首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The potential of a lateritic soil and a marine clay, typical of those found in hot and humid climatic regions, was assessed for use as a landfill liner material. A series of tests were conducted - physical and chemical, batch adsorption, column, hydraulic conductivity, etc., - to evaluate the heavy metal sorption capacity, chemical compatibility of hydraulic conductivity, and transport parameters of the soils. Experimental results showed that the marine clay had better adsorption capacity than that of the lateritic soil and that its hydraulic conductivity was an order of magnitude lower. In addition, the hydraulic conductivities of both soils when permeated with low concentration heavy metal solutions were below 1x10(-7)cm/s. When permeated with Cr, Pb, Cd, Zn, and Ni solutions, the retardation factors of the lateritic soil and the marine clay ranged from 10 to 98 and 37 to 165, respectively, while the diffusion coefficients ranged from 1.0x10(-5) to 7.5x10(-6) and 3.0 to 9.14x10(-7)cm2/s, respectively. For both soils, Cr and Pb were retained relatively well, while Cd, Zn, and Ni were more mobile. The marine clay had higher retardation factors and lower diffusion coefficients, and its hydraulic conductivity was more compatible with Cr solution, than that of the lateritic soil. In general, the properties of the marine clay indicate that it has significant advantages over the lateritic soil as landfill liner material.  相似文献   

2.
This paper evaluates the use of waste products such as silica fume and fly ash in modification of the granular soils in order to remove some environmental problems and create new useful findings in the field of engineering. It is known that silica fume and fly ash, as well as clay material, are used in geotechnical engineering because of their pozzolanic reactivity and fineness to improve the soil properties needed with respect to engineering purposes. The main objective of this research project was to investigate the use of these materials in geotechnical engineering and to improve the hydraulic properties of soils by means of grouting. For this reason, firstly, suitable grouts in suspension forms were prepared by using silica fume, fly ash, clay and cement in different percentages. The properties of these cement-based grouts were then determined to obtain the desired optimum values for grouting. After that, these grouts were penetrated into the soil samples under pressure. The experimental work indicates that these waste materials and clay improved the physical properties and the fluidity of the cement-based grouts and they also decreased the hydraulic conductivity of the grouted soil samples by sealing the voids of the soil. The results of this study have important findings concerning the use of these materials in soil treatment and the improvement of hydraulic conductivity of the soils.  相似文献   

3.
Concentrations and Pools of Heavy Metals in Urban Soils in Stockholm,Sweden   总被引:8,自引:0,他引:8  
The concentrations of heavy metals (Cd, Cr, Cu, Hg, Ni, Pb andZn) and arsenic (As) were surveyed and the metal pools estimatedin soils in Stockholm Municipality. The sampling sites were distributed all over the entire municipality with a higher sampling density in the city centre. Soils were sampled to a maximum depth of 25 to 60 cm. Soil texture, total-C content, electrical conductivity and pH were analysed. Heavy metal concentrations were determined after wet digestion with boiling7 M HNO3.The results showed a wide range in heavy metal concentrations, as well as in other soil properties. The city centre soils constituted a rather homogeneous group whereas outside this areano geographical zones could be distinguished. These soils were grouped based on present land use, i.e. undisturbed soils, public parks, wasteland (mainly former industrial areas), and roadside soils. The city centre and wasteland soils generally hadenhanced heavy metal concentrations to at least 30 cm depth compared to park soils outside the city centre and rural (arable)soils in the region, which were used to estimate background levels. For example, the mean Hg concentration was 0.9 (max 3.3)mg kg-1 soil at 0–5 cm and 1.0 (max 2.9) at 30 cm depth in the city centre soils, while the background level was 0,04 mg kg-1. Corresponding values for Pb were 104 (max 444) and135 (max 339) mg kg-1, at 0–5 and 30 cm, respectively, while the background level was 17 mg kg-1.The average soil pools (0–30 cm depth) of Cu, Pb and Zn were 21,38 and 58 g m-2 respectively, which for Pb was 3–4 timeshigher and for Cu and Zn 1.5–2 times higher than the backgroundlevel. The total amount of accumulated metals (down to 30 cm)in the city centre soils (4.5*10 6 m2 public gardens and green areas) was estimated at 80, 1.1, 120 and 40 t for Cu, Hg, Pb and Zn, respectively. The study showed (1) thatfrom a metal contamination point of view, more homogeneous soilgroups were obtained based on present land use than on geographicdistance to the city centre, (2) the importance of establishing a background level in order to quantify the degree of contamination, and (3) soil samples has to be taken below the surface layer (and deeper than 30 cm) in order to quantify theaccumulated metal pools in urban soils.  相似文献   

