首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Napier grass (Pennisetum purpureum) is the most important fodder crop in smallholder dairy production systems in East Africa, characterized by small zero-grazing units. It is also an important trap crop used in the management of cereal stemborers in maize in the region. However, production of Napier grass in the region is severely constrained by Napier stunt disease. The etiology of the disease is known to be a phytoplasma, 16SrXI strain. However, the putative insect vector was yet unknown. We sampled and identified five leafhopper and three planthopper species associated with Napier grass and used them as candidates in pathogen transmission experiments. Polymerase chain reaction (PCR), based on the highly conserved 16S gene, primed by P1/P6-R16F2n/R16R2 nested primer sets was used to diagnose phytoplasma on test plants and insects, before and after transmission experiments. Healthy plants were exposed for 60 days to insects that had fed on diseased plants and acquired phytoplasma. The plants were then incubated for another 30 days. Nested PCR analyses showed that 58.3% of plants exposed to Recilia banda Kramer (Hemiptera: Cicadellidae) were positive for phytoplasma and developed characteristic stunt disease symptoms while 60% of R. banda insect samples were similarly phytoplasma positive. We compared the nucleotide sequences of the phytoplasma isolated from R. banda, Napier grass on which these insects were fed, and Napier grass infected by R. banda, and found them to be virtually identical. The results confirm that R. banda transmits Napier stunt phytoplasma in western Kenya, and may be the key vector of Napier stunt disease in this region.  相似文献   

2.
The development of alternative pest-control strategies based on the spatial design of cropping systems requires a thorough understanding of the spatial links between the pest and its environment. Mechanistic models, especially individual-based models (IBMs), are powerful tools for integrating key behaviours, such as habitat selection and dispersal, with spatial heterogeneity. In this paper, we used an IBM calibrated and evaluated from real data to represent the spatial dynamics of the banana weevil in relation to the cropping system. We considered crop fragmentation and mass trapping as tools for suppressing pest numbers. Our simulation results showed that manipulating crop residues in the area surrounding each pheromone trap greatly improved trap efficiency. For an intensive banana plantation in fallow, traps were most effective when situated at the transition zone between banana area and fallow so as to maximize the trapping of weevils escaping the fallow. The model also showed that weevil numbers decreased when fragmentation of banana plantations was reduced.  相似文献   

3.
Olfactory learning may occur at different stages of insect ontogeny. In parasitoid wasps, it has been mostly shown at adult emergence, whilst it remains controversial at pre-imaginal stages. We followed larval growth of the parasitoid wasp, Aphidius ervi Haliday, inside the host aphid, Acyrthosiphom pisum Harris, and characterised in detail the behaviour of third instar larvae. We found that just before cocoon spinning begins, the third instar larva bites a hole through the ventral side of the mummified aphid exoskeleton. We then evaluated whether this period of exposure to the external environment represented a sensitive stage for olfactory learning. In our first experiment, the third instar larvae were allowed to spin their cocoon on the host plant (Vicia faba L.) surface or on a plastic plate covering the portion of the host plant exposed to the ventral opening. Recently emerged adults of the first group showed a preference for plant volatiles in a glass Y-olfactometer, whereas no preference was found in adults of the second group. In a second experiment, during the period in which the aphid carcass remains open or is being sealed by cocoon spinning, third instar larvae were exposed for 24 h to either vanilla odours or water vapours as control. In this experiment, half of the parasitoid larvae were later excised from the mummy to avoid further exposure to vanilla. Adult parasitoids exposed to vanilla during the larval ventral opening of the mummy showed a significant preference for vanilla odours in the olfactometer, regardless of excision from the mummy. The larval behaviour described and the results of the manipulations performed are discussed as evidences for the acquisition of olfactory memory during the larval stage and its persistence through metamorphosis.  相似文献   

