首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
S. L. Smith 《Marine Biology》1978,49(2):125-132
During March and April 1976, a red tide, dominated by the dinoflagellate Gymnodinium splendens Lebour, developed in the vicinity of 15°06'S and 75°31'W off Peru. At the height of the bloom, the euphotic zone was 6 m deep and the chlorophyll a at the surface was 48 g l-1. A daily collection of zooplankton at 09.00 hrs showed large fluctuations of biomass, from 0.2 to 3.84 g dry weight m-2 in a water column of 120m. Copepodids and nauplii dominated the collections. During a period of reduced wind, the adult copepods were a mixture of the species characteristic of the coastal upwelling system and the neritic species associated with more northerly, tropical waters. Nitrogen regeneration by the zooplankton varied with the development of the bloom, the type of zooplankton dominating the experiment, and biomass fluctuations, but never accounted for more than 25% of the nitrogen uptake by phytoplankton.  相似文献   

2.
The study was carried out in the Skagerrak during late summer when population development in the pelagic cycle culminated in the yearly maximum in zooplankton biomass. The cyclonic circulation of surface water masses created the characteristic dome-shaped pycnocline across the Skagerrak. The large dinoflagellate Ceratium furca dominated the phytoplankton biomass. Ciliates and heterotrophic dinoflagellates were the major grazers and, potentially, consumed 43–166% of daily primary production. The grazing impact of copepods was estimated from specific egg production rates and grazing experiments. The degree of herbivory differed between species (14–85%), but coprophagy (e.g. feeding on fecal pellets) and ingestion of microzooplankton were also important. The appendicularian Oikopleura dioica was present in lower numbers than copepods, but cleared a large volume of water. The grazing impact of copepods and O. dioica was estimated to 57±24% and 12±12% of daily primary production, respectively. Sedimentation of organic material (30 m) varied between 169 and 708 mg C m–2 day–1, and the contribution from the mesozooplankton (copepod fecal pellets and mucus houses with attached phytodetritus of O. dioica) was 5–33% of this sedimentation. Recycling of fecal pellets and mucus houses in the euphotic zone was 59% and 36%, respectively. However, there was a high respiration of organic material by microorganisms in the mid-water column, and 34% of the sedimenting material actually reached the benthic community in the deep, central part of the Skagerrak.  相似文献   

3.
I. Laing 《Marine Biology》1985,85(1):37-41
Batch cultures of the marine unicellular centric diatom Chaetoceros calcitrans (Paulsen) Takano were maintained by serial subculturing every 4 d into nutrient-enriched natural sea-water medium supplemented with 350, 950 and 1 400 g-at Si l-1. The diatom cultures removed initial silica concentrations of 350 and 950 g-at l-1 from the medium within 2 and 3 d, respectively. About 30 g-at l-1 of the highest initial concentration remained in the medium after 4 d. The mean final cell density with an enrichment of 350 g-at Si l-1 was 3.43±0.26×104 cells l-1 (median cell volume = 77.5±5.0 m3); with 950 g-at Si l-1, 8.55±0.55×104 cells l-1 (50.0±4.5 m3); and with 1 400 g-at Si l-1, 9.72±0.48×104 cells l-1 (37.3±5.0 m3). There was no significant difference in the final total organic weight of cells produced, which was in the range of 170 to 190 mg per 250 ml culture. This consisted of proportionately more lipid and carbohydrate and less protein from the treatment with 350 g-at Si l-1 than from the 1 400 g-at Si l-1 treatment.  相似文献   

4.
Juveniles of the prawnPenaeus chinensis (3.96 ±0.18 cm, 0.36±0.06 g) reared in Taiwan in 1989 were exposed to different concentrations of ammonia and nitrite, by a static renewal method in 33 seawater at pH 7.94 and at 26 °C. The 24, 48, 96 and 120 h LC50 (median lethal concentration) of ammonia were 3.29, 2.10, 1.53 and 1.44 mg l–1 for NH3-N (un-ionized ammonia as nitrogen) and 79.97, 51.14, 37.00 and 35.09 mg l–1 for ammonia-N (un-ionized plus ionized ammonia as nitrogen). The 24, 96, 120, 144 and 192 h LC50 of nitrite-N were 339, 37.71, 29.18, 26.98 and 22.95 mg l–1. The LC50 decreased with increasing exposure time. During the first 96 h,P. chinesis juveniles were more susceptible to ammonia than nitrite. However, prawns were less tolerant to nitrite than ammonia when exposed for more than 96 h. The threshold was found at 120 and 192 h for ammonia and nitrite, respectively, on the toxicity curves. Incipient LC50 was 1.44 mg l–1 for NH3-N, 35.09 mg l–1 for ammonia-N and 22.95 mg l–1 for nitrite-N. The safe value forP. chinensis juveniles was 0.14, 3.51 and 2.30 mg l–1, respectively.  相似文献   

