首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
Cu2+可以与H2O2发生类Fenton反应,用Fenton法处理同时含有难降解有机物和Cu2+的工业废水时,Cu2+对于Fenton氧化难降解有机物的反应具有促进作用。本实验在高浓度邻苯二甲酸二甲酯(DMP)和Cu2+组成的模拟工业废水中投加Fenton试剂(Fe2++H2O2),利用Cu2+辅助Fe2+催化Fenton反应氧化难降解有机物。通过正交实验,优选反应条件,并进行单因素实验,分析不同Cu2+浓度、初始H2O2浓度、H2O2∶Fe2+(摩尔比)、pH及温度对DMP去除率的影响,以确定最佳的反应条件,并对反应机理进行了初步探讨。当Cu2+浓度为10 mg/L、DMP浓度为250 mg/L、初始H2O2的浓度为499.5 mg/L、H2O2∶Fe2+的摩尔比为4∶1、温度为20℃时,DMP的去除率最高可达到98.67%。本研究为类芬顿法处理难降解有机物和重金属离子共存的复杂工业废水奠定了基础。  相似文献   

2.
零价铁(Fe0)在水处理过程中有着非常广泛的应用.向Fe0反应体系中曝气,可利用O2还原自发生成H2O2,继而在常温、常压、较宽的pH范围(3~8)内产生·OH等强氧化剂氧化降解有机物.总结了Fe0/O2体系的反应机制,其中主要包括Fe0的双电子传递与Fe2-的单电子传递还原O2产生活性中间体H2O2,以及H2 O2与Fe2+发生Fenton反应产生氧化剂;介绍了pH、曝气方式、溶解氧、Fe0的比表面积及其投加量等因素对氧化剂产量及性质的影响;着重论述了向Fe0/O2体系中加入天然有机物质(NOM)、多金属氧酸盐(POM)等氧化还原媒介,以及草酸盐(C2O42-)、氨三乙酸(NTA)、乙二胺四乙酸(EDTA)等络合剂或引入第二金属形成双金属/O2体系等方法强化体系氧化能力的措施,并提出了Fe0/O2体系未来的研究方向.  相似文献   

3.
为了研究水中存在Br-的情况下,Fe3+和Cu2+对三卤甲烷(THMs)的生成及CHCl3、CHBr Cl2、CHBr2Cl、CHBr34种消毒副产物相对分布的影响,以腐殖酸模拟氯消毒过程中的前体物进行实验。结果表明,在p H为6、7和9 3种条件下,Fe3+抑制了THMs的生成,p H=6时只有CHCl3生成量随着Fe3+浓度的增加逐渐减少,其余3种消毒副产物均在增加,p H=7时4种消毒副产物浓度均减小并在Fe3+浓度为2 mg/L时生成量最低,p H=9时的生成趋势与p H=6时类似。Cu2+能促进THMs的生成,在p H为6、7和9时,当加入0.5 mg/L Cu2+时,THMs总量分别增加了16.7%、22.6%和2.5%,随着p H增加,THMs总量增加。在3种p H环境中,Cu2+对THMs生成的影响大于Fe3+,在偏酸性环境中,Fe3+影响THMs生成,产生的致癌风险高,当金属离子浓度为2.5 mg/L时,致癌风险相差最高为15%,在中性和偏碱性环境中,Cu2+影响THMs生成,产生的致癌风险高。  相似文献   

4.
以水体中的邻仲丁基4,6-二硝基苯酚(DNBP)为研究对象,考察了K2Fe O4在不同温度、p H和共存成分等条件下对其去除效果。结果表明,K2Fe O4去除水体中DNBP所需的适宜p H为6.0~7.0,适宜温度在25~35℃,且K2Fe O4与DNBP摩尔比大于20∶1时,DNBP降解率大于90.0%。水体p H接近中性时,共存成分NH4Cl、Na Cl、Na NO3和Mn Cl2对K2Fe O4去除DNBP的影响很小。此外,K2Fe O4与DNBP摩尔比较大时,DNBP的准一级动力学降解速率常数k与p H的关系符合Gauss模型。  相似文献   