4.
The fate of chlorothalonil, chlorpyrifos and profenofos in sandy loam soil under tropical condition was studied in a vegetable plot in the Cameron Highlands, Malaysia. The plot was treated with chlorothalonil, chlorpyrifos and profenofos according to normal agricultural practices of the Cameron Highlands. Water (runoff and lysimeter), soil and bedload sediment samples were taken according to a sampling schedule. Residues in water, soil and bedload sediment samples were laboratory analysed to determine amount. Chlorothalonil residues were detected in the range of < 0.01–0.08 mg/kg in the soil, < 0.01–0.02 ng/mL in the leachate, < 0.01–0.02 ng/mL in the runoff and < 0.01–0.11mg/kg in the sediment. Field studies of chlorpyrifos showed residue levels of < 0.01–0.06 mg/kg in the soil, < 0.01–0.07 ng/mL in the leachate, < 0.01–0.08 ng/mL in the runoff and < 0.01–0.62 mg/kg in the sediment. Residue levels of profenofos were detected in the range of < 0.01–0.02 mg/kg in the soil, < 0.01–0.87 ng/mL in the leachate, < 0.01–0.08 ng/mL in the runoff and < 0.01–0.35 mg/kg in the sediment. The three pesticides dissipated rapidly, with DT50 (time for 50% loss) of less than two days. The study showed that these pesticides dissipated rapidly under the climatic conditions of the Cameron Highlands in Malaysia.  相似文献   

5.
A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14C-labeled substances in soil–plant–atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14C-emissions from soil surfaces and 14C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate – using the two-chamber-lysimeter-test-system – are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil–plant-systems. Mineralization of 14C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.  相似文献   

6.
Leaching experiments of rebuilt soil columns with two simulated acid rain solutions (pH 4.6–3.8) were conducted for two natural soils and two artificial contaminated soils from Hunan, south-central China, to study effects of acid rain on competitive releases of soil Cd, Cu, and Zn. Distilled water was used in comparison. The results showed that the total releases were Zn>Cu>Cd for the natural soils and Cd>Zn≫Cu for the contaminated soils, which reflected sensitivity of these metals to acid rain. Leached with different acid rain, about 26–76% of external Cd and 11–68% external Zn were released, but more than 99% of external Cu was adsorbed by the soils, and therefore Cu had a different sorption and desorption pattern from Cd and Zn. Metal releases were obviously correlated with releases of TOC in the leachates, which could be described as an exponential equation. Compared with the natural soils, acid rain not only led to changes in total metal contents, but also in metal fraction distributions in the contaminated soils. More acidified soils had a lower sorption capacity to metals, mostly related to soil properties such as pH, organic matter, soil particles, adsorbed SO4 2−, exchangeable Al3+ and H+, and contents of Fe2O3 and Al2O3.  相似文献   

7.
A field-scale soil liner was constructed to test whether compacted soil barriers in cover and liner systems could be built to meet the U.S. EPA saturated hydraulic conductivity requirement (⩽ 1 × 10−7 cm s−1). The 8 × 15 × 0.9 m liner was constructed in 15 cm compacted lifts using a 20,037 kg pad-foot compactor and standard engineering practices. Water infiltration into the liner has been monitored for one year. Monitoring will continue until water break through at the base of the liner occurs. Estimated saturated hydraulic conductivities were 2.5 × 10−9, 4.0 × 10−8, and 5.0 × 10−8 cm s−1 based on measurements of water infiltration into the liner by large- and small-ring infiltrometers and a water balance analysis, respectively.Also investigated in this research was the variability of the liner's hydraulic properties and estimates of the transit times for water and tracers. Small variances exhibited by small-ring flux data suggested that the liner was homogeneous with respect to infiltration fluxes. The predictions of water and tracer breakthrough at the base of the liner ranged from 2.4–12.6 y, depending on the method of calculation and assumptions made. The liner appeared to be saturated to a depth between 18 and 33 cm at the end of the first year of monitoring. Transit time calculations cannot be verified yet, since breakthrough has not occurred. The work conducted so far indicates that compacted soil barriers can be constructed to meet the saturated hydraulic conductivity requirement established by the U.S. EPA.  相似文献   

