed set. Solitary bee pollinators use floral plant volatiles, emitted in response to herbivory or methyl jasmonate treatment, as cues to avoid inflorescences on damaged plants. This herbivory-induced pollinator limitation can be viewed as a general cost of induced plant responses as well as a specific cost of herbivory-induced volatile emission.  相似文献   

10.
Abstract: I analyse the effects of habitat fragmentation on the pollination success of a perennial, butterfly-pollinated, caryophyllaceous herb, the maiden pink, Dianthus deltoides L. The study was conducted in July 1986 and July 1987 at two different sites in southwest Sweden, an undisturbed "mainland" site and a fragmented site consisting of "habitat islands" within a heavily utilized agricultural area The fragmented area had a lower diversity and abundance of both flowering plants and flower-visiting insects. Dianthus flowers received fewer visits in the fragmented area than in the mainland area, and the seed set was much lower. Hand pollination increased seed set up to 4.1 times in the fragmented area, but no significant differences were found between hand-pollinated and control flowers at the mainland site. There were no differences between the two sites in standing crop of nectar, ovule number per flowers, or seed set of bagged flowers, band-pollinated flowers, and hand-pollinated fertilized flowers Thus, the difference in natural seed set between the two sites can be explained by differences in pollinator service.  相似文献   

11.
Observations of a monkey community in a forest of the Zaire Basin show that four species intensively lick the nectar of Daniellia pynaertii (Caesalpinoideae) for 5 months of the year; nectar makes up a mean of 20% and a maximum of 50% of monthly plant feeding records (Fig. 3). Such intensive nectar-feeding by monkeys of up to 8 kg body weight probably developed in these basically frugivorous primates as an alternative strategy to cope with a shortage of fleshy fruits. This would have been possible due to the high density of the plant species, the synchrony and abundance of its flowering (Fig. 2), and the large size of the nectar drop and its nutritional value. Patterns of monkey movements among Daniellia trees show that one flowering tree may receive up to 10 species visits and 30 individual visits per day, for a total of up to 141 min. (Table 1). A monkey troop can visit 12 trees in succession over less than 3 h (Fig. 4). This suggests that monkeys are able to promote pollen transfer both among flowers of the same tree and between conspecific trees. The individual tree fruiting index is positively correlated with its flowering index and with the amount of visits by monkeys, indicating at least that monkeys do not inhibit the reproductive ability of flowers (Fig. 5). These results suggest that monkeys can be considered as a guild of effective pollinators. Long-term coevolution between the plant and its present-day pollinators seems unlikely, and we suggest that monkeys replaced other pollinators, such as Lepidoptera. This hypothesis is supported by the fact that tubular flowers adapted for pollination by Lepidoptera are found in affine species of the same genus and of affine genera, the latter being known to be pollinated by these insects. In contrast, D. pynaertii flowers typically meet the pollination syndrome currently defined for attracting large mammals: notably conspicuousness and open morphology of the flowers, nectar colour and abundance. These characteristics suggest that coadaptation between monkeys and plant or at least one-sided adaptation has operated. Correspondence to: A. Gautier-Hion  相似文献   

12.
Abstract: Extinctions can leave species without mutualist partners and thus potentially reduce their fitness. In cases where non‐native species function as mutualists, mutualism disruption associated with species’ extinction may be mitigated. To assess the effectiveness of mutualist species with different origins, we conducted a meta‐analysis in which we compared the effectiveness of pollination and seed‐dispersal functions of native and non‐native vertebrates. We used data from 40 studies in which a total of 34 non‐native vertebrate mutualists in 20 geographic locations were examined. For each plant species, opportunistic non‐native vertebrate pollinators were generally less effective mutualists than native pollinators. When native mutualists had been extirpated, however, plant seed set and seedling performance appeared elevated in the presence of non‐native mutualists, although non‐native mutualists had a negative overall effect on seed germination. These results suggest native mutualists may not be easily replaced. In some systems researchers propose taxon substitution or the deliberate introduction of non‐native vertebrate mutualists to reestablish mutualist functions such as pollination and seed dispersal and to rescue native species from extinction. Our results also suggest that in places where all native mutualists are extinct, careful taxon substitution may benefit native plants at some life stages.  相似文献   