4.
The current interest in characterizing, predicting and managing soil C dynamics has focused attention on making estimates of C inputs to soil more accurate and precise. Net primary productivity (NPP) provides the inputs of carbon (C) in ecosystems and determines the amount of photosynthetically fixed C that can potentially be sequestered in soil organic matter. We present a method for estimating NPP and annual C inputs to soil for some common Canadian agroecosystems, using a series of plant C allocation coefficients for each crop type across the country. The root-derived C in these coefficients was estimated by reviewing studies reporting information on plant shoot-to-root (S:R) ratios (n = 168). Mean S:R ratios for annual crops were highest for small-grain cereals (7.4), followed by corn (5.6) and soybeans (5.2), and lowest for forages (1.6). The review also showed considerable uncertainty (coefficient of variation for S:R ratios of ∼50% for annual crops and ∼75% for perennial forages) in estimating below-ground NPP (BNPP) in agroecosystems; uncertainty was similar to that for Canadian boreal forests. The BNPP (including extra-root C) was lower for annual crops (∼20% of NPP) than for perennial forages (∼50%). The latter was similar to estimates for relative below-ground C allocation in other Canadian natural ecosystems such as mixed grasslands and forests. The proposed method is easy to use, specific for particular crops, management practices, and driven by agronomic yields. It can be readily up-dated with new experimental results and measurements of parameters used to quantify the accumulation and distribution of photosynthetically fixed C in different types of crops.  相似文献   

5.
6.
Globally, yam (Dioscorea spp.) is the fifth most important root crop after sweet potatoes (Ipomoea batatas L.) and the second most important crop in Africa in terms of production after cassava (Manihot esculenta L.) and has long been vital to food security in sub-Saharan Africa (SSA). Climate change is expected to have its most severe impact on crops in food insecure regions, yet very little is known about impact of climate change on yam productivity. Therefore, we try estimating the effect of climate change on the yam (variety: Florido) yield and evaluating different adaptation strategies to mitigate its effect. Three regional climate models REgional MOdel (REMO), Swedish Meteorological and Hydrological Institute Regional Climate Model (SMHIRCA), and Hadley Regional Model (HADRM3P) were coupled to a crop growth simulation model namely Environmental Policy Integrated Climate (EPIC) version 3060 to simulate current and future yam yields in the Upper Ouémé basin (Benin Republic). For the future, substantial yield decreases were estimated varying according to the climate scenario. We explored the advantages of specific adaptation strategies suggesting that changing sowing date may be ineffective in counteracting adverse climatic effects. Late maturing cultivars could be effective in offsetting the adverse impacts. Whereas, by coupling irrigation and fertilizer application with late maturing cultivars, highest increase in the yam productivity could be realized which accounted up to 49 % depending upon the projection of the scenarios analyzed.  相似文献   

7.
This paper examines the risks associated with forest insect outbreaks in a changing climate from biological and forest management perspectives. Two important Canadian insects were considered: western spruce budworm (WSBW; Choristoneura occidentalis Freeman, Lepidoptera: Tortricidae), and spruce bark beetle (SBB; Dendroctonus rufipennis Kirby, Coleoptera: Curculionidae). This paper integrates projections of tree species suitability, pest outbreak risk, and bio-economic modelling.Several methods of estimating pest outbreak risk were investigated. A simple climate envelope method based on empirically derived climate thresholds indicates substantial changes in the distribution of outbreaks in British Columbia for two climate scenarios and both pests. A “proof of concept” bio-economic model, to inform forest management decisions in a changing climate, considers major stand-level harvest decision factors, such as preservation of old-growth forest, and even harvest flow rates in the presence of changing tree species suitability and outbreak risk. The model was applied to data for the Okanagan Timber Supply Area and also the entire Province of British Columbia.At the provincial level, the model determined little net timber production impact, depending on which of two climate scenarios was considered. Several potentially important factors not considered in this first version of the model are discussed, which indicates that impact may be underestimated by this preliminary study. Despite these factors, negative impacts were projected at the Okanagan Timber Supply Area level for both scenarios.Policy implications are described as well as guidance for future work to determine impacts of climate change on future distribution and abundance of forest resources.  相似文献   

