首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
G. Schneider 《Marine Biology》1989,100(4):507-514
The population dynamics, ammonia and inorganic phosphate excretion, and nutrient regeneration of the common jellyfish Aurelia aurita was investigated from 1982 to 1984 in the Kiel Bight, western Baltic Sea. During summer 1982, medusae abundance ranged between 14 and 23 individuals 100 m-3, biomass was estimated at about 5 g C 100 m-3 and the mean final diameter of individuals was 22 cm. Abundance, based on numbers, in 1983 and 1984 was an order of magnitude lower; biomass was less than 2 g C 100 m-3 and jellyfish grew to 30 cm. During the summers of 1983 and 1984, A. aurita biomass constituted roughly 40% of that of the total zooplankton>200 m. In 1982, for which zooplankton data were lacking, it was assumed that medusae biomass was greater than that of all other zooplankton groups. Total ammonia excretion ranged between 6.5 and 36 mol h-1 individual-1, whereas inorganic phosphate release was 1.4 to 5.7 mol h-1 individual-1. Allometric equations were calculated and exponents of 0.93 for NH4–N release and 0.87 for PO4–P excretion were determined. Nitrogen and phosphorus turnover rates were 5.4 and 14.6% d-1, respectively. In 1982, the medusae population released 1 100 mol NH4–N m-2 d-1, about 11% of the nitrogen requirements of the phytoplankton. The inorganic phosphate excretion (150 mol m-2 d-1) sustained 23% of the nutrient demands of the primary producers. In the other two years the nutrient cycling of the medusae was much less important, and satisfied only 3 to 6% of the nutrient demands. It is suggested that in some years A. aurita is the second most important source of regenerated nutrients in Kiel Bight, next to sediment.  相似文献   

2.
Macrofauna living on subtidal rocks reefs in southern California excrete ammonium, a potentially important nutrient for benthic algae. Ammonium excretion rates of eleven macroinvertebrate and five fish taxa were determined from a total of 324 in situ incubations conducted between October 1984 and August 1985 at 14 to 17 m depths off Santa Catalina Island, California. Total ammonium excretion ranged from over 100 mol h-1 by the kelp bass Paralabrax clathratus to less than 0.1 mol h-1 by the gastropod Conus californicus. Weight-specific ammonium excretion generally ranged from 0.5 to 4 mol g-1 h-1 in invertebrates and from 3 to 7 mol g-1 h-1 in fishes. Intraspecific excretion rates varied substantially. Coefficient of variation of excretion rates were higher than reported for laboratory studies and multiple regression indicated that 50 to 90% of the variation in ammonium excretion rates of five species studied in detail could not be explained by the combined variation in dry weight, water temperature, time of day, and incubation dates. The excretion data, along with estimates of population densities and size-frequency distributions, indicate that benthic macrofauna release a total of 25 to 30 mol NH 4 + m-2 h-1 both day and night. The species that generally make the largest contributions are a gobiid fish (Lythrypnus dalli), followed by three gastropods (Astraea undosa, Tegula eiseni, and T. aureotincta) and a sea urchin (Centrostephanus coronatus). The amount of ammonium excreted by these macrofauna on rocky reefs is insignificant compared to our previously published data on the nighttime excretion of blacksmith (Chromis punctipinnis), a pomacentrid fish that feeds in the water column during the day and shelters on the reef at night. Including blacksmiths, we estimate that the amount released by rocky-reef macrofauna at night is >280 mol m-2 h-1, a rate that is similar to that for many other marine communities. Additional studies are required to determine if benthic algae utilize ammonium released by these macrofauna, especially at night.Contribution No. 58 of the Ocean Studies Institute; Contribution No. 123 of the Catalina Marine Science Center  相似文献   

3.
Respiration and excretion by the ctenophore Mnepiopsis leidyi   总被引:1,自引:0,他引:1  
Respiration (dissolved oxygen and carbon dioxide) and excretion (dissolved organic carbon, inorganic and organic nitrogen and phosphorus) rates were measured for a variety of sizes of Mnemiopsis leidyi over a temperature range of 10.3° to 24.5°C. Both respiration and excretion rates were a direct linear function of animal weight and very temperature sensitive (Q104). Oxygen uptake ranged from 155 to 489 g at O/(g dry weight) day-1 and carbon dioxide release from 43 to 166 M. Organic carbon made up about 38% of the total carbon released. Inorganic nitrogen excretion, exclusively in the form of ammonium, comprised 54% of the total nitrogen release and ranged from 10 to 36 M NH4/(g dry weight) day-1. Average release of dissolved primary amines (expressed as glycine equivalents) equaled 43% of the organic nitrogen fraction. Inorganic phosphorus release ranged from 2.0 to 4.9 M/(g dry weight) day-1 and made up about 72% of the total phosphorus loss. The turnover of elements in the body was calculated as 5 to 19% per day for carbon and nitrogen, depending on the temperature, and an even higher 20 to 48% per day for phosphorus. These values are comparable to rates observed for small, active zooplankton.  相似文献   

