首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 403 毫秒
1.
Summary. Many species of insects sabotage the pressurized defense vessels of their host plants prior to feeding. This behavior, however, does not render leaves indefinitely suitable, as some species employing this behavior eventually abandon uneaten portions of sabotaged leaves. In this study, we examined whether and to what degree wild parsnip, Pastinaca sativa, is capable of restoring its pressurized defenses and whether cabbage loopers, Trichoplusa ni, which normally trench parsnip leaflets, benefit from their trenching behavior. The pressurized oil tubes of parsnip leaves are rich in toxic terpenoids and furanocoumarins. A disruption of the integrity of the tubes (via razor blade nicks) in leaflets revealed that that some of their contents were expelled at the break and that some movement of oil from outside the leaflet (i.e., the midvein) occurred, bolstering furanocoumarin levels in the leaflet within minutes. Pressure and chemical content in a leaflet’s oil tubes were also shown to be restored within 24 hours of depressurization. This recovery ability allowed parsnip leaflets to respond to daily depressurizations by mechanical damage for up to at least 5 assaults, cumulatively causing an approximate ten-fold increase in furanocoumarins. Cabbage loopers fed parsnip leaflets that were artificially trenched accumulated twice as much body mass as larvae fed leaflets augmented with furanocoumarins equivalent to the quantity that would be avoided through trenching, indicating that trenching does benefit the herbivore. Although parsnip recovers from trenching rapidly, it does not do so within the time that cabbage loopers consume trenched leaflets  相似文献   

2.
The parsnip webworm, Depressaria pastinacella, specializes on wild parsnip, Pastinaca sativa, and several species of Heracleum, hostplants rich in toxic furanocoumarins. Rates of furanocoumarin metabolism in this species are among the highest known for any insect. Within its native range in Europe, webworms are heavily parasitized by the polyembryonic parasitoid wasp Copidosoma sosares. In this study, we determined whether these parasitoids are exposed to furanocoumarins in host hemolymph, whether they can metabolize furanocoumarins, and whether parasitism influences the ability of webworms to detoxify furanocoumarins. Hemolymph of webworms fed artificial diet containing 0.3 % fresh weight xanthotoxin, a furanocoumarin prevalent in wild parsnip hosts, contained trace amounts of this toxin; as well, hemolymph of webworms consuming P. sativa flowers and fruits contained trace amounts of six of seven furanocoumarins present in the hostplant. Thus, parasitoids likely encounter furanocoumarins in host hemolymph. Assays of xanthotoxin metabolism in C. sosares failed to show any ability to metabolize this compound. Parasitized webworms, collected from populations of Heracleum sphondylium in the Netherlands in 2004, were on average 55 % larger by weight than unparasitized individuals. This weight is inclusive of host and parasitoid masses. Absolute rates of detoxification (nmoles min−1) of five different furanocoumarins were indistinguishable between parasitized and unparasitized ultimate instars, suggesting that the intrinsic rates of metabolism are fixed. Thus, although parasitized larvae are larger, detoxification rates are not commensurate with size; rates in parasitized larvae expressed per gram of larval mass were 25 % lower than in unparasitized larvae.  相似文献   

3.
Summary. The nutritive value of tree foliage for herbivores decreases rapidly with leaf maturation, due in particular to the decline in leaf nitrogen content. Since the amino acid content of plants differs from the need of herbivores for individual amino acids, we examined developmental changes in the contents of amino acids throughout the growth season of mountain birch. The contents of free and protein-bound amino acids, as well as essential and nonessential ones, displayed different patterns with leaf maturation, suggesting that total nitrogen or protein levels are poor predictors of the nutritive status of leaves. The contents of protein-bound amino acids were 100 times higher than those of free amino acids, indicating that the role of free amino acids in nutrition of herbivores is probably less important than that of protein-bound amino acids. Among protein-bound amino acids, both the absolute and the relative contents of two nitrogen-rich essential amino acids, lysine and arginine, decreased during early leaf growth, presumably reducing nitrogen availability in developing leaves. Essential amino acids were mainly positively related to each other, suggesting the co-ordinated regulation of their synthesis. Changes in correlations among individual free amino acids reflected developmental changes in allocation preferences between biosynthesis pathways with leaf growth. Received 31 January 2003; accepted 17 March 2003. R1D=" Correspondence to: Teija Ruuhola, e-mail: teiruu@utu.fi  相似文献   