5.
研究了邻苯二甲酸二丁酯(DBP)在UV/H2O2/草酸铁络合物体系中的光降解.结果表明,UV/H2O2/草酸铁络合物能有效地光解DBP;在pH值为4时,DBP光解速率最快,中性和碱性条件下光解效率降低;DBP的光解速率随H2O2浓度的升高而增大,但H2O2浓度较大时,其对·OH的清除作用使DBP的光解速率减慢;[Fe3 ]/[C2O42]<1/10,DBP光解速率随Fe3 浓度增大明显提高,[Fe3 ]/[C2O42]>1/10时,引起DBP光解速率的增加不明显.  相似文献   

6.
电-Fenton法预处理干法腈纶生产废水   总被引:2,自引:0,他引:2  
以Ti金属网为阴极,Ti基RuO2涂层形稳电极为阳极,采用外加H2O2和Fe2+的方式,研究了电-Fenton氧化预处理干法腈纶生产废水的工艺,考察了H2O2投加量、Fe2+投加量、pH值和电流强度等因素对污染物降解过程的影响,分析了废水可生化性和污染物变化规律。结果表明,电-Fenton法可以有效降解废水中有机污染物,使废水COD迅速降低,在初始pH值为3.0,Fe2+投加量为5.0 mmol/L,H2O2投加量为60.0 mmol/L,电流强度0.2 A的条件下,反应120 min后COD去除率可以达到44.0%以上;反应过程中H2O2的投加方式对电-Fenton法的处理效果具有明显影响,H2O2分6次投加可以使COD去除率由一次性投加时的44.8%提高至54.1%;处理后废水的BOD5/COD由0.29升高至0.68;GC-MS结果表明,经电-Fenton法预处理后,废水中多数芳香族化合物和特征污染物能被有效降解。  相似文献   

7.
以有机磷农药-草甘膦为目标污染物,利用光电芬顿方法对其进行降解研究。研究汇总考察了电流强度、初始p H、Fe2+浓度、草甘膦初始浓度、光种类及通入背景气体种类对草甘膦降解效果的影响。实验结果表明:电流强度越大,草甘膦初始浓度越低,草甘膦降解效果越好;草甘膦在p H=2.0~3.0的酸性体系中降解效果最好;Fe2+浓度升高,草甘膦降解效果增强。在电流为0.36 A、初始p H=3.0、Fe2+浓度为1.0 mmol·L~(-1)、通入100 m L·min-1O2条件下,以365 nm紫外光照射的光电芬顿反应降解初始浓度为84.5 mg·L~(-1)的草甘膦溶液,处理360 min后溶液矿化率可达64.5%。  相似文献   

8.
结合Fenton氧化反应动力学模型研究了Fenton氧化水中间氯硝基苯(m-ClNB)的影响因素和降解机制.结果表明:(1)反应初始pH、H2O2浓度、Fe2+浓度、污染物初始浓度和反应温度对m-ClNB的降解均有明显影响.在反应初始pH为3.5、m-ClNB初始摩尔浓度为0.444mmol/L、H2O2摩尔浓度为21.55mmol/L、Fe2+摩尔浓度为0.054mmol/L、反应温度为(25土1)℃的条件下,m-ClNB的去除效果较好.(2)建立了Fenton氧化m-ClNB的准一级反应动力学模型,且m-ClNB的降解与该模型拟合良好.基于不同反应温度时的准一级反应速率常数(kap),得到了m-ClNB降解的阿累尼乌斯公式,且活化能为36.51kJ/mol.(3)气相色谱(GC)/质谱(MS)和高效液相色谱(HPLC)/MS分析表明,Fenton氧化m-ClNB的主要产物有4-氯-2-硝基苯酚及其同分异构体、羟基乙酸、草酸、丁二酸、丙二酸、6-氯己酸、乙醛酸、2,2-二羟基丙二酸和2-乙基丙二酸等.  相似文献   

