首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To identify and prioritize chemicals that may affect thyroid and adrenal/interregnal endocrine system and to reduce cost and animal use by conventional toxicity assay, an in vivo screening assay was developed using zebrafish embryos/larvae based on measurement of expression of genes that were suggested to play important roles in hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-interrenal (HPI) axis. Model chemicals that could modulate HPT and HPI axis in adult fish were selected in assay validation, including anti-thyroid agent 6-Propyl-2-thiouracil (PTU) and cytochrome P450 11B (Cyp11b) enzyme inhibitor metyrapone (MET). Zebrafish embryos were exposed to different concentrations of model chemical from 4 h post-fertilization (hpf) to 5 d post-fertilization (dpf). Exposure to PTU increased mRNA expression of sodium iodide symporter (nis) and thyroglobulin (tg) involved in HPT axis, and MET treatment up-regulated all the mRNA expression tested involved in HPI axis by a compensatory mechanism. These results suggested that HPT and HPI axis were active upon chemical exposure at least at 5 dpf zebrafish. Furthermore, we studied the effects of PTU or MET on the cross-talk between HPT and HPI axis. The results demonstrated that PTU and MET could affect cross-talk responses in zebrafish embryos/larvae.  相似文献   

2.
Developmental toxicity of cypermethrin in embryo-larval stages of zebrafish   总被引:1,自引:0,他引:1  
Shi X  Gu A  Ji G  Li Y  Di J  Jin J  Hu F  Long Y  Xia Y  Lu C  Song L  Wang S  Wang X 《Chemosphere》2011,85(6):1010-1016
Cypermethrin, a type II pyrethroid insecticide, is widely used throughout the world in agriculture, forestry, horticulture and homes. Though the neurotoxicity of cypermethrin has been thoroughly studied in adult rodents, little is so far available regarding the developmental toxicity of cypermethrin to fish in early life stages. To explore the potential developmental toxicity of cypermethrin, 4-h post-fertilization (hpf) zebrafish embryos were exposed to various concentrations of cypermethrin (0, 25, 50, 100, 200 and 400 μg L−1) until 96 h. Among a suite of morphological abnormalities, the unique phenotype curvature was observed at concentrations as low as 25 μg L−1. Studies revealed that 400 μg L−1 cypermethrin significantly increased malondialdehyde production. In addition, activity of antioxidative enzymes including superoxide dismutase and catalase were significantly induced in zebrafish larvae in a concentration-dependent manner. To further investigate the toxic effects of cypermethrin on fish, acridine orange (AO) staining was performed at 400 μg L−1 cypermethrin and the result showed notable signs of apoptosis mainly in the nervous system. Cypermethrin also down-regulated ogg1 and increased p53 gene expression as well as the caspase-3 activity. Our results demonstrate that cypermethrin was able to induce oxidative stress and produce apoptosis through the involvement of caspases in zebrafish embryos. In this study, we investigated the developmental toxicity of cypermethrin using zebrafish embryos, which could be helpful in fully understanding the potential mechanisms of cypermethrin exposure during embryogenesis and also suggested that zebrafish could serve as an ideal model for studying developmental toxicity of environmental contaminants.  相似文献   