8.
Adaptation is a key factor for reducing the future vulnerability of climate change impacts on crop production. The objectives of this study were to simulate the climate change effects on growth and grain yield of maize (Zea mays L.) and to evaluate the possibilities of employing various cultivar of maize in three classes (long, medium and short maturity) as an adaptation option for mitigating the climate change impacts on maize production in Khorasan Razavi province of Iran. For this purpose, we employed two types of General Circulation Models (GCMs) and three scenarios (A1B, A2 and B1). Daily climatic parameters as one stochastic growing season for each projection period were generated by Long Ashton Research Station-Weather Generator (LARS?WG). Also, crop growth under projected climate conditions was simulated based on the Cropping System Model (CSM)-CERES-Maize. LARS-WG had appropriate prediction for climatic parameters. The predicted results showed that the day to anthesis (DTA) and anthesis period (AP) of various cultivars of maize were shortened in response to climate change impacts in all scenarios and GCMs models; ranging between 0.5 % to 17.5 % for DTA and 5 % to 33 % for AP. The simulated grain yields of different cultivars was gradually decreased across all the scenarios by 6.4 % to 42.15 % during the future 100 years compared to the present climate conditions. The short and medium season cultivars were faced with the lowest and highest reduction of the traits, respectively. It means that for the short maturing cultivars, the impacts of high temperature stress could be much less compared with medium and long maturity cultivars. Based on our findings, it can be concluded that cultivation of early maturing cultivars of maize can be considered as the effective approach to mitigate the adverse effects of climate.  相似文献   

9.
Desertification, climate variability and food security are closely linked through drought, land cover changes, and climate and biological feedbacks. In Ghana, only few studies have documented these linkages. To establish this link the study provides historical and predicted climatic changes for two drought sensitive agro-ecological zones in Ghana and further determines how these changes have influenced crop production within the two zones. This objective was attained via Markov chain and Fuzzy modelling. Results from the Markov chain model point to the fact that the Guinea savanna agro-ecological zone has experienced delayed rains from 1960 to 2008 while the Sudan savanna agro-ecological zone had slightly earlier rains for the same period. Results of Fuzzy Modelling indicate that very suitable and moderately suitable croplands for millet and sorghum production are evenly distributed within the two agro-ecological zones. For Ghana to adapt to climate change and thereby achieve food security, it is important to pursue strategies such as expansion of irrigated agricultural areas, improvement of crop water productivity in rain-fed agriculture, crop improvement and specialisation, and improvement in indigenous technology. It is also important to encourage farmers in the Sudan and Guinea Savanna zones to focus on the production of cereals and legumes (e.g. sorghum, millet and soybeans) as the edaphic and climatic factors favour these crops and will give the farmers a competitive advantage. It may be necessary to consider the development of the study area as the main production and supply source of selected cereals and legumes for the entire country in order to free lands in other regions for the production of crops highly suitable for those regions on the basis of their edaphic and climatic conditions.  相似文献   

10.
China has announced plans to stabilize its pesticide use by 2020. Yet, future climate change will possibly increase the difficulty of meeting this goal. This study uses econometric estimation to explore how climate impacts Chinese pesticide usage and subsequently to project the future implications of climate change on pesticide use. The results indicate that both atmospheric temperature and precipitation increase pesticide usage. Under current climate change projections, pesticide usage will rise by +1.1 to 2.5% by 2040, +2.4 to 9.1% by 2070, and +2.6 to 18.3% by 2100. Linearly extrapolating the results to 2020 yields an approximately 0.5 to 1.2% increase. Thus, to achieve stabilization, more severe actions are needed to address this increase. Possible actions to achieve the reductions needed include using better monitoring and early warning networks so as to permit early responses to climate change-stimulated increases, enhancing information dissemination, altering crop mix, and promoting nonchemical control means. Additionally, given that increased pesticide usage generally increases health and environmental damage, there may be a need to more widely disseminate safe application procedure information while also strengthening compliance with food safety regulations. Furthermore, pest control strategies will need to be capable of evolving as climate change proceeds. Globally, efforts could be made to (1) scale up agrometeorological services, especially in developing countries; (2) use international frameworks to better align the environmental and health standards in developing countries with those in developed countries; and (3) adapt integrated pest management practices to climate change, especially for fruits and vegetables.  相似文献   