5.
In order to determine whether phytoplankton growth rates were normal or depressed, total plant carbon (g l–1) and in situ production rates (g C l–1 d–1) were measured for phytoplankton assemblages at Weathership Station P (50°N; 145°W) and at 53°N; 145°W in the subarctic Pacific in May and August 1984. Plant carbon, estimated from cell volumes determined using epifluorescence microscopy, was distributed as follow: 28% in the <2 m fraction, 38% in the 2 to 5 m size fraction, and the remainder in size classes >5 m. Carbon-specific growth rates (k), as doublings d–1, were calculated for the phytoplankton assemblages as a whole at each sampling depth down to 100 m for three days in May and for four days in August. The populations in the upper part of the euphotic zone showed average doubling rates of 1 d–1 and thus appeared to be growing at rates normally expected for the prevailing conditions of light and temperature. The low chlorophyll concentrations (0.3 to 0.4 mg chl a m–3) characteristically found in this oceanic region do not seem to be due to very slow growth of algal populations.Contribution No. 1695 of the School of Oceanography, University of Washington, Seattle, Washington 98195, USA  相似文献   

6.
Photosynthetic parameters for netplankton (>22 m) and nanoplankton (<22 m) varied over similar ranges but exhibited different seasonal and geographic patterns of variation. Nanoplankton a was relatively constant (0.06 mg C [mg Chl · h]-1 [E m-2 s-1]-1), but P m B (mg C [mg Chl · d]-1) was an exponential function of temperature independent of nutrient concentration and vertical stability in the euphotic zone. The temperature function gives a P m B of 24 at 25°C for nanoplankton growing in an estuarine environment characterized by high nutrient concentrations and a shallow, stratified euphotic zone. Variations in netplankton a and P m B were less predictable and were not correlated with temperature, nutrients or vertical stability. Chain forming diatoms with small cells were able to achieve high (0.10 to 0.15) and P m B (20 to 24) that were 3 to 5 times higher than large-celled diatoms and dinoflagellates were able to achieve.  相似文献   

7.
McGrath  S. M.  Sullivan  C. W. 《Marine Biology》1981,62(2-3):217-226
The natural concentration (S n) of dissolved total adenylates TA(=AMP+ADP+ATP) in coastal seawater from a depth of 1 m at 5 stations (California, USA) sampled periodically for 1 yr had a mean value ±1 SD of 2.8±1.7 nmol TA1-1. The specific uptake rates of TA by microheterotrophs at a station inside the Los Angeles Harbor and at a station 1.5 km offshore in the San Pedro Channel were studied by simple uptake and saturation-type kinetic analysis using 3H-AMP as a tracer. Within the harbor, the specific uptake rate (nmol TA 109 cell-1 h-1) at S n ranged 10-fold from 0.028 in December to 0.28 in August. K t (half-saturation constant) values always exceeded theS n concentrations in any given month, and were greater in the harbor than in the channel. Generally, over 80% of biological uptake of 3H-AMP was associated with organisms <1.0 m, a size class accounting for about 20% of the total particulate adenylate concentration in the 0.2 to 203 m size fraction. Assuming steady-state conditions for the dissolved adenylate pool, we propose a model in which losses from this pool are balanced by inputs to the pool through inefficient feeding, lysis and decomposition of particulate adenylates.  相似文献   

