首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moore MT  Lizotte RE  Knight SS  Smith S  Cooper CM 《Chemosphere》2007,67(11):2184-2191
Three oxbow lakes in northwestern Mississippi, USA, an area of intensive agriculture, were assessed for biological impairment from historic and current-use pesticide contamination using the amphipod, Hyalella azteca. Surface water and sediment samples from three sites in each lake were collected from Deep Hollow, Beasley, and Thighman Lakes from September 2000 to February 2001. Samples were analyzed for 17 historic and current-use pesticides and selected metabolites. Ten-day H. azteca survival and growth (as length and dry weight) were measured to determine the degree of biological impairment. Maximum number of detectable pesticides in surface water from Deep Hollow, Beasley and Thighman Lakes was 10, 11, and 17, respectively. Maximum number of detectable pesticides in lake sediments was 17, 17, and 15, respectively. Bioassay results indicated no observable survival effects on H. azteca exposed to surface water or sediment from any lake examined and no growth impairment in animals exposed to lake sediments. However, growth was significantly impaired in surface water exposures from Deep Hollow Lake (2 sites) and Beasley Lake (1 site). Statistically significant relationships between growth impairment (length) and cyanazine, methyl parathion, λ-cyhalothrin, chlorfenapyr, and pp′DDE surface water concentrations in Deep Hollow Lake as well as trifluralin, atrazine, and methyl parathion in Beasley Lake were observed. Although pesticide frequency and concentrations were typically greater in sediment than surface water, bioassay results indicated decreased availability of these pesticides in sediment due to the presence of clay and organic carbon. Growth impairment observed in surface water exposures was likely due to complex interaction of pesticide mixtures that were present.  相似文献   

2.
Bioassays are widely used to estimate ecological risks of contaminated sediments. We compared the results of three whole sediment bioassays, using the midge larva Chironomus riparius, the water louse Asellus aquaticus, and the mayfly nymph Ephoron virgo. We used sediments from sixteen locations in the Dutch Rhine-Meuse Delta that differed in level of contamination. Previously developed protocols for each bioassay were followed, which differed in sediment pretreatment, replication, and food availability. The Chironomus bioassay was conducted in situ, whereas the other two were conducted in the laboratory. The measured endpoints, survival and growth, were related to contaminant levels in the sediment and to food quantity in water and sediment.

Only the response of A. aquaticus in the bioassay was correlated with sediment contamination. Food availability in overlying water was much more important for C. riparius and E. virgo, thereby masking potential sediment contaminant effects. We conclude that growth of A. aquaticus was depressed by sediment contamination, whereas growth of E. virgo and C. riparius was stimulated by seston food quantity. We discuss that the trophic state of the ecosystem largely affects the ecological risks of contaminated sediments.  相似文献   


3.
Sediments from lakes near Rouyn-Noranda, Quebec, contain elevated concentrations of several metals, including Cd, Cu, Pb and Zn. Amphipods, fingernail clams, mayflies and tanytarsid midges were absent, and sediment toxicity was observed in chronic tests with Hyalella in sediments from Lac Dufault, the lake closest to Rouyn-Noranda. Bioaccumulation by Hyalella demonstrated elevated bioavailability of Cd, Co, Cr, Pb and Tl, but only Cd was accumulated to levels close to the toxic threshold. Copper, which is regulated by Hyalella, was not elevated in these amphipods, but it was elevated in overlying water in the toxicity tests. Toxic effects in Lac Dufault sediments are probably caused primarily by Cd, at least in amphipods, with a possible minor contribution from Cu. An integrated assessment, including sediment chemistry, benthic community composition, sediment toxicity, metal bioaccumulation in benthos, and comparison of bioaccumulation and/or overlying water concentrations with threshold effect concentrations, provides the best indication of effects and their cause.  相似文献   

4.
Deterioration of overlying water quality during toxicity tests with benthic invertebrates is a serious problem with some sediments. One solution is periodic renewal of overlying water. However, this is either labour intensive or requires construction and maintenance of special equipment. Furthermore, water renewal has the potential for flushing toxic chemicals out of the test chamber and establishes nonequilibrium conditions between the water and sediment. An alternative is testing under static conditions using atypical test vessels (e.g. Imhoff settling cones) with a large water volume (1 l) overlaying a much smaller sediment volume (e.g. 15 ml). This results in dramatic improvement of overlying water quality compared to standard static toxicity tests. Compared to water renewal, the test method is much simpler, all toxic substances leached from the sediment are retained in the test vessel, and contaminant concentrations in water and sediment have more time to equilibrate. Chronic sediment toxicity tests (10-28 days) have been conducted successfully under these conditions with Chironomus riparius, Hexagenia sp., Hyalella azteca and Tubifex tubifex.  相似文献   