3.
Jin Y  Zheng S  Pu Y  Shu L  Sun L  Liu W  Fu Z 《Chemosphere》2011,82(3):398-404
Cypermethrin (CYP), a widely used Type II pyrethroid pesticide, is one of the most common contaminants in the freshwater aquatic system. We studied the effects of CYP exposure on the induction of hepatic oxidative stress, DNA damage and the alteration of gene expression related to apoptosis in adult zebrafish. Hepatic mRNA levels for the genes encoding antioxidant proteins, such as Cu/Zn-Sod, Mn-Sod, Cat, and Gpx, were significantly upregulated when zebrafish were exposed to various concentrations of CYP for 4 or 8 days. In addition, the main genes related to fatty acid β-oxidation and the mitochondrial genes related to respiration and ATP synthesis were also significantly upregulated after exposure to high concentrations (1 and 3 μg L−1) of CYP for 4 or 8 days. Moreover, in a comet assay of zebrafish hepatocytes, tail DNA, tail length, tail moment and Olive tail moment increased in a concentration-dependent manner. The significant induction (p < 0.01) of all four parameters observed with CYP concentrations of 0.3 μg L−1 or higher suggests that heavy DNA damage was induced even at low levels. Furthermore, several apoptosis- related genes, such as p53, Apaf1 and Cas3, were significantly upregulated after CYP exposure, and Bcl2/Bax expression ratio decreased, especially in groups treated with 1 and 3 μg L−1 CYP for 8 days. Taken together, our results suggested that CYP has the potential to induce hepatic oxidative stress, DNA damage and apoptosis in zebrafish. This information will be helpful in fully understanding the mechanism of aquatic toxicology induced by CYP in fish.  相似文献   

4.
Organic solvents, such as dimethylsulfoxide (DMSO) and methanol are widely used as vehicles to solubilise lipophilic test compounds in toxicity testing. However, the effects of such solvents upon innate detoxification processes in aquatic organisms are poorly understood. This study assessed the effect of solvent exposure upon cytochrome P450 (CYP)-mediated xenobiotic metabolism in Daphnia magna and zebrafish larvae (4 d post fertilisation). Adult D. magna were demonstrated to have a low, but detectable, metabolism of ethoxyresorufin in vivo and this activity was not modulated by pre-exposure to DMSO or methanol (24 h, up to 0.1% and 0.05% v/v, respectively). In contrast, the metabolism of ethoxyresorufin in zebrafish larvae was significantly reduced by both solvents (0.1% and 0.05% v/v, respectively) after 24 h of exposure. In zebrafish, these observed decreases in activity towards ethoxyresorufin were accompanied by decreased expression of a variety of genes coding for drug metabolising enzymes (corresponding to CYP1, CYP2, CYP3 and UDP-glucuronyl transferase [UGT] family enzymes), measured by quantitative PCR. Reduction of gene expression and CYP1 enzyme activities by methanol (0.05% v/v) in zebrafish larvae was partially reversed by co-exposure with Aroclor 1254 (100 μg L−1). Overall this study suggests that relatively low concentrations of organic solvents can impact upon the biotransformation of certain xenobiotics in zebrafish larvae, and that this warrants consideration when assessing compounds for metabolism and toxicity in this species.  相似文献   

5.
Sim WJ  Lee JW  Shin SK  Song KB  Oh JE 《Chemosphere》2011,82(10):1448-1453
We measured five estrogens in the wastewater samples from the municipal wastewater treatment plants (M-WWTPs), livestock wastewater treatment plants (L-WWTPs), hospital WWTPs (H-WWTPs) and pharmaceutical manufacture WWTPs (P-WWTPs) in Korea. The L-WWTPs showed the highest total concentration (0.195-10.4 μg L−1) of estrogens in the influents, followed by the M-WWTPs (0.028-1.15 μg L−1), H-WWTPs (0.068-0.130 μg L−1) and P-WWTPs (0.015-0.070 μg L−1). Like the influents, the L-WWTPs (0.003-0.729 μg L−1) and the M-WWTPs (0.001-0.299 μg L−1) also showed higher total concentration of estrogens in the effluents than the H-WWTPs (0.002-0.021 μg L−1) and P-WWTPs (0.011 μg L−1 in one sample). The L-WWTPs (37.5-543 μg kg−1, dry weight) showed higher total concentrations in sludge than the M-WWTPs (3.16-444 μg kg−1, dry weight) like the wastewater. The distribution of estrogens in the WWTPs may be affected by their metabolism in the human body, their transition through biological treatment processes, and their usage for livestock growth. Unlike the concentration results, the daily loads of estrogens from the M-WWTPs were the highest, which is related to the high capacities of WWTPs.  相似文献   