4.
Summary Although present constitutively in large amounts, furanocoumarins in leaves of wild parsnip,Pastinaca sativa, are inducible to even higher concentrations by mechanical and insect damage. We conducted several experiments in order to characterize the nature and extent of xanthotoxin inducibility inP. sativa foliage. In order to determine the extent to which induction is localized, we mechanically damaged a single leaflet of a compound leaf on seven plants. Xanthotoxin concentrations increased significantly only in the damaged leaflet and in the half of the terminal leaflet closest to the damaged leaflet; thus, xanthotoxin induction is localized to the immediate vicinity of damage. To determine whether xanthotoxin induction results fromin situ biosynthesis or translocation from other plant parts, we detached individual leaflets from ten plants, damaged half of these detached leaflets, and compared xanthotoxin concentrations after 6 h in damaged and intact leaflets. We found that xanthotoxin concentrations increased 41% in damaged leaflets compared to detached leaflets that were not damaged. We also determined the rapidity and duration of the induction response. In leaflets that were damaged and then harvested after 0, 3, 24, 72, 120 and 168 h, xanthotoxin concentrations increased rapidly compared to undamaged leaflets on the opposite side of the leaf, reaching maximum levels within 24 h. This response was of comparatively short duration; concentrations declined to preinduction levels after seven days. To determine whether availability of resources influences the induced response, we performed two experiments, one in which soil nutrients were manipulated and one in which light level was manipulated. The low nutrient treatment was sufficiently extreme to cause cessation of aboveground growth, and the low light treatment caused etiolation. Extremes of resource limitation notwithstanding, leaflets significantly increased xanthotoxin production (2 to 3-fold increase under nutrient limitation and 3-fold increase under light limitation) in response to damage in both experiments.  相似文献   

5.
Summary. The tobacco hornworm, Manduca sexta L. (Lepidoptera: Sphingidae) is a specialist on Solanaceae. This host specificity is induced as the larva feeds on solanaceous foliage, so that solanaceous-reared larvae will refuse to feed on other plants. Experiments were designed to determine the role of dietary constituents on the induction of host specificity and the effects of these on development of M. sexta. Choice assays using leaf discs of cowpea, Vigna sinensis (Fabaceae), were used to monitor the isolation of relevant chemical cues from foliage of potato. An aqueous extract of potato foliage strongly stimulated feeding. This extract was partitioned with n-butanol under alkaline conditions to obtain a highly active butanol extract. Reversed phase flash chromatography with a water-methanol gradient gave an active fraction that was used as a supplement for wheat germ-based artificial diet. Larvae reared on this s-diet became dependent on potato allelochemicals for initiation and continuation of feeding activity. These larvae also developed faster than larvae reared on the control p-diet, but no effect on adult mass was detected. Further flash chromatography of the active fraction under alkaline conditions provided a highly active sub-fraction, and semi-preparative HPLC using gradients of water and acetonitrile resulted in the isolation of a single compound. Bioassays indicated that this compound alone can account for host recognition by solanaceous-reared larvae. The results suggest that the mechanism of induced host specificity in M. sexta involves development of dependence on this compound. Received 21 December 1999; accepted 14 March 2000  相似文献   