5.
An automated water-renewal toxicity test system is described for exposing benthic invertebrates to whole sediments. The system will intermittently deliver laboratory or on-site water for overlying water replacement in sediment exposures. A range of cycle rates can be used to produce different volume additions of overlying water per day to exposure chambers. The system can be used with six different treatments and eight replicates per treatment producing 48 exposure chambers. Three formulated sediments with variable organic carbon (1.5%, 7.5%) and sand (14%, 63%) content were prepared to test the system exposing amphipods, Hyalella azteca and midges, Chironomus tentans in 10 day whole sediment tests. Intermittent water flow was used with a 90 min cycle time to create two volume additions of laboratory water per 24 h in exposure chambers (180 ml sediment, 320 ml water). Overlying water quality conditions, and survival and growth of both species were consistent and within acceptable limits for the testing requirements of the U.S. EPA guidelines for sediments with freshwater invertebrates.  相似文献   

6.
Microcosm experiments have been carried out with whole natural meiobenthic communities to look at the effects of TBT sediment contamination on the community structure of the dominant nematode component of the meiobenthos. TBT has a high affinity for aquatic sediments, yet this is the first study of the effects of this contaminant in sediment on natural benthic communities. Three communities were studied from contrasting locations in south-west England: the intertidal of the Lynher estuary (muddy sediment) and the Exe estuary (sandy sediment) and the subtidal (50m depth) at Rame Head off Plymouth (muddy sand). Fresh sediment with natural meiobenthic communities was incubated for 2 months with TBT-contaminated sediment (three dose levels) in bottles. Nematodes were identified and enumerated and subjected to multivariate data analysis. The sandy Exe estuary fauna was significantly affected by TBT-contaminated sediment at all three doses (0.3, 0.6 and 0.9 microg g(-1) dry wt (as Sn) sediment), whereas the offshore fauna from Rame Head was significantly affected only at the highest dose. The muddy Lynher estuary meiofauna was affected (somewhat peculiarly) at the medium dose level only. Meiobenthic nematodes may not be as sensitive to TBT-contaminated sediment as other infaunal benthos but exhibited responses to levels of contamination still persisting in some UK estuaries and harbours. Comparing the effects of TBT with those of copper and zinc in the same laboratory experiments, our observations suggest that the relative impact of TBT on meiobenthic community structure is not as great as these contaminants in marine sediments. Although there are very few observations of TBT toxicity in sediment, it appears that TBT is toxic at much lower concentrations in seawater (ppb) than it is in sediment (ppm).  相似文献   

7.
To determine changes in metal distribution, bioavailability and toxicity with sediment depth, two 20-cm-long replicate cores were collected from a lake historically subjected to the influence of metal mining and smelting activity. The vertical distribution of Pb, Cd and Cu in sediment was similar for all three metals, with the surface layers showing enrichment and the deeper (pre-industrial) layers showing lower concentrations. Toxicity of each sediment core section was determined in laboratory tests with the freshwater amphipod Hyalella azteca. Bioavailable metal in each sediment slice was estimated from metal concentrations in overlying water in these toxicity tests and, for Cd, also from metal bioaccumulation. The profile for Cd in tissue was comparable to Cd in sediment and overlying water, but relative Cd bioavailability from sediment increased with sediment depth. Survival increased with increasing sediment depth, suggesting that surface sediments were probably less or non-toxic before industrialization.  相似文献   

8.
Benthic invertebrates can uptake metals through diffusion of free ion solutes, or ingestion of sediment-bound forms. This study investigated the efficacy of the metal chelating resin SIR 300™ in adsorbing porewater metals and isolating pathways of metal exposure. A field experiment (Botany Bay, Sydney, Australia) and a laboratory toxicity test each manipulated the availability of porewater metals within contaminated and uncontaminated sediments. It was predicted that within contaminated sediments, the resin would adsorb porewater metals and reduce toxicity to invertebrates, but in uncontaminated sediments, the resin would not significantly affect these variables. Whereas in the laboratory, the resin produced the predicted results, in the field the resin increased porewater metal concentrations of contaminated sediments for at least 34 days and decreased abundances of four macroinvertebrate groups, and richness in all sediments. These contrasting findings highlight the limits of extrapolating the results of laboratory experiments to the field environment.  相似文献   