6.
7.
Contaminated food through dietary intake has become the main potential risk impacts on human health. This study investigated concentrations of rare earth elements (REEs) in soil, vegetables, human hair and blood, and assessed human health risk through vegetables consumption in the vicinity of a large-scale mining area located in Hetian Town of Changting County, Fujian Province, Southeast China. The results of the study included the following mean concentrations for total and bio-available REEs of 242.92 ± 68.98 (135.85–327.56) μg g−1 and 118.59 ± 38.49 (57.89–158.96) μg g−1 dry weight (dw) in agricultural soil, respectively, and total REEs of 3.58 ± 5.28 (0.07–64.42) μg g−1 dw in vegetable samples. Concentrations of total REEs in blood and hair collected from the local residents ranged from 424.76 to 1274.80 μg L−1 with an average of 689.74 ± 254.25 μg L−1 and from 0.06 to 1.59 μg g−1 with an average of 0.48 ± 0.59 μg g−1 of the study, respectively. In addition, a significant correlation was observed between REEs in blood and corresponding soil samples (R2 = 0.6556, p < 0.05), however there was no correlation between REEs in hair and corresponding soils (p > 0.05). Mean concentrations of REEs of 2.85 (0.59–10.24) μg L−1 in well water from the local households was 53-fold than that in the drinking water of Fuzhou city (0.054 μg L−1). The health risk assessment indicated that vegetable consumption would not result in exceeding the safe values of estimate daily intake (EDI) REEs (100−110 μg kg−1 d−1) for adults and children, but attention should be paid to monitoring human beings health in such rare earth mining areas due to long-term exposure to high dose REEs from food consumptions.  相似文献   

8.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

9.
The effect of land use change from paddy to vegetable field on the residues of organochlorine pesticides (OCPs) was investigated. Soil residues of OCPs were analyzed in vegetable fields which had been converted from paddy fields for 0, 5, 10, 15, 20, 30, 50 year in Yixing, China in 2003. The mean concentrations of OCPs followed a sequence of: ∑DDTs (13.7 μg kg−1) > ∑HCHs (8.6 μg kg−1) > > HCB (2.09 μg kg−1) > α-endosulfan (1.30 μg kg−1) > endrin (1.08 μg kg−1) > PCNB (0.76 μg kg−1) > dieldrin (0.58 μg kg−1). The mean residues of OCPs especially DDTs increased significantly with vegetable planting time after land use change in the first 15 years, then decreased from 20 to 30 years and increased a little afterward. The time under anaerobic and aerobic conditions was suggested to control mainly the change of the residues of OCPs.  相似文献   

10.
Ho L  Tang T  Monis PT  Hoefel D 《Chemosphere》2012,87(10):1149-1154
The fate of multiple cyanobacterial metabolites was assessed in two Australian source waters. The saxitoxins were the only metabolites shown to be non-biodegradable in Myponga Reservoir water, while microcystin-LR (MCLR) and geosmin were biodegradable in this water source. Likewise, cylindrospermopsin (CYN) was shown to be biodegradable in River Murray water. The order of ease of biodegradability followed the trend: MCLR > CYN > geosmin > saxitoxins. Biodegradation of the metabolites was affected by temperature and seasonal variations with more rapid degradation at 24 °C and during autumn compared with 14 °C and during winter. A microcystin-degrading bacterium was isolated and shown to degrade four microcystin variants within 4 h. This bacterium, designated as TT25, was shown to be 99% similar to a Sphingopyxis sp. based on a 16S rRNA gene fragment. Isolate TT25 was shown to contain a homologue of the mlrA gene; the sequence of which was 99% similar to that of a previously reported microcystin-degrader. Furthermore, isolate TT25 could degrade the microcystins in the presence of copper sulphate (0.5 mg L−1 as Cu2+) which is advantageous for water authorities dosing such algicides into water bodies to control cyanobacterial blooms.  相似文献   