11.
The impacts of climate change are expected to be generally detrimental for agriculture in many parts of Africa. Overall, warming and drying may reduce crop yields by 10–20% to 2050, but there are places where losses are likely to be much more severe. Increasing frequencies of heat stress, drought and flooding events will result in yet further deleterious effects on crop and livestock productivity. There will be places in the coming decades where the livelihood strategies of rural people may need to change, to preserve food security and provide income-generating options. These are likely to include areas of Africa that are already marginal for crop production; as these become increasingly marginal, then livestock may provide an alternative to cropping. We carried out some analysis to identify areas in sub-Saharan Africa where such transitions might occur. For the currently cropped areas (which already include the highland areas where cropping intensity may increase in the future), we estimated probabilities of failed seasons for current climate conditions, and compared these with estimates obtained for future climate conditions in 2050, using downscaled climate model output for a higher and a lower greenhouse-gas emission scenario. Transition zones can be identified where the increased probabilities of failed seasons may induce shifts from cropping to increased dependence on livestock. These zones are characterised in terms of existing agricultural system, current livestock densities, and levels of poverty. The analysis provides further evidence that climate change impacts in the marginal cropping lands may be severe, where poverty rates are already high. Results also suggest that those likely to be more affected are already more poor, on average. We discuss the implications of these results in a research-for-development targeting context that is likely to see the poor disproportionately and negatively affected by climate change.  相似文献   

12.
Future climate change directly impacts crop agriculture by altering temperature and precipitation regimes, crop yields, crop enterprise net returns, and net farm income. Most previous studies assess the potential impacts of agricultural adaptation to climate change on crop yields. This study attempts to evaluate the potential impacts of crop producers’ adaptation to future climate change on crop yield, crop enterprise net returns, and net farm income in Flathead Valley, Montana, USA. Crop enterprises refer to the combinations of inputs (e.g., land, labor, and capital) and field operations used to produce a crop. Two crop enterprise adaptations are evaluated: flexible scheduling of field operations; and crop irrigation. All crop yields are simulated using the Environmental Policy Integrated Climate (EPIC) model. Net farm income is assessed for small and large representative farms and two soils in the study area. Results show that average crop yields in the future period (2006–2050) without adaptation are between 7% and 48% lower than in the historical period (1960–2005). Flexible scheduling of the operations used in crop enterprises does not appear to be an economically efficient form of crop enterprise adaptation because it does not improve crop yields and crop enterprise net returns in the future period. With irrigation, crop yields are generally higher for all crop enterprises and crop enterprise net returns increase for the canola and alfalfa enterprises but decrease for all other assessed crop enterprises relative to no adaptation. Overall, average crop enterprise net return in the future period is 45% lower with than without irrigation. Net farm income decreases for both the large and small representative farms with both flexible scheduling and irrigation. Results indicate that flexible scheduling and irrigation adaptation are unlikely to reduce the potential adverse economic impacts of climate change on crop producers in Montana’s Flathead Valley.  相似文献   

13.
Climate change is projected to intensify drought and heat stress in groundnut (Arachis hypogaea L.) crop in rainfed regions. This will require developing high yielding groundnut cultivars that are both drought and heat tolerant. The crop growth simulation model for groundnut (CROPGRO-Groundnut model) was used to quantify the potential benefits of incorporating drought and heat tolerance and yield-enhancing traits into the commonly grown cultivar types at two sites each in India (Anantapur and Junagadh) and West Africa (Samanko, Mali and Sadore, Niger). Increasing crop maturity by 10 % increased yields up to 14 % at Anantapur, 19 % at Samanko and sustained the yields at Sadore. However at Junagadh, the current maturity of the cultivar holds well under future climate. Increasing yield potential of the crop by increasing leaf photosynthesis rate, partitioning to pods and seed-filling duration each by 10 % increased pod yield by 9 to 14 % over the baseline yields across the four sites. Under current climates of Anantapur, Junagadh and Sadore, the yield gains were larger by incorporating drought tolerance than heat tolerance. Under climate change the yield gains from incorporating both drought and heat tolerance increased to 13 % at Anantapur, 12 % at Junagadh and 31 % at Sadore. At the Samanko site, the yield gains from drought or heat tolerance were negligible. It is concluded that different combination of traits will be needed to increase and sustain the productivity of groundnut under climate change at the target sites and the CROPGRO-Groundnut model can be used for evaluating such traits.  相似文献   