9.
以浸渍法制备的新型纳米Fe3O4/Zr O2为催化剂,3,4-二氯三氟甲苯(3,4-DCBTE)为目标污染物,用Fe3O4/Zr O2-H2O2非均相类Fenton体系对目标污染物进行降解,考察催化剂的催化效果和温度、pH、H2O2投加量和掺杂比等因素对催化剂催化效果的影响。结果表明,以纳米Fe3O4/Zr O2作为催化剂的非均相类Fenton体系对3,4-二氯三氟甲苯的处理效果极佳;随着温度的升高,纳米Fe3O4/Zr O2的催化效果不断提高;当pH降低时,催化剂的催化效果有明显提升,原始pH(pH=5.7)时反应去除效果最佳,去除率可达88.6%;催化剂用量的增加同样可以提高3,4-二氯三氟甲苯的降解效率;催化剂中Fe3O4∶Zr O2的物质的量比为1∶2时效果较其他掺杂比的催化剂效果更好,去除率最终可以达到96.82%;当H2O2投加量增加时,3,4-二氯三氟甲苯的降解效率先提高后降低,投加量为0.3 m L时去除效果最好,几乎可以完全去除目标有机物。以Fe3O4/Zr O2-H2O2非均相类Fenton体系处理3,4-二氯三氟甲苯时,目标污染物的降解符合一级反应动力学。  相似文献   

10.
以中压汞灯为光源 ,研究了水体系中正癸烯 (n C10 H2 0 )在TiO2 光催化氧化作用下的降解。结果表明 ,降解反应符合一级动力学方程 ;n C10 H2 0 在不同粒径TiO2 下的反应速率常数k为 6 .80— 9.90× 10 -3 min-1(在 30 0W中压汞灯下 ) ,其值随粒径的增加而降低 ;在相同粒径下 ,k值随光强增加而增大。同时测定了在水体中掺杂 1wt% (即过渡金属质量占Ti原子质量的百分数 )的过渡金属离子时 ,n C10 H2 0 的光降解速率常数k为 11.4— 15 .9× 10 -3 min-1,因而其对光降解的影响顺序是 :Ag+ >Fe3 + >Pb2 + >Fe2 + >Zn2 + >Mn2 + 。产物经GC/MS分析表明 ,水体中n C10 H2 0 光催化降解生成辛醛、壬醛、癸醛和 2 癸酮。  相似文献   

11.
研究了1%和10%(V/V)模拟正丙醇废水在UV/TiO2体系、UV/H2O2体系、Fe2+/H2O2体系和UV/TiO2/Fe2+/H2O2体系等4种工艺条件下的降解动力学过程,对比了降解动力学特点及工艺参数对动力学常数的影响,优化工艺参数。结果表明,UV/TiO2体系和Fe2+/H2O2体系的降解过程可分为零级反应阶段和一级反应阶段,转折点分别在反应开始后2 h和氧化剂浓度为6.7 g/L,UV/H2O2体系和UV/TiO2/Fe2+/H2O2体系分别符合零级反应和一级反应规律;相同工艺参数条件下,6 h反应后,组合工艺UV/TiO2/Fe2+/H2O2体系在处理效率达85%,比前3个体系分别高52.0%、8.3%和32.0%,与UV/TiO2体系和Fe2+/H2O2体系的处理效率之和持平,其协同效应提高了速率常数,在目标物浓度降低时依然可维持较高降解速率。而目标物浓度提高10倍后,UV能量利用率提高35.5倍,氧化剂用量是Fe2+/H2O2体系的1/7.1。  相似文献   

12.
超声-Fenton联用技术深度处理皮革综合废水生化出水   总被引:2,自引:1,他引:1  
针对皮革综合废水生化处理出水中存在COD和色度偏高等问题,提出采用超声-Fenton联用技术对生化后的皮革综合废水进行深度处理。通过单因素实验考察了超声功率、H2O2投加量、Fe2+投加量(即H2O2/Fe2+比)、溶液pH和反应时间对水样中COD和色度去除率的影响;正交实验结果表明,当溶液初始pH值为4.0时,各因素影响显著性的先后顺序为H2O2>超声功率>反应时间>Fe2+;其优化的实验条件为:H2O2为24.0 mL/L、超声功率为85 W、反应时间为45min、Fe2+为2.2 g/L,经超声-Fenton联用技术深度处理后COD的去除率可达85.4%。在最佳实验条件下,对超声-Fenton联用技术深度处理皮革综合废水生化出水的动力学研究发现,水样中的COD降解反应符合表观一级反应动力学,速率常数增强因子可达8.64,表明存在显著的协同效应。  相似文献   