11.
Chen JW  Chen HY  Li WF  Liou SH  Chen CJ  Wu JH  Wang SL 《Chemosphere》2011,84(1):17-24
Arsenic (As) is an important environmental toxicant that can cause cancer and cardiovascular disease, but the relationship between As exposure and renal dysfunction is not clear. The aim of this study is to examine the association between As exposure and renal dysfunction in a community-based population in central Taiwan. One thousand and forty-three subjects were recruited between 2002 and 2005. The risk for type 2 diabetes was increased by 2-fold (p < 0.05) in subjects with total urinary As (U-As) > 75 μg g−1 creatinine as compared with subjects whose U-As was ?35 μg g−1 creatinine after the adjustment for potential confounders. The adjusted odds ratio for an abnormal β2 microglobulin (B2MG > 0.154 mg L−1) was significantly higher in subjects with U-As > 35 μg g−1 creatinine as compared with the reference group adjusted for age, sex, living area, cigarette smoking, diabetes, and hypertension. The risk for abnormal B2MG and estimated glomerular filtration rate (eGFR < 90 mL min−1 (1.73 m2)−1) was both increased around 2-fold (p < 0.05) in subjects with U-As > 75 μg g−1 creatinine as compared with those with U-As ? 35 μg g−1 creatinine adjusted for all the risk factors plus lead (Pb), cadmium and nickel. The prevalence of abnormal B2MG was 4.82 times higher in subjects with both over the median levels of U-As (85.1 μg L−1) and urinary Pb (18.9 μg L−1) as compared to both lower than the median (p < 0.001). These results indicate that U-As might relate to renal dysfunction even other important risk factors were taken into account. Follow-up studies for causal inference are warranted.  相似文献   

12.
The results of this paper are an initiation to capture the drinking water and/or groundwater elemental situation in the youngest European country, Kosovo. We aim to present a clear picture of the natural uranium concentration in drinking water and/or groundwater as it is distributed to the population of Kosovo. Nine hundred and fifty-one (951) drinking water samples were analyzed by inductively coupled plasma mass spectrometry (ICPMS). The results are the first countrywide interpretation of the uranium concentration in drinking water and/or groundwater, directly following the Kosovo war of 1999. More than 98% of the samples had uranium concentrations above 0.01 μg L−1, which was also our limit of quantification. Concentrations up to 166 μg L−1 were found with a mean of 5 μg L−1 and median 1.6 μg L−1 were found. Two point six percent (2.6%) of the analyzed samples exceeded the World Health Organization maximum acceptable concentration of 30 μg L−1, and 44.2% of the samples exceeded the 2 μg L−1 German maximum acceptable concentrations recommended for infant food preparations.  相似文献   

13.
Critical Limits for Hg(II) in soils, derived from chronic toxicity data   总被引:1,自引:0,他引:1  
Published chronic toxicity data for Hg(II) added to soils were assembled and evaluated to produce a data set comprising 52 chronic end-points, five each for plants and invertebrates and 42 for microbes. With end-points expressed in terms of added soil Hg(II) contents, Critical Limits were derived from the 5th percentiles of species sensitivity distributions, values of 0.13 μg (g soil)−1 and 3.3 μg (g soil organic matter)−1 being obtained. The latter value exceeds the currently recommended Critical Limit, used to determine Hg(II) Critical Loads in Europe, of 0.5 μg (g soil organic matter)−1. We also applied the WHAM/Model VI chemical speciation model to estimate concentrations of Hg2+ in soil solution, and derived an approximate Critical Limit Function (CLF) that includes pH; log [Hg2+]crit = −2.15 pH −17.10. Because they take soil properties into account, the soil organic matter-based limit and the CLF provide the best assessment of toxic threat for different soils. For differing representative soils, each predicts a range of up to 100-fold in the dry weight-based content of mercury that corresponds to the Critical Limit.  相似文献   