14.
This study evaluates the theoretical impact of climate change on yields and water use of two crops with different responses to increased CO2 and which represent contrasting agricultural systems in Spain. In all cases the simulated effects of a CO2-induced climate change depended on the counteracting effects between higher daily ET rates, shortening of crop growth duration and changes in precipitation patterns as well as the simulated effects of CO2 on the water use efficiency of the crops. For summer irrigated crops such as maize, the yield reductions and the exacerbated problems of irrigation water availability simulated with climate change may force the crop out of production in some regions. For winter dryland crops such as wheat, productivity increased significantly in some regions, suggesting a northward shift of area suitable for wheat production in future climates. The study considered strategies for improving the efficiency of water use based on the optimization of crop management decisions in a CO2-driven warmer climate. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
The negative impact of climate change on crop production is alarming as the demand for food is expected to increase in coming years, at a rate of about 2 percent a year. Wet season rice (Oryza sativa) followed by mustard (Brassica juncea) is one of the prominent cropping sequences in Eastern India. Descreases in their productivity due to climate change will not only hamper the regional food security but also affect the global economy. Considering the fact, the present study aims to assess the impact of climate change on productivity of wet-season rice and mustard and to evaluate the effectiveness of agronomic adjustment as adaptation options. Crop growth simulation model (CGSM) is a very effective tool to predict the growth and yield of a crop. One CGSM, namely InfoCrop (Generic Crop Model), was calibrated and validated for the said crops for West Bengal State, Eastern India. After validation, the model was used to predict the yield under elevated thermal condition (1 and 3 °C rise over normal temperature). Moreover, the future weather situation as predicted by PRECIS (Providing Regional Climates for Impacts Studies) model was used as weather input of the CGSM and the yield was predicted for ten selected locations of West Bengal for the year 2025 and 2050. It was observed that the average yield reduction of the wet-season rice would be in the tune of about 20.0 % for 2025 and 27.8 % for 2050. The mustard yield of West Bengal may be reduced by 20.0 to 33.9 % for the year 2025 and up to 40 % for 2050. It was concluded that the negative impact of climate change on mustard grown in winter season will be more pronounced compared to wet-season rice. Adjustment of sowing time will be the simplest and effective adaptation option for both rice and mustard. Increased rate of nutrient application can sustain the rice yield under future climate. The older seedling at the time of transplanting of wet-season rice and increased seed rate of mustard were proved less effective.  相似文献   

16.
The effect of Russian wheat aphid Diuraphis noxia (Mordvilko) from South Africa and Hungary was measured on susceptible and resistant South African wheat cultivars and a susceptible Hungarian barley cultivar. For the three cultivars (‘SST 333’, ‘Betta’, and ‘Isis’) tested in both countries, Hungarian D. noxia reduced plant weight and leaf area more than South African D. noxia and this difference increased over time. Hungarian D. noxia reduced plant weight and leaf area of the resistant wheat SST 333 more than the susceptible wheat Betta. Hungarian D. noxia also reduced plant weight of the resistant wheat ‘PI 262660’ more than the susceptible wheat Betta (although the opposite was true for leaf area). In Hungary the resistant SST 333 and PI 262660 showed similar severe symptoms of yellowing and leaf rolling as susceptible Betta. In addition, Hungarian D. noxia caused visible water imbalance in resistant wheats SST 333 and PI 262660. The differences in damage did not result from higher growth rate of Hungarian D. noxia colonies because aphid numbers did not differ consistently between countries or match the differences in damage. Differences between Hungarian and South African D. noxia suggest genetic differences between these populations. These results support the idea that resistant plant germplasm has geographical limits because of variation in agro-ecosystems.  相似文献   

17.
Crop simulation models are frequently used to estimate the impact of climate change on crop production. However, few studies have evaluated the model performance in ways that most researchers practiced in climate impact studies. In this article, we examined the reliability of the EPIC model in simulating grain sorghum (Sorghum bicolor (L.) Moench) yields in the U.S. Great Plains under different climate scenarios, namely in years with normal or extreme temperature and precipitation. We also investigated model uncertainties introduced by input data that are not site-specific but commonly used or available for climate change studies. Historical field trial data of sorghum at the Mead Experimental Center, NE, were used for model evaluations. The results showed that overall model reliability was about 56%. The mean absolute relative error (absRE) was about 29%. The degree of accuracy and reliability varied with climate-classes and nitrogen (N)-treatments. The largest bias occurred in drought years (RE = ?25%) and the most unreliable results were found in N-0 treatment (reliability = 32%). There was more than 69% probability that input-data-induced uncertainties were limited to less than 20% of absRE. Our results support the application of the EPIC model to climate change impact studies in the U.S. Great Plains. However, efforts are needed to improve the accuracy in simulating crop responses to extreme water- and nitrogen-stressed conditions.  相似文献   