8.
From November 1980 to February 1981 the concentration of oxygen dissolved in the surface mixed layer of the oligotrophic Caribbean Sea off Curaçao was quite constant (420.77±1.98 g at l-1). However, immediately following enclosure in 4500-1 plastic bags reaching to a depth of 5 m the oxygen concentration began to decrease, down to values below saturation (405 g at l-1) within 48 h. Autotrophic and heterotrophic nanoplankton cell numbers and algal pigments in bags remained constant or increased slightly during the first 24 h of enclosure. The rate of decrease in oxygen concentration in bags was significantly higher during daylight hours than in the night, which suggests that photo-oxidative processes were involved in the additional daytime loss of oxygen. The dramatic enclosure effect on the oxygen content of the water in the bags can be taken as evidence of the dependence of the oxygen concentration near the tropical ocean's surface on supply from below: in water freely circulating in the euphotic zone deviations from the mean oxygen concentration during a diurnal cycle were 0.47% at most, differential losses near the surface being counteracted through vertical exchange; while in water separated from the rest of the mixed layer in the plastic bags losses due to respiration of the enclosed plankton community plus an even greater loss, assigned to non-biological, photosensitized oxidation processes, were up to 10 g at O2 l-1 in 24 h. Although photo-oxidation is confined to the very surface the oxygen flux involved may be important enough to necessitate consideration of a photochemically induced loss factor in oxygen budget calculations, e.g. when primary production is to be estimated from diurnal oxygen curves.  相似文献   

9.
From July 1978 to March 1980, a study was made on the distribution, population dynamics and secondary production of Nephtys hombergii Audouin et Edw. occurring in the sublittoral industrialised region of Southampton Water in south England. The distribution of the worm was related to the silt content and copper level of the sediment, the greatest densities of N. hombergii being found in sediment containing 60 to 100% silt. Breeding occurred at a low level throughout the year, with a maximum in July to September and November to January in the second year of growth. Spawning occurred when the oocytes measured 200m in diameter, and unshed gametes were resorbed. Annual production varied between 0.092 and 4.32 g C m-2 yr-1 (ash-free dry weight) and amounted to 1.9–39.4% of the total macrofaunal production at the sampling stations. The production:biomass (P:B) ratio of the species varied between 1.6 and 2.9.  相似文献   

10.
Microzooplankton was sampled during two cruises (Galápagos Vents, March 1985; Tongue of the Ocean and western edge of the Sargasso Sea, October/November 1985) by various collection methods (Niskin bottles, plankton nets, divers) to determine the vertical distribution and abundance of Acantharia. The larger size classes of Protozoa are dominated by the sarcodines, and Acantharia are frequently the most abundant of these in mesotrophic and oligotrophic oceans. The absolute densities of Acantharia have been consistently underestimated in many previous studies for two reasons: their skeletons dissolve in preserved samples, and they are undersampled by fine-meshed plankton nets. The previously identified dissolution problem may be less severe for concentrated samples because the dissolution of a portion of the Acantharia will raise the dissolved strontium concentration in the sample. Twenty five and 160 m-mesh plankton nets consistently underestimate the abundance of net plankton by one to two orders of magnitude. Possible reasons for this significant error are discussed. In the Equatorial Pacific Ocean, Acantharia were found at densities as high as 30 liter-1 and integrated abundances of 1.58 to 5.34x105 Acantharia m-2. Up to 90% were concentrated near the surface; their abundance declined sharply below 20 m. At two stations in the Atlantic, peak densities reached 6.4 liter-1. Wind-mixing may spread individuals more evenly through the euphotic zone, but they reestablish their surface maximum during period of calm. Acantharia generally have relatively few, but large symbionts. Small individuals average about 6 symbionts per host, larger hosts average 40 symbionts, and some individuals may have thousands of algal cells. Acantharia symbionts made up less than 1% of the chlorophyll in the water column, even at their host's peak abundances of 30 liter-1. However, production estimates, using published sarcodine-symbiont production-rates, suggest that Acantharia could occasionally account for up to 20% or more of the carbon fixation in the upper euphotic zone of oligotrophic oceans.  相似文献   