14.
Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment   总被引:3,自引:0,他引:3  
Chang BV  Yuan SY  Ren YL 《Chemosphere》2012,87(5):535-541
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for TBBPA (50 μg g−1) ranged from 0.053 to 0.077 d−1 and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g−1) was enhanced by adding yeast extract (5 mg L−1), sodium chloride (10 ppt), cellulose (0.96 mg L−1), humic acid (0.5 g L−1), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L−1), or surfactin (43 mg L−1), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g−1) > nonylphenol (NP) (50 μg g−1) > 4,4′-dibrominated diphenyl ether (BDE-15) (50 μg g−1) > TBBPA (50 μg g−1) > 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) (50 μg g−1). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.  相似文献   

15.
Three beehive matrices, sampled in six different apiaries from West France, were analyzed for the presence of four polycyclic aromatic hydrocarbons (PAH4: benzo[a]pyrene, benzo[a]anthracene, benzo[b]fluoranthene and chrysene). Samples were collected during four different periods in both 2008 and 2009. Honey samples showed the lowest levels of PAH4 contamination (min = 0.03 μg kg−1; max = 5.80 μg kg−1; mean = 0.82 μg kg−1; Sd = 1.17). Bee samples exhibited higher levels of PAH4 contamination (min = 0.32 μg kg−1; max = 73.83 μg kg−1; mean = 7.03 μg kg−1; Sd = 17.83) with a great dispersion of the concentrations due to four main events of high concentrations. Pollen samples showed only one major episode with the highest PAH4 concentration found (min = 0.33 μg kg−1; max = 129.41 μg kg−1; mean = 7.10 μg kg−1; Sd = 22.28). The PAH4 concentrations found were significantly influenced by the landscape context for all beehive samples.  相似文献   

16.
Chen H  Jiang JG 《Chemosphere》2011,84(5):664-670
Dunaliella salina, a unicellular green alga of environmental tolerance, was employed as test organism to investigate the toxicity effects of trichlorfon and dimehypo widely used in agriculture and veterinary as pesticides. The influences of trichlorfon and dimehypo on cell growth, β-carotene level, cell morphology changes, and activities of superoxide dismutase (Sod) and catalase (Cat) were investigated. At the concentrations less than 0.050 g L−1 trichlorfon or 0.0005 g L−1 dimehypo, cell responses were similar to control. When treated with 0.075-0.100 g L−1 trichlorfon or 0.001-0.004 g L−1 dimehypo, cell growth and β-carotene levels declined at first and then revived. When concentrations were higher than 0.125 g L−1 trichlorfon or 0.005 g L−1 dimehypo, both cell growth and β-carotene levels decreased until they were undetectable. The 10-d IC50 of trichlorfon and dimehypo on D. salina were 0.179 g L−1 and 0.032 g L−1. Both pollutants could stimulate the increase of Cat activity at a low concentration. Tolerance of D. salina to trichlorfon was obviously higher than that of dimehypo.  相似文献   

17.
This seven-year survey was primarily targeted to quantification of production of nodularin-R (NOD-R), a cyclic pentapeptide hepatotoxin, in Baltic Sea cyanobacteria waterblooms. Additionally, NOD-R and microcystin-LR (MC-LR; a cyclic heptapeptide toxin) sedimentation rates and NOD-R sediment storage were estimated. NOD-R production (70-2450 μg m−3; ∼1 kg km−2 per season) and sedimentation rates (particles; 0.03-5.7 μg m−2 d−1; ∼0.3 kg km−2 per season) were highly variable over space and time. Cell numbers of Nodularia spumigena did not correlate with NOD-R quantities. Dissolved NOD-R comprised 57-100% of total NOD-R in the predominantly senescent, low-intensity phytoplankton blooms and seston. Unprecedentedly intensive MC-LR sedimentation (0.56 μg m−2 d−1) occurred in 2004. Hepatotoxin sedimentation rates highly exceeded those of anthropogenic xenobiotics. NOD-R storage in surficial sediments was 0.4-20 μg kg−1 (∼0.1 kg km−2). Loss of NOD-R within the chain consisting of phytoplankton, seston and soft sediments seemed very effective.  相似文献   