8.
This study investigates the fate and behavior of lead (Pb), copper (Cu), antimony (Sb), and arsenic (As) in a shooting range soil. The soil samples were collected from the surface (0–15 cm) and the subsurface (15–40 cm and 40–55 cm) of a grassy and wood chip covered impact area behind a firing position. Optical microscopy images indicate significant amounts of corroded bullet fragments and organic wood chips in the surface soil. Analysis by X-ray powder diffraction (XRPD) and scanning electron microscopy electron dispersive X-ray spectroscopy (SEM-EDS) showed that metallic Pb was transformed into lead oxides (litharge PbO and massicot PbO) and lead carbonates (hydrocerussite Pb3(CO3)2(OH)2, cerussite PbCO3, and plumbonacrite Pb5(CO3)3O(OH)2). Rietveld quantification indicated the surface soil contained 14.1% metallic Pb, 17.9% hydrocerussite, 5.2% plumbonacrite, 5.9% litharge, and 3.9% massicot on a dry weight basis, or a total of 39.7% Pb, far in excess of lead concentrations typically found in US shooting range soils. Metallic Cu (bullet jacket material) appeared stable as no secondary minerals were detected in the surface soil. As and Sb concentrations were on the order of 1,057 mg/kg and 845 mg/kg respectively. The elevated soil pH coupled with high organic carbon content is thought to have caused downward migration of metals, especially for Pb, since 4,153 mg Pb/kg was observed at a depth of 55 cm. More than 60% of Pb was concentrated in the coarse soil (> 0.425 mm) fraction, suggesting soil clean-up possible by physical soil washing may be viable. The concentrations of Pb, As, and Sb in the toxicity characteristic leaching procedure (TCLP) extracts were 8,869 mg/L, 6.72 mg/L, and 6.42 mg/L respectively, were above the USEPA non-hazardous regulatory limit (As and Pb) of 5 mg/L. The elevated Sb and As concentrations draw concern because there is historically limited information concerning these metals at firing ranges and several values exceeded local soil cleanup criteria. As the high Pb concentrations appeared to be linked to the presence of organic-rich berm cover materials, the use of wood chips as berm cover to prevent soil erosion requires reconsideration as a shooting range management practice.  相似文献   

9.
Landfill bottom liners are generally constructed with natural clay soils due to their high strength and low hydraulic conductivity characteristics. However, in recent years it is increasingly difficult to find locally available clay soils that satisfy the required engineering properties. Fine grained soils such as sepiolite and zeolite may be used as alternative materials in the constructions of landfill bottom liners. A study was conducted to investigate the feasibility of using natural clay rich in kaolinite, sepiolite, zeolite, and their mixtures as a bottom liner material. Unconfined compression tests, swell tests, hydraulic conductivity tests, batch and column adsorption tests were performed on each type of soil and sepiolite–zeolite mixtures. The results of the current study indicate that sepiolite is the dominant material that affects both the geomechanical and geoenvironmental properties of these alternative liners. An increase in sepiolite content in the sepiolite–zeolite mixtures increased the strength, swelling potential and metal adsorption capacities of the soil mixtures. Moreover, hydraulic conductivity of the mixtures decreased significantly with the addition of sepiolite. The utilization of sepiolite–zeolite materials as a bottom liner material allowed for thinner liners with some reduction in construction costs compared to use of a kaolinite-rich clay.  相似文献   