6.
Summary. We have isolated a caffeoylcyclohexane-1-carboxylic acid derivative, 3-caffeoyl-muco-quinic acid (3-CmQA), as a contact oviposition stimulant for the zebra swallowtail butterfly, Eruytides marcellus (Papilionidae), from the foliage of its primary host plant, Asimina triloba (Annonaceae). This compound alone was as active in stimulating oviposition by females as were the parent ethanolic plant extract and the host plant itself. Other tested isomers of 3-CmQA, including 5-caffeoylquinic acid (5-CQA or trans-chlorogenic acid), were inactive. We found, however, that experienced female butterflies responded strongly to host volatiles, which enhanced landing rates and hence oviposition.? This is the first report of an oviposition stimulant for a swallowtail butterfly of the tribe Graphiini. We found 3-CmQA to be the major caffeoylcyclohexane-1-carboxylic acid isomer in plants of the genus Asimina. These plants lack appreciable amounts of 5-CQA, which has been shown previously to be one of the oviposition stimulants for certain Rutaceae- or Apiaceae-feeding swallowtails of the related tribe Papilionini.? Our findings, along with earlier results from the tribes Troidini and Papilionini, suggest that responses by swallowtails to hydroxycinnamic acid derivatives as oviposition cues date back at least to the ancestor of the subfamily Papilioninae. Received 24 March 1998; accepted 27 May 1998.  相似文献   

7.
Lignoid chemical defenses in the freshwater macrophyte Saururus cernuus   总被引:3,自引:0,他引:3  
Summary. Chemical defense against herbivores has rarely been investigated for freshwater plants, possibly due to the common misconception that herbivory on aquatic macrophytes is low and would not select for chemical defenses. In previous work, the freshwater angiosperm Saururus cernuus was shown to be a low preference food for omnivorous crayfish despite its high nutrient value and relatively soft texture. We used feeding by the crayfish Procambarus clarkii to guide fractionation of the deterrent lipid-soluble extract of this plant, leading to the identification of seven deterrent lignoid metabolites, (–)-licarin A, (+)-saucernetin, (–)-dihydroguaiaretic acid, (–)-sauriols A and B, (–)-saucerneol, and (–)-saucerneol methyl ether. Lignans have been implicated in terrestrial plant chemical defenses as insect growth inhibitors, insect toxins, nematocides, antibacterial, and antifungal agents. However, these activities have rarely been demonstrated using ecologically relevant methodologies in terrestrial systems, and never before in freshwater systems. The widespread nature of lignans amongst very distantly related plants, along with their rich diversity of molecular structure, suggests that they could play a large role in mediating plant-herbivore interactions. In addition to the lignoid compounds we identified, there were other compounds present in low concentration or unstable compounds that were deterrent, that did not appear to be lignans, but that we were unable to identify. This plant thus appears to be defended by a complex mixture of natural products. Received 6 June 2000; revised 23 August 2000; accepted 2 September 2000  相似文献   

8.
Summary. A recent investigation showed that the brown seaweed Dictyota menstrualis was unfouled relative to co-occurring seaweeds, and that larvae of fouling invertebrates avoided settling on D. menstrualis due to chemicals on its surface. The secondary metabolites dictyol E and pachydictyol A are among the compounds found on this alga's surface. In the present study, we tested the effects of specific diterpenes from Dictyota on the survivorship, growth, and development of invertebrate larvae and developing juveniles that could foul seaweeds. Exposure to dictyol E, dictyol B acetate, pachydictyol A, and dictyodial from Dictyota menstrualis and D. ciliolata caused significant larval mortality, abnormal development, and reduce growth rates for three species of co-occurring invertebrates when their larvae were forced into contact with these metabolites. Larvae were damaged at metabolite concentrations as low as 5% of maximum possible surface concentrations of these compounds for the populations of Dictyota we studied. The negative effects of these secondary metabolites on potential foulers, in conjunction with data demonstrating larval avoidance of dictyol-covered surfaces, suggest that these compounds could function as chemical defenses against fouling, and could select for larvae that avoid hosts producing these metabolites. Received 25 May 1998; accepted 22 June 1998.  相似文献   