13.
Fenton氧化法对磺胺类抗生素的降解动力学   总被引:2,自引:0,他引:2  
采用Fenton氧化法同时降解水溶液中磺胺吡啶(SPY)、磺胺二甲基嘧啶(SMZ)和磺胺甲噁唑(SMX)。系统考查了初始H2O2浓度、Fe2+浓度、pH对3种磺胺类抗生素降解性能的影响。结果表明,3种磺胺抗生素被完全降解的最佳Fenton氧化条件是:H2O2浓度为2.0 mmol/L,Fe2+浓度为0.10 mmol/L,pH为3.0~3.5,反应时间为20 min。Fenton试剂对3种磺胺类抗生素的降解符合一级反应动力学,速度常数为0.0318~0.2002 min-1。  相似文献   

14.
为了考查H2O2/Fe2+的摩尔比和H2O2的初始剂量、pH值以及活性深蓝染料B-2GLN(RDB B-2GLN)的初始浓度对活性深蓝染料B-2GLN降解过程的影响,采用在线分光光度法对活性深蓝染料B-2GLN的Fenton氧化过程进行了研究,探讨了其动力学过程,并利用气相色谱-质谱联用分析降解中间产物。结果显示,采用Fenton氧化降解水溶液中活性深蓝染料B-2GLN,在H2O2的剂量为2.635 mmol/L,pH值为2.7,H2O2/Fe2+的摩尔比为37.80和活性深蓝染料B-2GLN的初始浓度16 mg/L的条件下,得到300 s后活性深蓝染料B-2GLN的最大色度去除率为85.04%。水溶液中活性深蓝染料B-2GLN与·OH的反应速率常数为2.62×1011L/(mol·s)。活性深蓝B-2GLN染料的分子结构被Fenton试剂分解而未被完全矿化,同时对活性深蓝染料降解产物进行了分析。在线分光光度法是研究染料色度去除率的一种精确、快速与可行的方法。  相似文献   

15.
The Fenton-like degradation of nalidixic acid was studied in this work. The effects of Fe3+ concentration and initial H2O2 concentration were investigated. Increasing the initial H2O2 concentration enhances the degradation and mineralization efficiency for nalidixic acid, while Fe3+ shows an optimal concentration of 0.25 mM. A complete removal of nalidixic acid and a TOC removal of 28 % were achieved in 60 min under a reaction condition of [Fe3+]?=?0.25 mM, [H2O2]?=?10 mM, T?=?35 °C, and pH?=?3. LC–MS analysis technique was used to analyze the possible degradation intermediates. The degradation pathways of nalidixic acid were proposed according to the identified intermediates and the electron density distribution of nalidixic acid. The Fenton-like degradation reaction of nalidixic acid mainly begins with the electrophilic attack of hydroxyl radical towards the C3 position which results in the ring-opening reaction; meanwhile, hydroxyl radical attacking to the branched alkyl groups of nalidixic acid leads to the oxidation at the branched alkyl groups.  相似文献   

16.
Degradation of bisphenol A (BPA) in aqueous solution was studied with high-efficiency sulfate radical (SO4 ), which was generated by the activation of persulfate (S2O8 2?) with ferrous ion (Fe2+). S2O8 2? was activated by Fe2+ to produce SO4 , and iron powder (Fe0) was used as a slow-releasing source of dissolved Fe2+. The major oxidation products of BPA were determined by liquid chromatography-mass spectrometer. The mineralization efficiency of BPA was monitored by total organic carbon (TOC) analyzer. BPA removal efficiency was improved by the increase of initial S2O8 2? or Fe2+ concentrations and then decreased with excess Fe2+ concentration. The adding mode of Fe2+ had significant impact on BPA degradation and mineralization. BPA removal rates increased from 49 to 97 % with sequential addition of Fe2+, while complete degradation was observed with continuous diffusion of Fe2+, and the latter achieved higher TOC removal rate. When Fe0 was employed as a slow-releasing source of dissolved Fe2+, 100 % of BPA degradation efficiency was achieved, and the highest removal rate of TOC (85 %) was obtained within 2 h. In the Fe0–S2O8 2? system, Fe0 as the activator of S2O8 2? could offer sustainable oxidation for BPA, and higher TOC removal rate was achieved. It was proved that Fe0–S2O8 2? system has perspective for future works.  相似文献   