4.
The physiological condition, determined as the ammonia excretion rate (V NH 4 + ), total lipid level and lipid class composition, of two deposit-feeding benthic amphipods, Monoporeia (=Pontoporeia) affinis and Pontoporeia femorata, was studied from 12 opensea stations in the northern Baltic Sea between 24 May and 11 June 1993. The M. affinis populations can be geographically grouped according to their physiological condition: (1) eastern Gulf of Finland, with moderate lipid level (mean 24.4% of dry wt) and high V NH 4 + (45.2 mol NH 4 + g-1 dry wt d-1); (2) Bothnian Sea, wigh high lipid level (34.5%) and low V NH 4 + (24.6 mol NH 4 + g-1 dry wt d-1); and (3) Bothnian Bay, with low lipid level (15.2%) and high V NH 4 + (44.3 mol NH 4 + dry wt d-1). A similar pattern could be observed also in the level of triacylglycerols and the neutral-to-polar lipid ratio. P. femorata, the dominating species in the western Gulf of Finland, showed variable station-specific excretion rates (22.3 to 43.0 mol NH 4 + g-1 dry wt d-1) and lipid levels (23.4 to 30.4%). The spatial variability in the weight-specific V NH 4 + of M. affinis could not be explained by the differences in the size of individuals, lipid level or lipid class composition; this emphasizes the significance of the effects of spatially differing nutritional conditions, which manifest themselves as different modes of metabolic energy production and different intensities of energy storage. In addition, the potential contribution of the amphipod populations to benthic nitrogen mineralization was estimated; in May to June, the NH 4 + release of different populations ranged from 12 to 237 mol NH 4 + m-2d-1. In general, populations with high abundance and/or biomass release the greatest amounts of NH 4 + , but the values are modified by the physiological condition of the individuals.  相似文献   

5.
Nitrogen fixation (acetylene reduction) at rates of up to 1.2 g N2 g dry wt-1 h-1 was measured for the siphonous green seaweed Codium decorticatum. No nitrogenase activity was detected in C. isthmocladum. The nitrogenase activity was light sensitive and was inhibited by the addition of DCMU and triphenyl tetrazolium chloride. Additions of glucose did not stimulate nitrogen fixation. Blue-green algae (Calothrix sp., Anabaena sp., and Phormidium sp.) were implicated as the organisms responsible for the nitrogenase activity. They occurred in a reduced microzone within the C. decorticatum thallus where nitrogen fixation was optimized. Nitrogen fixation did not affect the kinetic constants for ammonium uptake in C. decorticatum (Ks=12.0 M, Vmax=13.4 mol NH3 g dry wt-1 h-1) determined using the perturbation method. Nevertheless, C. decorticatum thalli which fixed nitrogen had internal dissolved nitrogen concentrations which were over 1.4 times higher than in non-fixing thalli. This suggests that if C. decorticatum does derive part of its nitrogen requirement from the blue-green algae which it harbors, the transfer does not involve competition between this process and the uptake of ambient ammonium.  相似文献   

6.
Energy budgets were calculated for individuals of the sea anemone Anthopleura elegantissima (Brandt), collected in 1981 and 1982 from Bodega Harbor, California, USA. Rates of ammonium excretion were measured in high-and low-intertidal, symbiotic and aposymbiotic sea anemones within 24 h of collection. Among symbiotic and aposymbiotic individuals, no differences in excretion rate were found on the basis of intertidal height. However, rates of ammonium excretion in aposymbiotic anemones (2.14 mol NH + 4 g-1 h-1) were significantly higher than in symbiotic ones (0.288 mol NH + 4 g-1 h-1). Rates of excretion were used with estimated rates of oxygen uptake to calculate nitrogen quotients (NQ). NQ and RQ values from the literature were used to calculate an oxyenthalpic equivalent [501 kJ (mol O2)-1 for R+U], and mass proportions of protein (54%), carbohydrate (44%) and lipid (2%) catabolized during routine metabolism in this species 24 h after feeding. Integrated energy budgets of these experimental anemones were calculated from data on ingestion, absorption and growth, and estimates of translocated energy from the symbiotic algae. Contribution of zooxanthellae to animal respiration based on translocation=90% and RQ=0.97 are 41 and 79% in high-and low-intertidal anemones, respectively. Calculated scope for growth is greater than directly measured growth in both high-and low-intertidal individuals. The deficit, estimated as 30% of assimilated energy in high-intertidal anemones, is attributed to unmeasured costs (specific dynamic effect) or production (mucus). Low-intertidal anemones lost mass during the experiment, implying that the magnitude of the deficit was greater in these anemones than in upper intertidal individuals. Anemones from both shore levels lost zooxanthellae during the experiment, which contributed to energy loss since the contribution of the zooxanthellae is greater in low-intertidal anemones. Scope for growth is preserved in high-intertidal anemones (29% of assimilated energy) because metabolic demands are lower due to aerial exposure, and prey capture rate is higher compared to lowshore anemones. Although possibly underestimated, lower scope for growth in low-shore anemones may result from continuous feeding and digestion processes that are less efficient than those of periodically feeding high-intertidal anemones.  相似文献   