11.
Deibel  D. 《Marine Biology》1985,86(1):47-54
Net-captured aggregate stages of the salp Thalia democratica were fed naturally occurring particles in 2-liter bottles onboard ship. The goal was to compare clearance rates of net-captured T. democratica fed natural particles to clearance rates previously determined in laboratoryborn T. democratica fed monocultures of phytoplankton. On a cruise from 19–29 April, 1979, clearance rates were estimated by monitoring the decrease in concentration of particles with a multi-channel Coulter Counter TA II over a particle size range of 2 to 32 m equivalent spherical diameter (E.S.D.). Clearance rates were slightly lower than those measured in the laboratory, decreasing 3-fold over an 18-fold increase in the initial food concentration. Ingestion rates were slightly higher than those measured in the laboratory, increasing about 6-fold over the same range of food concentration. Within the particle concentration range examined (0.08 to 1.34 mm3l-1), there was no lower threshold of food concentration below which clearance of particles ceased. There was no effect of the concentration of T. democratica on clearance rate over a range of 2.5 to 11.5 salps l-1. The mean hourly ration was 2.0% of body carbon.  相似文献   

12.
Vertical distributions and nocturnal migrations of the developmental stages of Nyctiphanes couchi (Bell) in relation to the summer thermocline in the Celtic Sea, 25 to 26 August 1982, have been investigated using the Longhurst-Hardy Plankton Recorder (LHPR). The vertical distributions of the metanauplii and adult females suggest that N. couchi liberates its young within the euphotic zone as mature metanauplii which, in a matter of hours, moult into the first feeding stage (Calyptopis I). The ascent migration by adult females took a maximum of 3 h (17.10 to 20.05 hrs) and had an amplitude of 50m (54 to 4 m) from below to above the thermocline. A 7C° thermocline occurred between 20 to 30 m in these profiles. The nocturnal migrations by the females were for the purpose of breeding as well as feeding within the euphotic zone and were not influenced by the presence of the thermocline. The majority of the calyptopes and furciliae remained above the thermocline over the sampling period. The post-larval males and females migrated; their vertical distributions showed a pattern similar to those of the adult females. The larger the developmental stage, the deeper was the mode of its vertical distribution. The zooplankton dry weight in the profiles ranged from 3.74 to 6.91 g per haul (=1.85 to 3.45 g C m-2, 0 to 100 m). The euphausiids represented 35% of total zooplankton dry weight and their migrations removed a large percentage of the total zooplankton biomass from the euphotic zone for 18 h d-1. Such a large displacement of biomass would have a major impact on the biological interactions within the ecosystem.  相似文献   

13.
The rate of the primary production of the phytoplankton community in the Petalion Gulf, Aegean Sea, was studied from January 1970 to May 1971, at a station situated at approximately Latitude 37°54N; Longitude 24°11E. A variety of physical and chemical parameters such as chlorophyll, primary nutrients (N,P,Si), temperature, salinity, oxygen and light penetration were also studied simultaneously. The rate of the gross primary production varied from 40 to 200 mg C m-2 day-1, with a mean value of 90 mg C m-2 day-1. The annual gross primary production was calculated to be 33 g C m-2, which is the minimum known value in the Aegean and Mediterranean Seas. Maximum production was found at the depth of 20 m on the average, mainly due to high light intensities. Petalion Gulf supports a small photosynthetic biomass, as indicated by the low seasonal values of chlorophyll a (0.01 to 0.18 mg m-2), the highest values being found in the summer. The low production rate noted may have been due to the low nutrient concentrations found: N, 0.04 to 0.32 g-at/1; P, 0.00 to 0.15 g-at/1; Si, 0.45 to 2.25 g-at/1. It is suggested that inorganic phosphorus and nitrogen may alternate in limiting primary production rates in these oligotrophic waters. The temperate waters of the Petalion Gulf are stratified in summer (15.5° to 24.7°C) and well-mixed in winter (12.9° to 15.0°C); they are oxygen-saturated throughout the year, and of high transparency, with 86 m depth for the euphotic zone on the average yearly. The Petalion Gulf is therefore characterized as a typical oligotrophic biome in the Aegean and Eastern Mediterranean Seas.  相似文献   