9.
The fate and toxicity of a polyethoxylated tallowamine (POEA) surfactant system, MON 0818, was evaluated in water-sediment microcosms during a 4-d laboratory study. A surfactant solution of 8 mg l(-1) nominal concentration was added to each of nine 72-l aquaria with or without a 3-cm layer of one of two natural sediments (total organic carbon (TOC) 1.5% or 3.0%). Control well water was added to each of nine additional 72-l aquaria with or without sediment. Water samples were collected from the microcosms after 2, 6, 24, 48, 72, and 96 h of aging to conduct 48-h toxicity tests with Daphnia magna and to determine surfactant concentrations. Elevated mortality of D. magna (43-83%) was observed in overlying water sampled from water-only microcosms throughout the 96-h aging period, whereas elevated mortality (23-97%) was only observed in overlying water sampled from water-sediment microcosms during the first 24h of aging. Measured concentrations of MON 0818 in water-only microcosms remained relatively constant (4-6 mg l(-1)) during the 96-h period, whereas the concentrations in overlying water from microcosms containing either of the two types of sediment dissipated rapidly, with half-lives of 13 h in the 3.0% TOC sediment and 18 h in the 1.5% TOC sediment. Both toxicity and the concentration of MON 0818 in overlying water decreased more rapidly in microcosms containing sediment with the higher percent TOC and clay and with a higher microbial biomass. Mortality of D. magna was significantly correlated with surfactant concentrations in the overlying water. These results indicate that the toxicity of the POEA surfactant in water rapidly declines in the presence of sediment due to a reduction in the surfactant concentration in the overlying water above the sediment.  相似文献   

10.
Karntanut W  Pascoe D 《Chemosphere》2002,47(10):1059-1064
An acute toxicity study of three metals to Hydra species carried out using two different assessment methods, (i) determination of the LC50 and (ii) measurement of progressive morphological changes, demonstrated that relative toxicity decreased from copper to cadmium with zinc the least toxic for all species. The latter method revealed more details of the effect on Hydra in terms of physical damage to the polyp but both methods indicated that H. viridissima was more sensitive to copper and cadmium than H. vulgaris1 (Zurich strain, male clone), H. vulgaris2 (a dioecious strain reproducing sexually and asexually) and H. oligactis (dioecious, reproducing sexually and asexually). The responses to zinc were similar for all Hydra. The possible role of metabolic interactions between H. viridissima and its symbiotic green algae in contributing to the greater sensitivity of this polyp is discussed.  相似文献   

11.
Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe   总被引:3,自引:0,他引:3  
Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation.  相似文献   

12.
The sensitivity of the benthic amphipod species Ampelisca brevicornis and Corophium volutator to dredged sediments was compared through simultaneous testing on the standard 10 days sediment toxicity test. The results of mortality obtained for 22 harbor sediments sampled at several Spanish ports were studied together with the physico-chemical characteristics of the samples to obtain the incidence of toxicity in terms of dredged material categories and to identify possible differences in the amphipod mortality results when using one or another test species. The results showed a similar incidence of toxicity for medium-high and highly contaminated sediments for both amphipod species, similar to that obtained through the comparison of the chemical concentrations measured in sediments with the single limit values used in Spain for dredged material characterization and management. On the contrary, C. volutator presented a higher mortality and a higher incidence of toxicity when exposed to low and medium-low contaminated sediments, which may have been caused by the lower sensitivity of A. brevicornis when exposed to sediments from its natural environment. When compared to other amphipod species used for whole sediment toxicity assessment, both amphipod species used in this study reported slightly higher sensitivities although these differences could have been associated to the different set of chemical compounds considered when characterizing the sediment samples. In this sense, the amphipod mortality results were better predicted through the use of mean quotients than just by comparing the measured chemical concentrations with the single limit values used in Spain, which indicates that the toxic response of both species was caused by the cocktail of contaminants present in the sediments. Finally, the correlation analysis identified a higher association between A. brevicornis mortality and the metallic contaminants while C. volutator was more correlated with the organic micro-pollutants. Despite these differences, the results indicate that Ampelisca brevicornis can be used as test organism for dredged material characterization when enough individuals of other recommended species such as Corophium volutator are not available.  相似文献   