10.
The Rattaphum Catchment comprises four major hydrogeomorphic units: mountains, footslopes, plains and inland swamps around a lake system. The area accommodates three main agro-ecosystems: vegetable, rubber and fruits. During the high-rainfall period, groundwater levels rise near to the soil surface in all agro-ecosystems. The high water levels remain for 3–4 months in the coastal plain, while in other areas the groundwater level fluctuates according to the intensity of rainfall events during the 2–3 months of the rainy season. Groundwater salinity is higher near Songkhla Lake and decreases rapidly inland. It is generally lower near streams. Salinity is also lower during periods of higher recharge, increasing slightly during the dry season due to leaching of chemicals from the agricultural areas. In the saturated sandy soils with high hydraulic conductivity and in the vegetable agro-ecosystem areas with high water levels, the NO3 level in groundwater always exceeds the WHO standard. Variations in NO3 levels are closely related to patterns of landuse, with higher nitrate levels commonly found in vegetable areas and lower levels associated with fruit and rubber tree plantations. Nearly all groundwater and surface water is contaminated by coliform bacteria, with the level of contamination controlled by groundwater levels, the amount of rainfall and farm activities. Vegetable agro-ecosystems, which have the most intensive cropping system, were found to be the most polluted. In all of the agro-ecosystems, the most polluted period coincided with the first series of rainfall events.  相似文献   

11.
Experimental investigations were carried out to investigate the effect of thermo-chemical exposures on the hydraulic performance of Compacted Clay Liners (CCLs) in landfills. Hydraulic conductivity of most CCL specimens was increased by two to three times their initial values when exposed to 55 °C for 75 days. CCL specimens also experienced increases in their hydraulic conductivities when exposed to leachate at room temperature. This behaviour could be due to the decrease in viscosity when the permeant was changed from tap water to leachate. However, as the leachate exposure time exceeded the first 15 days, hydraulic conductivity readings decreased to as much as one order of magnitude after 75 days of leachate permeation at room temperature. The gradual decrease in the CCLs hydraulic conductivities was most likely due to chemical precipitation and clogging of pore voids within the soils which seemed to reduce the effective pore volume. The rate of hydraulic conductivity reduction due to leachate permeation was slower at higher temperatures, which was attributed to the lower permeant viscosity and lower clogging occurrence. The observed hydraulic behaviours were correlated to the physical, mineral, and chemical properties of the CCLs and described below.  相似文献   

12.
Phytoremediation of pollutants in soils is an emerging technology, using different soil-plant interaction properties. For organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), phytodegradation seems to be the most promising approach. It occurs mostly through an increase of the microbial activity in the plant rhizosphere, allowing the degradation of organic substances, a source of carbon for soil microbes. Despite a large amount of available data in the literature concerning laboratory and short term PAH phytodegradation experiments, no actual field application of such technique was previously carried out. In the present study, a soil from a former coking plant was used to evaluate the feasibility and the efficiency of PAH phytodegradation in the field during a three years trial and following a bioremediation treatment. Before the phytoremediation treatment, the soil was homogenized and split into six independent plots with no hydrological connections. On four of these plots, different types of common plant species were sowed: mixture of herbaceous species, short cut (P1), long cut (P2), ornamental plants (P3) and trees (P4). Natural vegetation was allowed to grow on the fifth plot (P5), and the last plot was weeded (P6). Each year, representative sampling of two soil horizons (0–50 and 50–100 cm) was carried out in each plot to characterize the evolution of PAHs concentration in soils and in soils solution obtained by lixiviation. Possible impact of the phytoremediation technique on ecosystems was evaluated using different eco- and genotoxicity tests both on the soil solid matrix and on the soil solution. For each soil horizon, comparable decrease of soil total PAHs concentrations were obtained for three plots, reaching a maximum value of 26% of the initial PAHs concentration. The decrease mostly concerned the 3 rings PAHs. The overall low decrease in PAHs content was linked to a drastic decrease in PAHs availability likely due to the bioremediation treatment. However, soil solutions concentration showed low values and no signficant toxicity was characterized. The mixture of the herbaceous species seemed to be the most promising plants to be used in such procedure.  相似文献   