9.
Summary. It has long been assumed that the North American pipevine swallowtail, Battus philenor (L.) (Papilionidae, Troidini), is protected from natural enemies by aristolochic acids sequestered from its Aristolochia food plants. This study confirmed that populations of B. philenor from Virginia and east Texas sequester these compounds. A comparison of the aristolochic acid profiles of the Virginia butterflies and their A. macrophylla food plants revealed several differences. The aristolochic acid fraction of the foliage was dominated by aristolochic acids I and II, whereas the insects had a much lower proportion of aristolochic acid II and contained, in addition, substantial amounts of aristolochic acids Ia and IVa, which were not detected in the plants. The eggs, larval integument, osmeterial glands, pupal cuticle, and adults (wings and bodies) all contained aristolochic acids. These findings help explain the abundant ecological data indicating that both immature and adult B. philenor are unpalatable and protected from natural enemies. Received 7 April 2000; accepted 31 May 2000  相似文献   

10.
Summary. The among-leaves allocation of DIBOA, a hydroxamic acid associated with plant resistance, in the shoot of rye (Secale cereale) was evaluated over the vegetative development of the plant. The appropriateness of using the concentration of secondary metabolites, DIBOA in this case, as the parameter to evaluate defense allocation in plants is discussed. Both biological and statistical arguments are put forward to suggest that allocation of chemical defenses should refer to absolute content and not to concentration. Results showed that leaf age was significantly linked to leaf concentration of DIBOA, young leaves having higher concentrations. In contrast, leaf content of DIBOA, our proposed currency of allocation, was not significantly higher in younger leaves. Furthermore, a regression analysis showed that the DIBOA content of leaves was better explained by the leaf relative biomass (proportion of shoot biomass) than by leaf biomass itself. It is suggested that, rather than leaf age, leaf relative biomass is the major factor determining DIBOA allocation in rye shoots. It is proposed that studies addressing within-plant defense allocation should use chemical defense content as the currency, emphasizing the major factors driving this process and its underlying mechanisms. Likewise, it is proposed that studies aiming at characterizing optimal patterns of plant defense should use chemical defense concentration as the currency, and be accompanied by evaluations of the actual resistance against herbivores of the plant parts analyzed, together with the effect on plant fitness. Received 19 February 1999; accepted 28 April 1999.  相似文献   

11.
Summary. Hyperaccumulation of metals in the shoot system of plants is uncommon, yet taxonomically and geographically widespread. It may have a variety of functions, including defense against herbivores. This study investigated the effects of hyperaccumulation on metal concentrations across trophic levels. We collected plant material, soil, and invertebrates from Portuguese serpentine outcrops whose vegetation is dominated by the nickel hyperaccumulator Alyssum pintodasilvae. Samples were analyzed for nickel, chromium, and cobalt. Grasshoppers, spiders, and other invertebrates collected from sites where A. pintodasilvae was common had significantly elevated concentrations of nickel, compared to nearby sites where this hyperaccumulator was not found. Chromium and cobalt, occurring in high concentrations in the serpentine soil but not accumulated by A. pintodasilvae, were not elevated in the invertebrates. Therefore, it appears likely that a flux of nickel to herbivore and carnivore trophic levels is specifically facilitated by the presence of plants that hyperaccumulate this metal. The results may be relevant to the development of phytoremediation and phytomining technologies, which use plants to extract metals from the soil. Reveived 22 August 2002; accepted 2 April 2003. R1D=" Correspondence to: A. J. Pollard, e-mail:joe.pollard@furman.edu  相似文献   