14.
Data on phytoplankton primary production, biomass, and species composition were collected during a 5 yr (1985–1989) study of Auke Bay, Alaska. The data were used to examine the interannual differences in the timing, duration, and magnitude of the spring phytoplankton blooms during each year and to relate these differences to interannual variations in weather patterns. Within any given year, a pre-bloom phase was characterized by low available light, low rates of primary production, low biomass, and predominantly small (<10µm) diatoms. During the primary bloom, integrated production rates rose to 4 to 4.5 g C m–2 d–1, and integrated biomass levels reached 415 to 972 mg chlorophyll m–2. Primary blooms were usually dominated by large diatoms (Thalassiosira spp.), and in a single year (1989) byChaetoceros spp. The primary blooms terminated upon nutrient depletion in the euphotic zone. Secondary blooms, triggered by nutrient resupply from below, occurred sporadically after the primary bloom and accounted for 4 to 31% of total spring production. The date of initiation and the duration of the primary bloom varied little from year to year (standard deviation 3 and 5 d, respectively). Seasonal production rates and biomass levels varied interannually by a factor of 2 to 3. In contrast, intra-annual variations of more than an order of magnitude, especially in biomass, occurred over periods as short as 10 d. These large variations over short time periods indicate the importance of synchronous timing between spring blooms and the production of larval fish and shellfish, which depend on an appropriate and adequate food supply for growth and survival. Parameters describing primary production (e.g. peak daily production, mean daily production, and total production during the primary bloom and the entire season) exhibited little interannual variation (coefficient of variation, CV = 10 to 19%), but a large degree of intra-annual variation (CV = 77 to 116%). Similarly, interannual variations in biomass (peak chlorophyll, mean chlorophyll) were also lower (CV = 20 to 33%) than intra-annual variations (CV = 85 to 120%).  相似文献   

15.
The distribution of prokaryotic and eukaryotic picoplankton in the west coast upwelling-region off the South Island of New Zealand was investigated during midwinter (1988) the time of year when several commercially important fish species migrate into the region to breed. Picoplanktonic cells were major contributors to the autotrophic biomass, with > 80% of the particulate nitrogen and 39 to 55% of the total chlorophylla contained in the <2µm size-fraction. The prokaryotic picoplankton concentrations ranged from 6.3 × 105 to 2.1 × 107 cell l–1, and the eukaryotic picoplankton between 3.9 × 105 to 1.2 × 107 cells l–1. Picoplankton numbers increased with distance offshore to a maximum of ~ 3.0 × 107 cells l–1 at ~ 35 km from the coast, and then diminished towards the outer shelf and open ocean. The ratio of prokaryotic to eukaryotic cells varied between 1.01 and 4.71 in the mixed layer. Both groups declined substantially beneath the pycnocline, with no evidence of deep maxima. Prokaryotic cells dominated the planktonic cell concentrations at all but two stations, but eukaryotic cells dominated picoplankton biovolume as a result of their larger average cell size. The prokaryotic to eukaryotic picoplankton cell-number ratios in this system were considerably lower than often recorded elsewhere, and were inversely correlated with nitrate concentration. These observations show that a eukaryoticdominated picoplankton community makes a substantial contribution to autotrophic biomass in this nutrient-rich upwelling system, and may thereby play a major role in the food-web dynamics of this coastal fishery.  相似文献   

16.
The pattern of growth (biomass accumulation) in Ecklonia radiata throughout the year and across a depth profile was investigated using the traditional hole-punch method, and the information presented in context with concurrently measured in situ net productivity rates. The rate of net daily productivity showed a lack of consistent seasonal variability, remaining constant throughout the year at two of the four depths measured (3 m and 12 m), and becoming higher during winter at another (5 m). Throughout the year, rates of net daily productivity differed significantly across the depth profile. Net daily productivity rates averaged 0.017 g C g–1 dwt day–1 and 0.005 g C g–1 dwt day–1 at a depth of 3 m (1,394 mol O2 g–1 dwt day–1) and 10 m (382 mol O2 g–1 dwt day–1) respectively. In contrast, the biomass accumulation rate of E. radiata was highly seasonal, with low rates of growth occurring in autumn (0.002 g dwt g–1 dwt day–1 at both 3 and 10 m) and summer (0.007 and 0.004 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and higher rates in spring (0.016 and 0.007 g dwt g–1 dwt day–1 at 3 and 10 m respectively) and winter (0.015 and 0.008 g dwt g–1 dwt day–1 at 3 and 10 m respectively). The proportion of assimilated carbon used for biomass accumulation varied throughout the year, between 5% and 41% at 3 m and between 28% and 128% at 10 m. The rates of biomass accumulation at all depths represented only a small proportion of the amount of carbon assimilated annually.Communicated by P.W. Sammarco, Chauvin  相似文献   