13.
Abstract: We examined the effects of habitat area and patch isolation on reproductive success in serpentine morning glory ( Calystegia collina [Convolvulaceae]), a primarily self-incompatible clonal plant endemic to serpentine outcrops in northern California's coast ranges. Within a 4000-km 2 region, we compared the reproductive success of C. collina on 16 small (<5 ha) and 7 large ( >300 ha) outcrops. Flower and fruit production were significantly higher on large serpentine outcrops than on small outcrops. Fruit production also was positively correlated with the soil's ratio of calcium to magnesium. Successful pollination was positively affected by flower density and the number of other flowering patches within 100 m of a C. collina patch. The number of nearby flowering patches was considerably higher on large than on small outcrops. Flowers on large outcrops did not receive significantly more bee visitors than flowers on small outcrops, suggesting that pollination success is related to the quality rather than the quantity of pollen deposited. Fruit production by plants on both small and large outcrops was enhanced by the experimental addition of pollen from other patches, but not by the addition of pollen from the same patch. These findings demonstrate that the size of habitat may have strong effects on the reproductive success of locally endemic plants by enhancing opportunities for successful sexual reproduction. They also warn against the presumption that naturally patchy plant species are invulnerable to the effects of habitat fragmentation.  相似文献   

14.
An unusual pollination strategy is pollination by sexual deception in which orchids sexually attract male insects as pollinators. One gap in knowledge concerns the pattern and extent of pollinator movement among these sexually deceptive flowers and how this translates to pollen and gene flow. Our aim was to use mark and recapture techniques to investigate the behavior and movement of male Colletes cunicularius, an important bee pollinator of Ophrys. Our study site was located in northern Switzerland where a large population of the bees was nesting. Within two plots, (10×40 m), we marked bees with different colors and numbered tags. Seventeen percent of the 577 marked bees were recaptured over a period of 1 to a maximum of 11 days. However, the number of recaptures dropped dramatically after 3–5 days, suggesting an average lifetime of less than 10 days. Mark-recapture distances varied from 0 to 50 m, with a mean of 5 m. Our findings show that individual male bees patrol a specific and restricted region of the nesting area in search of mates. This mark-recapture study provides the first clues about the potential movement of pollen within populations of Ophrys orchids. We predict that orchid-pollen movements mediated by bees will be similar to the mark-recapture distances in this study. Parallel studies within orchid populations, including direct studies of pollen movement, are now required to better understand how pollinator mate-searching behavior translates to pollination success and pollen movement within sexually deceptive orchid populations.Communicated by R.F.A. Moritz  相似文献   

15.
Toräng P  Ehrlén J  Agren J 《Ecology》2006,87(8):2113-2117
Population context should influence pollination success and selection on floral display in animal-pollinated plants because attraction of pollinators depends not only on the characteristics of individual plants, but also on the attractiveness of co-occurring conspecifics. The insect-pollinated herb Primula farinosa is polymorphic for inflorescence height. Natural populations may include both long-scaped plants, which present their flowers well above the soil surface, and short-scaped plants, with their flowers positioned close to the ground. We experimentally tested whether seed production in short-scaped P. farinosa varied with local morph frequency and surrounding vegetation height. In tall vegetation, short-scaped plants in polymorphic populations produced more fruit and tended to produce more seeds than short-scaped plants did in monomorphic populations. In low vegetation, population composition did not significantly affect fruit and seed output of short-scaped plants. The results suggest that long-scaped plants facilitate short-scaped plants in terms of pollinator attraction and that the facilitation effect is contingent on the height of the surrounding vegetation. The documented facilitation should contribute to the maintenance of the scape length polymorphism in ungrazed areas where litter accumulates and vegetation grows tall.  相似文献   