12.
Summary. The dulotic queen ant, Polyergus rufescens, must first penetrate a host colony and kill the resident queen in order to successfully founding a new colony. Successful usurpation by a newly mated queen predictably depends on a dual strategy. Although, it can sneak in by being “chemically insignificant” with respect to cuticular hydrocarbons, it may also need to deter prospective host-worker aggressors. Chemical analysis of Dufour's gland secretion of P. rufescens queens and workers by GS/MS revealed that queen secretion is typified by esters of butanoic acid and acetic acid, of which decyl butanoate comprises over 80%. Butanoates and acetates are also present in the workers' secretion, but these are of higher molecular weight, and octadecyl butanoate represents the major compound. Using synthetic mixtures of queen and worker Dufour's gland, we tested the hypothesis that these secretions modify the aggressive behavior of the host species Formica cunicularia>. The queen-like synthetic mixture significantly reduced aggression of the host workers towards alien conspecifics, but neither pentane nor the worker-like synthetic mixture showed this effect. Although Dufour's gland content of >Polyergus queens was suggested to function as an appeasement pheromone (Topoff et al. 1988; Mori et al. 2000), we hypothesized that it may in fact act as a repellent. In order to test this hypothesis we exposed starved F. cunicularia workers to a droplet of honey on a glass slide applied with one of the following compounds: decyl butanoate (queen major compound), octadecyl butanoate (worker main compound), limonene (a reported ant repellent), and pentane (solvent control). Of these, the workers were repelled only by the decyl butanoate and did not approach the honey. We conclude that during usurpation the queen actively repels aggressive workers by emitting Dufour's gland repellent, comprising the alternative tactic in the usurpation dual strategy. This represents another chemical weapon in the diverse arsenal used by parasites to overcome the host's resistance. Received 7 April 2000; accepted 17 May 2000  相似文献   

13.
Summary The parsnip webworm,Depressaria pastinacella (Lepidoptera: Oecophoridae), feeds exclusively on apiaceous hostplants containing furanocoumarins, compounds capable of oxygen-dependent and oxygen-independend photosensitization. Despite high titers of antioxidant enzymes relative to other herbivorous insects, webworms cannot tolerate nonhost photosensitizers such as alpha-terthienyl or beta-carboline alkaloids at dietary concentrations of 0.01% or less. Tolerance of skimmianine, a furano-quinoline alkaloid, may be due to its structural resemblance to furanocoumarins, which are metabolized by cytochrome P450 monooxygenases in this species.  相似文献   

14.
Summary. We propose that variation in the responses of carbon-based secondary compounds to fertilization in woody plants has a biosynthetic cause. The synthesis of phenylpropanoids and derived compounds (e.g., condensed tannins) competes directly with the synthesis of proteins, and therefore with plant growth, because of a common precursor, phenylalanine. In contrast, the biosynthesis of terpenoids and of hydrolyzable tannins proceeds presumably without direct competition with protein synthesis. Therefore, accelerated plant growth induced by fertilization may cause a reduction in concentrations of phenylpropanoids but may affect less or not at all the levels of other classes of secondary compounds. A meta-analysis based on fertilization experiments with 35 woody plant species supported the predicted differences fertilizing significantly decreased concentrations of phenylpropanoids but not of terpenoids or hydrolyzable tannins. Received 14 May 1998; accepted 23 June 1998.  相似文献   

15.
Herbivores tend to increase feeding rate and fitness when consuming a mixed diet relative to a single diet. According to the detoxification limitation hypothesis (DLH), feeding choices and rates when confronted with chemically rich plants are determined by herbivore physiology, and specifically by the metabolic pathways that herbivores use to manipulate secondary metabolites. We tested two predictions of the DLH using two generalist herbivores, the urchin Arbacia punctulata and amphipod Ampithoe longimana. These herbivores have geographic ranges which overlap with brown seaweeds that produce diterpenes (Dictyota menstrualis, D. ciliolata) and a green seaweed that produces sesquiterpenes and diterpenes (Caulerpa sertularioides). As predicted by the DLH, herbivore consumption rates in no-choice feeding assays were limited by extract intake rates. This suggests an upper limit in the herbivores’ abilities to physiologically manipulate seaweed metabolites. Contrary to a second prediction of the DLH, urchins consumed equal amounts of foods coated with limiting concentrations of two seaweed extracts offered singly, as a mixture, or as a pairwise choice. This result suggests that secondary metabolites of these seaweeds are manipulated by a linked set of detoxification pathways. Improving our understanding of the mechanisms that underlie diet mixing depends on greater attention to the physiology of herbivore resistance to secondary metabolites.  相似文献   