13.
Three natural clayey soils from Tunisia were studied to assess their suitability for use as a liner for an acid waste disposal site. An investigation of the effect of the mineral composition and mechanical compaction on the hydraulic conductivity and fluoride and phosphate removal of three different soils is presented. The hydraulic conductivity of these three natural soils are 8.5 × 10?10, 2.08 × 10?9 and 6.8 × 10?10 m/s for soil-1, soil-2 and soil-3, respectively. Soil specimens were compacted under various compaction strains in order to obtain three wet densities (1850, 1950 and 2050 kg/m3). In this condition, the hydraulic conductivity (k) was reduced with increasing density of sample for all soils. The test results of hydraulic conductivity at long-term (>200 days) using acidic waste solution (pH = 2.7, charged with fluoride and phosphate ions) shows a decrease in k with time only for natural soil-1 and soil-2. However, the specimens of soil-2 compressed to the two highest densities (1950 and 2050 kg/m3) are cracked after 60 and 20 days, respectively, of hydraulic conductivity testing. This damage is the result of a continued increase in the internal stress due to the swelling and to the effect of aggressive wastewater. The analysis of anions shows that the retention of fluoride is higher compared to phosphate and soil-1 has the highest sorption capacity.  相似文献   

14.
This paper attempts to characterise the water regime of reclaimed surface dumps in connection with their soil physical properties. The results of a research project based on field measurements of moisture content and hydraulic conductivity, supported by analyses of undisturbed soil samples, led to recommendations regarding technological procedures for such dumps. A dielectric soil moisture meter, in an improved version, was successfully used for field monitoring and further evaluation of moisture content. Hydraulic conductivity was also measured in the field (by repeated borehole infiltration) using the Guelph permeameter method. Laplace-Gardner analysis was used for evaluating the field saturated hydraulic conductivity results.  相似文献   

15.
The stabilization potential of negatively charged sodium carboxymethyl cellulose (CMC) solution was assessed through investigation of its retention on clays under environmental conditions that promote soil desiccation. Sodium montmorillonite and kaolinite, commonly used in clayey soils, were mixed with aqueous CMC solutions in concentrations ranging from 0 to 10 g/L. These samples were dried in a specially-designed desiccation chamber which was operated at a temperature of 25°C and relative humidity of 30%. The results show an inverse proportionality between liquid loss and CMC concentration. Liquid loss from clayey soil follows the first-order reaction with a rate constant in the range of 4.6–6.7 mg/h. CMC half-lives on sodium montmorillonite during desiccation ranged from 103 to 181 h for an aqueous concentration range of 0.5–10 g/L compared to 108 h for distilled water. For kaolinite, more liquid was retained at 10 g/L CMC concentration than at other concentrations, but liquid retention was generally insignificant. These conclusions are valid for a desiccation duration of 890 h, a time that is reasonably simulative of the duration of exposures of bare ground surfaces to weather elements. The experimental results are explained in terms of the role of CMC molecular interactions with clay minerals in controlling fluid flow to desiccating clay surfaces.  相似文献   

16.
Cameron Highlands has a long history of intensive horticulture especially vegetable and flower cultivation. This industry uses large amounts of nutrients and pesticides. Several simulation models were used to assess the movement of pesticides and nutrients in relation to agronomic practices in farm plots cultivated with cabbage and chrysanthemum. It was shown that most of the pesticides are absorbed by the topsoils which are enriched by organic fertiliser, and are not leached beyond the top 10 cm layer. Methamidophos, dazomet, cyromazine, triforine and NO3N were predicted to cause soil contamination. The application of high amounts of fertilisers can cause nitrate contamination to the groundwater in Cameron Highlands.  相似文献   

17.
In multiphase systems capillary pressures play a significant role on fluid movement and retention. The facility to predict the effect of different thermal remediation strategies requires the knowledge of the effect of temperature on capillary pressure-saturation relationships in the soils. The objective of recent study was (a) to develop a technique for routinely measuring the pressure-saturation curves of soil samples saturated with a nonpolar liquid at different regulated temperatures (b) to build a database using the measured pressure-saturation curves and the physical, chemical properties of the model soils (c) to establish the dependence of nonaqueous phase liquid retention on the soil properties and the temperature. The retention curves (extraction isotherms) with nonaqueous phase liquid were determined using a modified pressure plate extractor. The wetting phase was a non-aromatic hydrocarbon distillation product. Pressure plates were designed and constructed in the laboratory of our department. The temperature was held constant at 20, 40 and 60 C. Statistical analysis was performed involving selected soil parameters and the measured nonaqueous phase liquid retention data. The results show that knowing some easily measurable soil parameters (bulk density, particle size distribution, humus and lime content) we can estimate the nonaqueous phase liquid retention of the soils. The measured “extraction isotherms” provide essential information about the temperature-dependency of pressure-saturation curves.  相似文献   