18.
Several genera and species of plant-parasitic nematodes cause losses in grain yield in cereals; some are of relatively minor importance (e.g. Anguina tritici (Steinbuch) Chitwood, the cause of “ear cockle” in wheat), while others such as the cereal cyst nematode (CCN) (Heterodera avenae Woll.) have a wide geographic distribution, infest extensive areas, and may cause losses valued at millions of dollars. Some of these nematodes are difficult to control because the measures that might be used are uneconomic to apply or are impractical. The control of CCN, however, can be achieved, and several successful strategies have been developed in parts of Europe and in Australia. The various measures available to Australian cereal growers include: crop rotation, resistant cultivars, manipulation of sowing dates, use of nematicides, and reduced cultivation. The selection of an appropriate management strategy for the control of CCN is influenced by factors such as: climate, cereal species grown, yield potential, rotations practised and the availability of alternative crops, pathotype present, farm size, availability of resistant cultivars, nematicides registered, and the availability of suitable equipment for their application.  相似文献   

19.
A simulation study has been carried out using the InfoCrop mustard model to assess the impact of climate change and adaptation gains and to delineate the vulnerable regions for mustard (Brassica juncea (L.) Czernj. Cosson) production in India. On an all India basis, climate change is projected to reduce mustard grain yield by ~2 % in 2020 (2010–2039), ~7.9 % in 2050 (2040–2069) and ~15 % in 2080 (2070–2099) climate scenarios of MIROC3.2.HI (a global climate model) and Providing Regional Climates for Impact Studies (PRECIS, a regional climate model) models, if no adaptation is followed. However, spatiotemporal variations exist for the magnitude of impacts. Yield is projected to reduce in regions with current mean seasonal temperature regimes above 25/10 °C during crop growth. Adapting to climate change through a combination of improved input efficiency, additional fertilizers and adjusting the sowing time of current varieties can increase yield by ~17 %. With improved varieties, yield can be enhanced by ~25 % in 2020 climate scenario. But, projected benefits may reduce thereafter. Development of short-duration varieties and improved crop husbandry becomes essential for sustaining mustard yield in future climates. As climatically suitable period for mustard cultivation may reduce in future, short-duration (<130 days) cultivars with 63 % pod filling period will become more adaptable. There is a need to look beyond the suggested adaptation strategy to minimize the yield reduction in net vulnerable regions.  相似文献   

20.
The within-species diversity in response to weather and the gaps in the response diversity in the modern set of forage crop cultivars were determined using an approach that assessed the adaptive capacity under global climate change. The annual dry matter (DM) yields were recorded in multi-location MTT (Maa- ja elintarviketalouden tutkimuskeskus) Agrifood Research Official Variety Trials in Finland for modern forage crop cultivars from 2000 to 2012, as a response to agroclimatic variables critical to yield based on the year-round weather data. The effect and interaction of cultivars and agroclimatic variables were analysed using mixed model. The relatively low adaptive capacity of timothy (Phleum pratense L.) and meadow fescue (Festuca pratensis Huds.) indicates that diversification of the breeding material is warranted, particularly for resistance to high temperatures during primary growth and to high temperature sum 7 days after the first cut. All red clover cultivars (Trifolium pratense L.) suffered from both low and high accumulation of warm winter temperatures. Except for the red clover cultivars, cold stress during winter and lack of warm winter temperatures consistently reduced the yields of all species and cultivars. All tall fescue (Festuca arundinacea Schreb.) cultivars suffered from low precipitation during the fall hardening period. Although the set of festulolium (Festulolium pabulare) cultivars was also sensitive to low precipitation during the fall, festulolium was a good example of enhanced capacity to adapt to climate change with high response diversity because the cultivar germplasm base was diversified. Foreign origin in a cultivar pool was apparently not sufficient or necessary to ensure added value for a diversity of responses to climate change. Similar analyses to those used in this study, applied as practical tools for breeders, farmers and public actors, are important to secure the adaptive capacity of crops worldwide under global climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号