17.
The epibenthic megafauna of the high-Arctic Northeast Greenland shelf was investigated by means of seafloor photography and Agassiz trawl catches. At 54 stations in water depths between 40 and 770 m, sequences of color slides, each depicting about 1 m2 of the seafloor, were obtained along photographic transects of about 100 to 600 m length. The photographs were quantitatively analyzed for abundance of epibenthic organisms identified by comparison with specimens collected from trawl catches. Megabenthic biomass was estimated by multiplying density values with averge body mass figures. For five dominant brittle star species, the population oxygen uptake and, thus, organic carbon mineralization potential were approximated by applying individual respiration rates of average-sized specimens to density figures. Multivariate analyses of the megabenthic species distribution revealed a distinct depth zonation. Shallow shelf banks (<150 m), characterized by coarse sediments, many stones and boulders as well as negative bottom water temperatures, housed a rich epifauna (30 to 340 ind m–2, 1.8 to 10.5 g AFDW m–2), strongly dominated (80 to 98% by numbers) by the brittle stars Ophiocten sericeum and Ophiura robusta. The oxygen uptake by brittle stars ranged from 0.4 to 95 mol O2 m–2 h–1 (i.e., assuming a respiratory quotient of 0.8, an organic carbon mineralization of 0.1 to 21.9 mg C m–2 d–1). At the bank flanks sloping to the shelf troughs (100 to 580 m), finer sediments prevailed, stones were rare, and bottom water temperatures were positive due to the inflow of Atlantic water. Compared to bank sites, total epibenthic abundances as well as carbon mineralization by brittle stars were roughly ten times and total biomass about four times smaller. In deep shelf depressions as well as at the continental slope (200 to 770 m), stones were completely lacking, and sediments very fine. Epibenthic standing stock and carbon mineralization were one to two orders of magnitude lower than on the banks. The estimation of brittle star oxygen uptake indicates that a considerable portion of the organic carbon produced in the polynya and partitioned to the benthos may be remineralized by epibenthic bank assemblages.  相似文献   

18.
The species composition, catch and mortality rates of sea turtles captured incidentally by the tiger prawn fishery on Australia's northern coast in 1989 and 1990 were estimated by monitoring the fishery's catch. In 1990, the delayed rate of mortality from damage was estimated and the size composition was measured. Five species of turtles were captured: the flatback (Natator depressa, 59% of the total), loggerhead (Caretta caretta, 10%), olive ridley (Lepidochelys olivacea, 12%), green turtle (Chelonia mydas, 8%) and hawksbill (Eretmochelys imbricata, 5%). The turtle catches varied with water depth: the highest catch rates (0.068±0.006 turtles per trawl) were from trawls in water between 20 and 30 m deep, relatively few turtles (10%) were captured in water deeper than 40 m (25% of trawls). Catch rates varied with time of year: the highest catch rates were 0.098 (±0.013) turtles per trawl in winter. There was no significant difference in the overall catch rate (2= 0.047; p=0.8111; df=1) but a significant difference in mortality rate (2= 3.99; p<0.05; df=1) between the two years. The incidence of capture in the commercial fishery was 0.051 (±0.003) turtles per trawl towed for about 180 min, with 0.007 (±0.001) turtles per trawl drowning in the nets. There were no significant differences in the catch and mortality rates between the two years for any of the turtle species except the loggerhead, which had a significantly (2 = 11.029; p=0.0013; df=1) lower catch rate in 1990 (0.002±0.001 turtles per trawl) than in 1989 (0.008±0.002 turtles per trawl), and a significantly higher mortality in 1990 (33%) than in 1989 (19%). Catch rates and mortality varied between the species: the flatback had the highest catch rate (0.030±0.002 turtles per trawl) but the lowest mortality (10.9%); the loggerhead had a catch rate of 0.005±0.001 turtles per trawl, and high mortality (21.9%); the olive ridley had a catch rate of 0.006±0.001 turtles per trawl and a low mortality (12.5%); the green turtle's catch rate was 0.004±0.001 per trawl and mortality 12.0%; the hawksbill had the lowest catch rate (0.002±0.001 turtles per trawl) but highest mortality (26.4%). Based on the fishing effort (27 049 d for 1989 and 25 746 d for 1990), we estimate that 5 503 (±424) turtles were caught and returned to the sea in 1989 and 5 238 (±404) in 1990, of which 567±140 drowned in 1989 and 943±187 in 1990. In 1990, an estimated 25% of all captured turtles suffered some non-lethal damage; an estimated 21% of turltes were captured comatose and 4% were injured. We conclude that, considering other threats, trawl-induced drowning is not the major impact on turtle populations in northern Australia, but that measures to reduce drowning and delayed mortality would be desirable.  相似文献   