13.
The release of contaminants from sediments is an important problem facing environmental managers concerned with issues such as maintenance dredging, habitat restoration and dredge spoil placement. While there are laboratory methods to assess the remobilization of contaminants from resuspended sediments, little is known about how their operating characteristics influence a sediments response to resuspension. In this study, a particle entrainment simulator (PES) for resuspending sediments was evaluated by assessing variability among replicates and over operation time (12 h) for three estuarine sediments. These sediments varied in physical and chemical properties as well as the degree of metal contamination. Results showed that under identical resuspension conditions, there was low variability among sediment replicates. Sediment properties and the degree of metal contamination affected the magnitude and variation in water column parameters and contaminant release. Fine-grained sediments affected water column parameters, which stabilized over several hours of resuspension. While metal concentrations in the aqueous and particulate samples varied throughout operation, variation was highest for Cd and Ni. Compared to other methods used to evaluate the effects of sediment resuspension, the PES has operational advantages such as the ability to monitor water column conditions and resuspend sediment at specified energy levels. Overall, the PES provided reproducible conditions of resuspension effects among sediments varying in composition and contamination, demonstrating its value as a tool to evaluate contaminant mobility.  相似文献   

14.
The Salinas River is the largest of the three rivers that drain into the Monterey Bay National Marine Sanctuary in central California. Large areas of this watershed are cultivated year-round in row crops and previous laboratory studies have demonstrated that acute toxicity of agricultural drainwater to Ceriodaphnia dubia is caused by the organophosphate (OP) pesticides chlorpyrifos and diazinon. In the current study, we used a combination of ecotoxicologic tools to investigate incidence of chemical contamination and toxicity in waters and sediments in the river downstream of a previously uncharacterized agricultural drainage creek system. Water column toxicity was investigated using a cladoceran C. dubia while sediment toxicity was investigated using an amphipod Hyalella azteca. Ecological impacts of drainwater were investigated using bioassessments of macroinvertebrate community structure. The results indicated that Salinas River water downstream of the agricultural drain is acutely toxic to Ceriodaphnia, and toxicity to this species was highly correlated with combined toxic units (TUs) of chlorpyrifos and diazinon. Laboratory tests were used to demonstrate that sediments in this system were acutely toxic to H. azteca, which is a resident genus. Macroinvertebrate community structure was moderately impacted downstream of the agricultural drain input. While the lowest macroinvertebrate abundances were measured at the station demonstrating the greatest water column and sediment toxicity and the highest concentrations of pesticides, macroinvertebrate metrics were more significantly correlated with bank vegetation cover than any other variable. Results of this study suggest that pesticide pollution is the likely cause of laboratory-measured toxicity in the Salinas River samples and that this factor may interact with other factors to impact the macroinvertebrate community in the system.  相似文献   

15.
Spiking of sediment with metal cations that readily hydrolyse causes the sediment pH to decrease. Displaced iron and manganese also oxidise and hydrolyse, further lowering sediment pH. The lower pH of metal-spiked sediments requires a subsequent sediment neutralisation. This research compared the pH adjustment of Cu- and Zn-spiked sediments using single and multiple additions of 1M NaOH. Sediment pH, redox potential, and porewater metal concentrations were monitored over 40 days. Depth profiles were also measured to investigate stratification. A single pH adjustment to pH 7 and 8 initially counteracted the pH change caused by metal additions, however, pH continued to decrease slowly thereafter. Multiple pH adjustments diminished porewater Cu, Zn and Fe concentrations to a greater extent than a single pH adjustment, but the ongoing oxidative precipitation of porewater metals continued to consume OH(-) ions and impede pH maintenance. Displacement of high iron(II) concentrations and the opposing rates of iron(II) oxidative precipitation and bacterially-mediated iron(II) production, affected the partitioning of the added metals between the sediment and pore water. Despite similar pH over the spiked-metal concentration gradient following pH adjustment, sediments spiked with higher metal concentrations produced lower porewater Fe concentrations, possibly due to toxicity to iron(III) oxyhydroxide reducing bacteria. Distinct stratification of redox potential and dissolved Fe and Cu developed over a depth of 6cm during the 40-day equilibration period. Recommendations are provided on methods for preparing metal-spiked sediments in which the partitioning of metals between dissolved and particulate phases better resembles that of in situ (field) metal-contaminated sediments.  相似文献   