16.
外来植物在迁入地的生存和繁殖策略,是入侵生物学研究的热门话题之一。开展入侵植物的繁殖策略研究,有助于深入了解入侵生物在迁入地的生存繁衍机制,对入侵植物在可控范围内的适当使用具有重要的指导意义。通过野外传粉昆虫观测、光学和电镜扫描观测和人工控制授粉等方法,对外来植物大花老鸦嘴(Thunbergia grandiflora)在广州和深圳的4个居群的开花物候、花部结构、花粉活力、传粉昆虫及其行为等传粉生物学特征进行了研究。结果表明:大花老鸦嘴的单花花期为1 d,上午10:00时花粉活力最高,长雄蕊花粉活力可达73.92%,短雄蕊花粉活力可达71.54%,随后花粉活力逐渐下降。主要传粉者为扁柄木蜂(Xylocopa latipes),开花当天访花高峰期的9:00—10:00,单花访花频率可达5 h-1以上,之后开始逐渐减少,14:00之后未观测到扁柄木蜂访花,18:00后仅剩蚂蚁等体型较小的昆虫长期栖息于花序或花蕾。控制授粉实验结果显示,无论是人工异株授粉、自花授粉,还是自然授粉,结果率均为0,4个居群均未见结实。光学显微镜下子房发育完整;电镜扫描观测结果显示其花粉在柱头上能萌发,但花粉管不能延伸到子房位置。目前在园林栽培的大花老鸭嘴均以块根或茎为繁殖体培育苗木,虽然这些植株均能开出鲜艳的花朵,花粉传递者也充足,但未见任何结果现象。因此,初步推测本次研究区域内的大花老鸭嘴种群可能来自相同或相近的无性系,故不同居群间异株授粉的不结果现象可能为“自交不亲和”,或“染色体多倍化”所致。  相似文献   

17.
The regulation of protein collection through pollen foraging plays an important role in pollination and in the life of bee colonies that adjust their foraging to natural variation in pollen protein quality and temporal availability. Bumble bees occupy a wide range of habitats from the Nearctic to the Tropics in which they play an important role as pollinators. However, little is known about how a bumble bee colony regulates pollen collection. We manipulated protein quality and colony pollen stores in lab-reared colonies of the native North American bumble bee, Bombus impatiens. We debut evidence that bumble bee colony foraging levels and pollen storage behavior are tuned to the protein quality (range tested: 17–30% protein by dry mass) of pollen collected by foragers and to the amount of stored pollen inside the colony. Pollen foraging levels (number of bees exiting the nest) significantly increased by 55%, and the frequency with which foragers stored pollen in pots significantly increased by 233% for pollen with higher compared to lower protein quality. The number of foragers exiting the nest significantly decreased (by 28%) when we added one pollen load equivalent each 5 min to already high intranidal pollen stores. In addition, pollen odor pumped into the nest is sufficient to increase the number of exiting foragers by 27%. Foragers directly inspected pollen pots at a constant rate over 24 h, presumably to assess pollen levels. Thus, pollen stores can act as an information center regulating colony-level foraging according to pollen protein quality and colony need. An erratum to this article can be found at  相似文献   

18.
Thompson JN  Merg KF 《Ecology》2008,89(8):2197-2206
One of the major mechanisms of plant diversification has been the evolution of polyploid populations that differ from their diploid progenitors in morphology, physiology, and environmental tolerances. Recent studies have indicated that polyploidy may also have major effects on ecological interactions with herbivores and pollinators. We evaluated pollination of sympatric diploid and tetraploid plants of the rhizomatous herb Heuchera grossulariifolia (Saxifragaceae) along the Selway and Salmon Rivers of northern Idaho, USA, during four consecutive years. Previous molecular and ecological analyses had indicated that the tetraploid populations along these two river systems are independently derived and differ from each other in multiple traits. In each region, we evaluated floral visitation rate by all insect visitors, pollination efficacy of all major visitors, and relative contribution of all major pollinators to seed set. In both regions, diploid and tetraploid plants attracted different suites of floral visitors. Most pollination was attributable to several bee species and the moth Greya politella. Lasioglossum bees preferentially visited diploid plants at Lower Salmon but not at Upper Selway, queen Bombus centralis preferentially visited tetraploids at both sites, and worker B. centralis differed between sites in their cytotype preference. Hence, diploid and autotetraploid H. grossulariifolia plants act essentially as separate ecological species and may experience partial reproductive isolation through differential visitation and pollination by their major floral visitors. Overall the results, together with recent results from other studies, suggest that the repeated evolution of polyploidy in plants may contribute importantly to the structure and diversification of ecological interactions in terrestrial communities.  相似文献   