16.
Summary. We tested responses to prey chemicals by lizard hatchlings of an oviparous species and neonates of a viviparous species, neither of which had never eaten. Both species responded more strongly to prey chemicals than to odorous and odorless control stimuli presented on cotton swabs. Although only a few species have been examined, all that have been tested have an innate capacity for prey chemical discrimination, suggesting that this innate response to prey chemicals is widespread among lizards that use the lingual-vomeronasal system to locate and identify prey. Innate prey chemical discrimination has the great advantage of permitting lizards lacking prior experience with food to respond appropriately to chemical cues associated with food. Both species discriminated prey chemicals from control substances at age three days, earlier than previously known. Our data hint that Mabuya macularia may be capable of discrimination on its day of birth, but further study is needed to determine the exact onset. A stronger tendency to attack swabs bearing prey chemicals by Scincella lateralis than by M. macularia may be explained by differences in defensiveness near an experimenter or by differences in the importance of visual prey cues for confirmation of chemical cues in the natural habitats of these species. In M. macularia responses to the control stimuli declined over days of testing, suggesting habituation, but responses to prey chemicals did not habituate by the third day of testing, which is interpreted as a possible adaptive response to permit location of food. In the standard method of stimulus presentation, a cotton swab bearing a chemical stimulus is placed anterior to a lizard's snout. We tested a new method in which the swab was placed in continuous contact with the lizard's anterior labial scales. The new method elicited significantly stronger responses from M. macularia. We discuss reasons for this finding and applications for the new method. Received 2 September 1999; accepted 15 December 1999  相似文献   

17.
Summary. Many secondary plant compounds are involved in defense against both insect herbivores and pathogens. Two secondary plant compounds of Plantago lanceolata, the iridoid glycosides catalpol and its precursor aucubin, are well known for their deterrent effects on generalist and non-adapted specialist insect herbivores. We tested the effects of these compounds on the in-vitro growth of a specialist and generalist fungal pathogen of this host species. Two chemical forms of these iridoids were tested. The glycosides and their aglycones, the products of enzymatic conversion by specific $/Beta$-glucosidase enzymes. The glycosides enhanced growth of both the specialist fungus Diaporthe adunca and the generalist fungus Fusarium moniliforme var. subglutinans. The positive effect of these glycosides on the generalist fungus is in sharp contrast with the generally negative effects of these glysosides on generalist insect herbivores. The aglycones of aucubin and catalpol reduced the growth of the specialist fungus D. adunca, but, contrary to expectation, enhanced the growth of the generalist fungus F. moniliforme var. subglutinans. Effects of aucubin on D. adunca were stronger than effects of catalpol. This was true both for the growth stimulating effects of the glycosides and for the fungitoxic effects of the aglycones. We therefore expect that the effects of these iridoids in P. lanceolata on the specialist fungus will strongly depend on the ratio between catalpol and its precursor aucubin and the chemical form (glycoside or aglycone) in which these compounds are encountered by the fungus during growth. Our results suggest that iridoid glycosides in P. lanceolata can be used as defense against both herbivores and pathogens, but that their effects are highly specific with respect to the natural enemy species that is encountered. Received 11 April 2002; accepted 9 August 2002  相似文献   

18.
Summary. The quality of tree leaves as food for herbivores changes rapidly especially during the spring and early summer. However, whether the quality of an individual tree in relation to other trees in the population changes during the growing season and between years is less clear. We studied the seasonal and annual stability of chemical and physical traits affecting leaf quality for herbivores. Rankings of trees in terms of the contents of two major groups of phenolics in their leaves, hydrolyzable tannins and proanthocyanidins (condensed tannins), were very stable from the early spring to the end of the growing season. There were also strong positive within-season correlations in the levels of some other groups of phenolics in the leaves (kaempferol glycosides, myricetin glycosides and p-coumaroylquinic acid derivatives). The contents of individual sugars and the sum content of protein-bound amino acids showed patterns of seasonal consistency in mature leaves, but not in young developing leaves. The seasonal correlations in leaf water content and toughness were also strongest in mature leaves. The correlations between two years at corresponding times of the growing season were strongly positive for the major groups of phenolics throughout the season, but were more variable for the contents of proteins and some sugars. Leaf toughness and water content showed strong positive correlations in mature leaves. Despite the consistency of tree ranking in terms of leaf phenolics, the relative resistance status of trees may, however, change during a growing season because there was a negative correlation between the content of hydrolyzable tannins (early-season resistance compounds) in leaves early in the season and the content of proanthocyanidins (late-season resistance compounds) late in the season, and vice versa. Thus, assuming that phenolics affect herbivore preference and performance, different plants may suffer damage at different times of the growing season, and the overall variation between trees in the fitness consequences may be low. In addition, the adaptation of herbivorous insects to mountain birch foliage in general, as well as to specific tree individuals, may be constrained by variation in the relative resistance status of the trees.  相似文献   