16.
As part of a study of the phytotoxic risk of spreading of contaminated sediments "on soil", we carried out a laboratory experiment assessing the impact of water draining from sediments in a deposit scenario on the peripheral vegetation. The plant tested were the Chinese cabbage (Brassica campestris L. var. chinensis), maize (Zea mays L.) and ryegrass (Lolium perenne L.). The draining water samples (A1, B1 and C1) were obtained after decantation in laboratory of the sediments. The classification of the water sampled in decreasing order of cumulative contamination was C1 > A1 > B1. The B1 and C1 water samples inhibited the germination of seeds tested to various extents. The percentage of seeds that did not germinate was 1.3-fold times higher for Chinese cabbage with B1 than for the control and 2.3-fold times higher for ryegrass with C1 than for the control. Seeds watered with B1 had lower moisture contents than the control: 10% lower for ryegrass and maize and 50% lower for Chinese cabbage. An increase (about 1.5 microg/ml) in total soluble protein (versus the control) was observed for all three plant species tested in the presence of C1. Glutamine synthetase activity was significantly (1.35 times) higher in ryegrass seeds in the presence of C1 than in the control. We also observed changes in the specific activity of phosphoenolpyruvate carboxylase, which increased for ryegrass and decreased for maize as the concentration of contaminants in the water increased. The results show (i) the necessity to use different plant species to evaluate the toxic effect of sediment deposited on soil on the vegetation, and (ii) that soon as on germination an evaluation of an impact is possible.  相似文献   

17.
Mesocosms consisting of physically and biologically intact segments of natural communities are an ideal compromise between single species tests and ecosystem experiments in the assessment of sediment contamination. Therefore, large intact sediment cores, as mesocosms with naturally co-adapted communities, would allow sediment contamination to be assessed using the replicability and statistical power of laboratory techniques, while retaining much of the ecological realism of field studies. This study investigates the collection and maintenance of such cores, collected from an unimpacted site in Lake Erie. It demonstrates that box cores containing relatively undisturbed freshwater sediments can be brought back to the laboratory and maintained for up to 8 weeks with little change in the resident benthic fauna. Feeding the systems is not required, nor is it deleterious to the indigenous fauna.  相似文献   

18.
The use of water injection dredging (WID) is increasing in the UK's inland waterways and marinas. Jets of water are injected under low pressure directly into bottom sediment creating a turbulent water-sediment mixture that flows under the influence of gravity. Many of these sediments are highly contaminated and little is known of the effects of contaminant release on water quality or the risk to biota living in both the sediment and the water column. Sediment cores were collected from Limehouse Basin, a proposed WID site in SE England and current sediment toxicity was assessed using a number of techniques. Comparison of metal data to US sediment quality guidelines indicated intermediate levels of toxicity while, calculation of acid volatile sulphide to simultaneously extracted metal ratios underestimated the potential toxicity to sediment dwelling organisms. In contrast, porewater ammonia concentrations were in excess of all published ecotoxicological guidelines and indicate serious risk to biota. Re-suspension experiments were used to mimic the effects of WID on overlying water quality and ecotoxicity tests were carried out on elutriates using Daphnia magna to examine the impacts on biota. Concentrations of a range of metals in the elutriates predict that adverse biological effects would be observed during WID, however only 10% of the elutriate samples caused an adverse effect on Daphnia. Limehouse Basin is a complex aquatic environment receiving predominantly fresh waters while the sediments have high porewater chloride concentrations reminiscent of previous tidal inputs to the basin, making the choice of test organism problematic.  相似文献   

19.
This paper describes the ecotoxicological evaluation of five organic contaminants frequently detected in marine sediments (tributyltin, triphenyltin, benzo[a]pyrene, fluoranthene, and PCB 153) using three marine species (Vibrio fischeri, Tetraselmis suecica, and Tisbe battagliai). The sensitivity of each species varied for all compounds. The triorganotins were consistently the most toxic to all species. The applicability of each test system to assess the acute toxicity of environmental contaminants and their use in Toxicity Identification Evaluation (TIE) is discussed. Suitability of the Microtox and T. battagliai tests for employment in TIE studies were further assessed through spiking experiments with tributyltin. Results demonstrated that the most effective treatment to remove organotin toxicity from the sample was the C18 resin. The results of this study have important implications for risk assessment in estuarine and coastal waters in Ireland, where, at present the monitoring of sediment and water quality is predominantly reliant on chemical analysis alone.  相似文献   

20.
A comprehensive study was carried out to investigate the impacts of road salts on the benthic compartment of a small urban detention facility, Rouge River Pond. Although the pond is an engineered water body, it is representative of many small urban lakes, ponds and wetlands, which receive road runoff and are probable high impact areas. Specific objectives of the study were to document the porewater chemistry of an aquatic system affected by elevated salt concentrations and to carry out a toxicological assessment of sediment porewater to determine what factors may cause porewater toxicity. The results indicate that the sediment porewater may itself attain high salt concentrations. The computations show that increased chloride levels have important implications on the Cd complexation, augmenting its concentration in porewater. The toxicity tests suggest that the toxicity in porewater is caused by metals or other toxic chemicals, rather than high levels of chloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号