19.
Phytoplankton growth and microzooplankton grazing were measured in two productive coastal regions of the North Pacific: northern Puget Sound and the coastal Gulf of Alaska. Rates of phytoplankton growth (range: 0.09–2.69 day−1) and microzooplankton grazing (range: 0.00–2.10 day−1) varied seasonally, with lowest values in late fall and winter, and highest values in spring and summer. Chlorophyll concentrations also varied widely (0.19–13.65 μg l−1). Large (>8 μm) phytoplankton cells consistently dominated phytoplankton communities under bloom conditions, contributing on average 65% of total chlorophyll biomass when chlorophyll exceeded 2 μg l−1. Microzooplankton grazing was an important loss process affecting phytoplankton, with grazing rates equivalent to nearly two-thirds (64%) of growth rates on average. Both small and large phytoplankton cells were consumed, with the ratio of grazing to growth (g:μ) for the two size classes averaging 0.80 and 0.42, respectively. Perhaps surprisingly, the coupling between microzooplankton grazing and phytoplankton growth was tighter during phytoplankton blooms than during low biomass periods, with g:μ averaging 0.78 during blooms and 0.49 at other times. This tight coupling may be a result of the high potential growth and ingestion rates of protist grazers, some of which feed on bloom-forming diatoms and other large phytoplankton. Large ciliates and Gyrodinium-like dinoflagellates contributed substantially to microzooplankton biomass at diatom bloom stations in the Gulf of Alaska, and microzooplankton biomass overall was strongly correlated with >8 μm chlorophyll concentrations. Because grazing tended to be proportionally greater when phytoplankton biomass was high, the absolute amount of chlorophyll consumed by microzooplankton was often substantial. In nearly two-thirds of the experiments (14/23), more chlorophyll was ingested by microzooplankton than was available for all other biological and physical loss processes combined. Microzooplankton were important intermediaries in the transfer of primary production to higher trophic levels in these coastal marine food webs. Received: 12 November 1999 / Accepted: 4 October 2000  相似文献   

20.
The distribution of phytoplankton primary production into four size fractions (>10 m, 10-3 m, 3-0.2 m and <0.2 m), the utilization of algal exudates by bacteria and the bacterial production were studied in a eutrophication gradient in the northern Baltic proper. The polluted area exhibits substantially increased nutrient, especially nitrogen, levels while only minor differences occur in salinity and temperature regimes. Total primary production was 160 g C · m-2 · yr-1 at the control station and about 275 g C · m-2 · yr-1 at the eutrophicated stations. The estimated total exudate release was 16% of the totally fixed 14CO2 in the control area and 12% in the eutrophicated area (including the estimated bacterial uptake of exudates). The difference in14CO2 uptake rates between incubation of previously filtered water (<3, <2, <1 m) and unfiltered water was used to estimate bacterial uptake of phytoplankton exudates which were found to contribute about half of the estimated bacterial carbon requirement in both areas. Bacterial production was estimated by the frequency of dividing cells (FDC) method as being 38 g C · m-2 · yr-1 at the control station and 50 g C · m-2 · yr-1 at the eutrophicated stations. To estimate the mean in situ bacterial cell volume a correlation between FDC and cell volume was used. The increased annual primary production in the eutrophicated area was due mainly to higher production during spring and autumn, largely by phytoplankton cells (mainly diatoms) retained by a 10 m filter. Primary production duringsummer was similarin the two areas, as was the distribution on different size fractions. This could possibly explain the similar bacterial production in the trophic layers at all stations since the bulk of bacterial production occurs during summer. It was demonstrated that selective filtration does not quantitatively separate photoautotrophs and bacteria. A substantial fraction of the primary production occurs in the size fraction <3 m. The primary production encountered in the 3-0.2 m fraction was due to abundant picoplankton (0.5 to 8 · 107 ind · l-1), easily passing a 3 m filter. The picoplankton was estimated to constitute up to 25% of the total phytoplankton biomass in the control area and up to 10% in the eutrophicated area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号