19.
Summary. Conium maculatum is an apiaceous species native to Eurasia that is highly toxic to vertebrates due to the presence of piperidine alkaloids, including coniine and γ-coniceine. More than 200 years after invading the United States this species remains mostly free from generalist insect herbivores. The presence of novel chemical defenses in the introduced range could provide invasive species with a competitive advantage relative to native plants. The cabbage looper (Trichoplusia ni) is a generalist lepidopteran found throughout the US that occasionally feeds on C. maculatum. We evaluated the toxicity of piperidine alkaloids to T. ni and determined putative resistance mechanisms, both behavioral and physiological, that allows this insect to develop successfully on C. maculatum foliage. T. ni larvae raised on diets enriched with coniine and γ-coniceine showed a decrease in consumption and longer development time, but no effects on growth were found at any alkaloid concentration. In a diet choice experiment T. ni larvae showed no avoidance of alkaloid-enriched diets, suggesting that the deterrence produced by alkaloids was related to a post-ingestive metabolic response. The ability of T. ni to consume diets high in alkaloid content could be due to at least three different mechanisms: 1) a decreased consumption rate, 2) efficient excretion of at least 1/3 of ingested alkaloids unmetabolized in frass, and 3) partial detoxification of alkaloids by cytochrome P450 s, as shown by the decreased larval growth in the presence of piperonyl butoxide, a P450 inhibitor. Even though T. ni tolerates C. maculatum alkaloids, the use of this species as a host plant could be ecologically disadvantageous due to prolonged larval growth and thus increased exposure to predators. Novel plant secondary compounds do not guarantee increased resistance to generalist herbivores.  相似文献   

20.
Summary. The mountain pine beetle, Dendroctonus ponderosae Hopkins, and the pine engraver, Ips pini (Say), often co-exist in lodgepole pine, Pinus contorta var. latifolia Engelmann. Intra- and interspecific semiochemical communication occurs in both species and their complete semiochemical repertoire and precise dynamics of pheromone production have not been elucidated. Porapak-Q extracts of captured volatiles from beetles of each species aerated at different attack phases (freshly emerged, pioneer sex alone in the log and both sexes paired in new galleries), followed by gas chromatographic-electroantennographic detection (GC-EAD) and GC-mass spectroscopic analyses identified 17 compounds (seven compounds common to both species, six present in D. ponderosae and four present in I. pini) that excited the antennae of either or both species. Seven compounds for D. ponderosae and nine for I. pini had not been assessed for behavioural activity. In field trapping experiments, 2-phenylethanol produced by both species inhibited the response of D. ponderosae to its aggregation pheromones. exo- and endo-Brevicomin produced by D. ponderosae significantly decreased the response of I. pini to its aggregation pheromone ipsdienol. Nonanal, a ubiquitous compound found in the volatiles of lodgepole pine, various nonhosts and in both beetle species deterred the response of I. pini to ipsdienol. The occurrence of cis-verbenol, trans-verbenol and verbenone in emergent I. pini, and verbenone and 2-phenylethanol in emergent D. ponderosae suggests that these compounds may inhibit aggregation and induce dispersal following emergence. Termination of aggregation in D. ponderosae appears to depend on the production of frontalin in combination with changes in the relative ratios of verbenone, exo-brevicomin, trans-verbenol and 2-phenylethanol. In I. pini, the cessation of ipsdienol production by males is probably the main factor in terminating aggregation. Received 16 November 1999; accepted 7 August 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号