18.
The field performance of experimental biodegradable drip irrigation thin wall and regular pipes was investigated through three sets of full-scale experiments and in the laboratory. These experimental biodegradable drip irrigation systems were produced through the processing of biodegradable under real soil conditions polymers, Mater-Bi and Bioflex. The mechanical behaviour of the biodegradable thin wall pipes during the irrigation period was more unstable when compared to the corresponding behaviour of the rigid pipes. The tensile strength of the Mater-Bi and Bioflex thin wall pipes remained almost constant during the total exposure time, except from the folding areas. During the first 7–23 days of exposure in the field, the thin wall pipes had already lost more than the 50% of their initial elongation at break value due to degradation. However, their hydraulic performance began to decline only after a period of 100–120 days with the simultaneous formation of the first cracks. Likewise, the majority of the series of biodegradable rigid pipes exhibited a remarkable reduction in their elongation at break values in the transverse direction within the first 2 weeks. Despite the significant drop of the elongation at break, all biodegradable rigid pipes generally retained their tensile strength as well as a satisfactory hydraulic performance during almost the whole duration of their exposure. A few premature leakages in some points adjoining the drippers were observed after 8–10 weeks of exposure.  相似文献   

19.
We investigated the Austrian national greenhouse gas emission inventory to review the reliability and usability of such inventories. The overall uncertainty of the inventory (95% confidence interval) is just over 10% of total emissions, with nitrous oxide (N2O) from soils clearly providing the largest impact. Trend uncertainty – the difference between 2 years – is only about five percentage points, as important sources like soil N2O are not expected to show different behavior between the years and thus exhibit a high covariance. The result is very typical for industrialized countries – subjective decisions by individuals during uncertainty assessment are responsible for most of the discrepancies among countries. Thus, uncertainty assessment cannot help to evaluate whether emission targets have been met. Instead, a more rigid emission accounting system that allows little individual flexibility is proposed to provide harmonized evaluation uninfluenced by the respective targets. Such an accounting system may increase uncertainty in terms of greenhouse gas fluxes to the atmosphere. More importantly, however, it will decrease uncertainty in intercountry comparisons and thus allow for fair burden sharing. Setting of post-Kyoto emission targets will require the independent evaluation of achievements. This can partly be achieved by the validation of emission inventories and thorough uncertainty assessment.  相似文献   

20.
In order to devise design criteria for biocovers intended to enhance the microbial oxidation of landfill methane it is critical to understand the factors influencing gas migration and methane oxidation in landfill cover soils. On an old municipal solid waste landfill in north-western Germany soil gas concentrations (10, 40, 90 cm depth), topsoil methane oxidation capacity and soil properties were surveyed at 40 locations along a 16 m grid. As soil properties determine gas flow patterns it was hypothesized that the variability in soil gas composition and the subsequent methanotrophic activity would correspond to the variability of soil properties. Methanotrophic activity was found to be subject to high spatial variability, with values ranging between 0.17 and 9.80 g CH4 m−2 h−1. Considering the current gas production rate of 0.03 g CH4 m−2 h−1, the oxidation capacity at all sampled locations clearly exceeded the flux to the cover, and can be regarded as an effective instrument for mitigating methane fluxes. The methane concentration in the cover showed a high spatial heterogeneity with values between 0.01 and 0.32 vol.% (10 cm depth), 22.52 vol.% (40 cm), and 36.85 vol.% (90 cm). The exposure to methane raised the oxidation capacity, suggested by a statistical correlation to an increase in methane concentration at 90 cm depth. Methane oxidation capacity was further affected by the methanotroph bacteria pH optimum and nutrient availability, and increased with decreasing pH towards neutrality, and increased with soluble ion concentration). Soil methane and carbon dioxide concentration increased with lower flow resistance of the cover, as represented by the soil properties of a reduced bulk density, increase in air capacity and in relative ground level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号