19.
Lach L 《Ecology》2007,88(8):1994-2004
The loss of biodiversity and associated ecosystem services are major threats posed by the spread of alien invasive species. Invasive ants are frequently associated with declines in the diversity of ground-dwelling arthropods but also may affect plants through their attraction to floral nectar and tending of hemipterans. Protea nitida is a tree native to the South African fynbos that hosts a native membracid, Beaufortiana sp., which is tended by ants. Here I compare Argentine ants (Linepithema humile) to native ants in their attraction to P. nitida inflorescences in the presence and absence of the membracid, and their effects on other floral arthropod visitors, seed set, and ovule predation. Argentine ant discovery of inflorescences increased at least 13-fold when membracids were present on the branch, whereas native ant discovery of inflorescences was only doubled by membracid presence at one site in one study year and was unaffected in the other three site-years. Excluding Argentine ants from inflorescences resulted in an increase in several arthropod taxa and potential pollinators; native ant exclusion had no positive effects. Thus the mutualism between Argentine ants and the membracid is facilitating pollinator deterrence by the ants. Though Argentine ants were not associated with a decline in P. nitida seed set or ovule predation, declines in generalist insect pollinators may have ramifications for the 83% of fynbos plants that are insect pollinated. Pitfall traps showed that Argentine ants were not more abundant than native ants in non-invaded sites. Focusing only on abundance on the ground and displacement of ground-dwelling arthropod fauna may lead to an underestimate of the effects of invasive ants on their adopted communities.  相似文献   

20.
Holland JN  Chamberlain SA 《Ecology》2007,88(3):706-715
Central to the ecology and evolution of a broad range of plants is understanding why they routinely have submaximal reproduction manifested as low seed : ovule and fruit : flower ratios. We know much less about the processes responsible for low seed : ovule ratios than we do for fruit : flower ratios. Current hypotheses for low seed : ovule ratios are largely drawn from those for fruit : flower ratios, including proximate (ecological) causes of pollen limitation, resource limitation, and pollen quality, as well as the ultimate (evolutionary) hypothesis of "bet hedging" on stochastic pollination. Yet, such mechanisms operating on fruit : flower ratios at the whole-plant level may not best explain low seed : ovule ratios at the individual-flower level. We tested each of these proximate and ultimate causes for low seed : ovule ratios using the specialized pollination mutualism between senita cacti (Pachycereus schottii) and senita moths (Upiga virescens). Seed : ovule ratios were consistently low (approximately 0.61). Such excess ovule production by senita likely has a strong genetic component given the significant differences among plants in ovule number and the consistency in ovule production by plants within and among flowering seasons. Excess ovule production and low seed : ovule ratios could not be explained by pollen limitation, resource limitation, pollen quality, or bet hedging. Nevertheless, phenotypic selection analyses did show significant selection gradients for increased ovule number, suggesting that other evolutionary processes may be responsible for excess ovule production and low seed : ovule ratios. In contrast, low fruit : flower ratios at the whole-plant level were explained by an apparent equilibrium between pollen and resource limitation. Thus, mechanisms responsible for low fruit : flower ratios at the whole-plant level are not necessarily in accord with those of low seed : ovule ratios at the individual-flower level. This suggests that we may need to adopt a more pluralistic approach to seed : ovule ratios and consider alternative hypotheses, including a greater array of proximate and ultimate causes. Initial results of this study suggest that floral allometry, selection on correlated floral traits, stigma clogging with pollen grains, and style clogging with pollen tubes may provide promising avenues for understanding low seed : ovule ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号