18.
Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g−1 of dry cell was projected for 31.9 g L−1 sucrose and 1.3 g L−1 butyrate, and the maximum specific butanol production rate of 0.87 g d−1 g−1 of dry cell was predicted for 25.0 g L−1 sucrose and 2.6 g L−1 butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol−1 was projected for 25.0 g L−1 sucrose and 2.3 g L−1 butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol−1 when butyrate addition increased from 0 to 1 g L−1 under low sugar concentration (3.8 g L−1 sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone–butanol–ethanol fermentation.  相似文献   

19.
Chlorpyrifos is the most common organophosphate insecticide registered for use in Vietnam and is widely used in agriculture, particularly rice farming. However, chlorpyrifos exposure to and adverse effects on farmers has not been evaluated. In this study, biological monitoring of chlorpyrifos exposure in a group of rice farmers was conducted after a typical application event using back-pack spraying.Urine samples (24 h) were collected from the rice farmers before and post insecticide application. Samples were analysed for 3,5,6-trichloropyridinol (TCP), the major urinary metabolite of chlorpyrifos, using an enzymatic pre-treatment before extraction followed by HPLC-MS/MS. Absorbed Daily Dose (ADD) of chlorpyrifos for farmers were then estimated from urinary TCP levels, expressed as μg g−1 creatinine. The analytical method for urinary TCP had a low detection limit (0.6 μg L−1), acceptable recovery values (80-114%), and low relative percentage differences in duplicate and repeated samples.Post-application chlorpyrifos ADD of farmers varied from 0.4 to 94.2 μg kg−1 (body weight) d−1 with a mean of 19.4 μg kg−1 d−1 which was approximately 80-fold higher than the mean baseline exposure level (0.24 μg kg−1 d−1). Hazard Quotients (ratio of the mean ADD for rice farmers to acute oral reference dose) calculated using acute oral reference doses recommended by United States and Australian agencies varied from 2.1 (Australian NRA), 4.2 (US EPA) to 6.9 (ATSDR).Biological monitoring using HPLC-MS/MS analysis of urinary TCP (24 h) was found to be an effective method for measuring chlorpyrifos exposure among farmers. This case study found that Vietnamese rice farmers had relatively high exposures to chlorpyrifos after application, which were likely to have adverse health effects.  相似文献   

20.
Choi M  Furlong ET  Moon HB  Yu J  Choi HG 《Chemosphere》2011,85(8):1406-1413
Nonylphenolic compounds (NPs), coprostanol (COP), and cholestanol, major contaminants in industrial and domestic wastewaters, were analyzed in creek water, wastewater treatment plant (WWTP) effluent, and sediment samples from artificial Lake Shihwa and its vicinity, one of the most industrialized regions in Korea. We also determined mass discharge of NPs and COP, a fecal sterol, into the lake, to understand the linkage between discharge and sediment contamination. Total NP (the sum of nonylphenol, and nonylphenol mono- and di-ethoxylates) were 0.32-875 μg L−1 in creeks, 0.61-87.0 μg L−1 in WWTP effluents, and 29.3-230 μg g−1 TOC in sediments. Concentrations of COP were 0.09-19.0 μg L−1 in creeks, 0.11-44.0 μg L−1 in WWTP effluents, and 2.51-438 μg g−1 TOC in sediments. The spatial distributions of NPs in creeks and sediments from the inshore region were different from those of COP, suggesting that Lake Shihwa contamination patterns from industrial effluents differ from those from domestic effluents. The mass discharge from the combined outfall of the WWTPs, located in the offshore region, was 2.27 kg d−1 for NPs and 1.00 kg d−1 for COP, accounting for 91% and 95% of the total discharge into Lake Shihwa, respectively. The highest concentrations of NPs and COP in sediments were found in samples at sites near the submarine outfall of the WWTPs, indicating that the submarine outfall is an important point source of wastewater pollution in Lake Shihwa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号