17.
In the present study, selected advanced oxidation processes (AOPs)—namely, photo-Fenton (with Fe2+, Fe3+, and potassium ferrioxalate—FeOx—as iron sources), solar photo-Fenton, Fenton, and UV/H2O2—were investigated for degradation of the antineoplastic drug mitoxantrone (MTX), frequently used to treat metastatic breast cancer, skin cancer, and acute leukemia. The results showed that photo-Fenton processes employing Fe(III) and FeOx and the UV/H2O2 process were most efficient for mineralizing MTX, with 77, 82, and 90 % of total organic carbon removal, respectively. MTX probably forms a complex with Fe(III), as demonstrated by voltammetric and spectrophotometric measurements. Spectrophotometric titrations suggested that the complex has a 2:1 Fe3+:MTX stoichiometric ratio and a complexation constant (K) of 1.47 × 104 M–1, indicating high MTX affinity for Fe3+. Complexation partially inhibits the involvement of iron ions and hence the degradation of MTX during photo-Fenton. The UV/H2O2 process is usually slower than the photo-Fenton process, but, in this study, the UV/H2O2 process proved to be more efficient due to complexing of MTX with Fe(III). The drug exhibited no cytotoxicity against NIH/3T3 mouse embryonic fibroblast cells when oxidized by UV/H2O2 or by UV/H2O2/FeOx at the concentrations tested.  相似文献   

18.

In this study, the photochemical degradation of livestock wastewater was carried out by the Fenton and Photo-Fenton processes. The effects of pH, reaction time, the molar ratio of Fe2 +/H2O2, and the Fe2 + dose were studied. The optimal conditions for the Fenton and Photo-Fenton processes were found to be at a pH of 4 and 5, an Fe2 + dose of 0.066 M and 0.01 M, a concentration of hydrogen peroxide of 0.2 M and 0.1 M, and a molar ratio (Fe2 +/H2O2) of 0.33 and 0.1, respectively. The optimal reaction times in the Fenton and Photo-Fenton processes were 60 min and 80 min, respectively. Under the optimal conditions of the Fenton and Photo-Fenton processes, the chemical oxygen demand (COD), color, and fecal coliform removal efficiencies were approximately 70–79, 70–85 and 96.0–99.4%, respectively.  相似文献   

19.
Fan C  Tsui L  Liao MC 《Chemosphere》2011,82(2):229-236
The purpose of this study is to investigate parathion degradation by Fenton process in neutral environment. The initial parathion concentration for all the degradation experiments was 20 ppm. For hydrogen ion effect on Fenton degradation, the pH varied from 2 to 8 at the [H2O2] to [Fe2+] ratio of 2-2 mM, and the result showed pH 3 as the most effective environment for parathion degradation by Fenton process. Apparent degradation was also observed at pH 7. The subsequent analysis for parathion degradation was conducted at pH 7 because most environmental parathion exists in the neutral environment. Comparing the parathion degradation results at various Fenton dosages revealed that at Fe2+ concentrations of 0.5, 1.0 and 1.5 mM, the Fenton reagent ratio ([H2O2]/[Fe2+]) for best-removing performance were found as 4, 3, and 2, resulting in the removal efficiencies of 19%, 48% and 36%, respectively. Further increase in Fe2+ concentration did not cause any increase of the optimum Fenton reagent ratio for the best parathion removal. The result from LC-MS also indicated that hydroxyl radicals might attack the PS double bond, the single bonds connecting nitro-group, nitrophenol, or the single bond within ethyl groups of parathion molecules forming paraoxons, nitrophenols, nitrate/nitrite, thiophosphates, and other smaller molecules. Lastly, the parathion degradation by Fenton process at the presence of humic acids was investigated, and the results showed that the presence of 10 mg L−1 of humic acids in the aqueous solution enhanced the parathion removal by Fenton process twice as much as that without the presence of humic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号