7.
Sediment ammonium availability and eelgrass (Zostera marina) growth   总被引:6,自引:0,他引:6  
The interaction of sediment ammonium (NH 4 + ) availability and eelgrass (Zostera marina L.) growth, biomass and photosynthesis was investigated using controlled environment and in-situ manipulations of pore water ammonium concentrations. Sediment diffusers were used to create pore water diffusion gradients to fertilize and deplete ammonium levels in sediments with intact eelgrass rhizospheres. Between October, 1982 and September, 1983 controlled environment experiments using plants from shallow (1.3 m) and deep (5.5 m) stations in a Great Harbor, Woods Hole, Massachusetts, USA eelgrass meadow along with in-situ experiments at these stations provided a range of sediment ammonium concentrations between 0.1 and 10 mM (adsorbed+interstitial NH 4 + ). The results of the in-situ experiments indicate that nitrogen limitation of eelgrass growth does not occur in the Great Harbor eelgrass meadow. A comparison of NH 4 + regeneration rates and eelgrass nitrogen requirements indicates an excess of nitrogen supply over demand and provides an explanation for the lack of response to the manipulations. Results of controlled environment experiments combined with in-situ results suggest that sediment ammonium pool concentrations above approximately 100 mol NH 4 + per liter of sediment (interstitial only) saturate the growth response of Zostera marina.  相似文献   

8.
Monthly variation in photosynthesis, dark respiration, chlorophyll a content and carbon: nitrogen (C:N) ratios in different lamina sections of adult plants of Ascoseira mirabilis Skottsberg from King George Island, Antarctica, was investigated between September 1993 and February 1994. Light saturated net photosynthesis (P max) showed maximum values in September (12 to 25 mol O2 g-1 fr wt h-1), and decreased towards the summer to values ranging between 2.0 and 5.0 mol O2 g-1. In the distal section, however, a second optimum occurred in December (25 mol O2 g-1 fr wt h-1). Dark respiration rates were also highest in October and November and decreased strongly in December to February (6.0 and 1.0 mol O2 g-1 fr wt h-1, respectively). Gross photosynthesis exhibited high values between September and December. Concomitant with the seasonal decrease of photosynthetic efficiency () from mean values of 1.2 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in September to 0.3 mol O2 g-1 fr wt h-1 (mol photons cm-2 s-1)-1 in January, the initial light saturating point (I k) gradually increased from 19 to 60 mol photons m-2 s-1. Likewise C:N ratios were low in spring (12 to 13) and increased in summer (20). In general, the photosynthetic parameters P max, gross photosynthesis, and Chl a concentrations were significantly higher in the distal section of the thallus. In contrast, C:N ratios were lower in the distal section of the lamina. The results show that photosynthesis obviously strongly supports growth of the alga in late winter to spring, as it does in some morphologically related brown algae from temperate and polar regions. The question whether growth is additionally powered  相似文献   

9.
The blacksmith Chromis punctipinnis, an abundant planktivorous damselfish off southern California, USA, shelters along rocky reefs at night. While sheltered, blacksmiths excrete ammonium that could, in turn, be utilized by nearby benthic macrophytes. Laboratory experiments during the summer and fall of 1983 and 1984 indicate that ammonium excretion at night ranged from 18.1 mol h-1 by a 8.5 g (dry) fish, to 89.1 mol h-1 by a 27.3 g fish; excretion rates generally declined throughout the night. Field measurements at night indicate that ammonium concentrations were significantly higher in rocky crevices occupied by blacksmiths than in unoccupied shelters, and the ammonium level in one shelter dropped after a blacksmith was experimentally removed. Young kelp plants (Macrocystis pyrifera) are capable of taking up ammonium at night. Ammonium levels in chambers containing both a blacksmith and a young kelp plant were significantly lower than in chambers containing only a fish, and ammonium levels dropped in ammoniumspiked chambers that contained kelp plants. Nighttime ammonium uptake rates by young kelp plants, which averaged 1.6 mol g-1 (dry) h-1, were only slightly lower than those during the day. Daytime excretion by blacksmiths occasionally results in elevated ammonium levels in the water column. On two of six days, ammonium concentrations in midwater foraging aggregations were slightly but significantly higher than in upcurrent controls; since blacksmiths typically aggregate at the incurrent margin of kelp beds, the ammonium is swept downcurrent and may be utilized by large M. pyrifera that extend through the water column. Thus, the activities of blacksmiths may results in the importation of extrinsic, inorganic nitrogen to primary producers on temperate reefs.  相似文献   

10.
The ctenophore Mnemiopsis leidyi A. Agassiz, 1865 is known to be eaten by the scyphomedusan Chrysaora quinquecirrha (Desor, 1948), which can control populations of ctenophores in the tributaries of Chesapeake Bay. In the summer of 1995, we videotaped interactions in large aquaria in order to determine whether M. leidyi was always captured after contact with medusae. Surprisingly, M. leidyi escaped in 97.2% of 143 contacts. The ctenophores increased swimming speed by an average of 300% immediately after contact with tentacles and 600% by mid-escape. When caught in the tentacles of C. quinquecirrha, the ctenophores frequently lost a portion of their body, which allowed them to escape. Lost parts regenerated within a few days. The striking ability of M. leidyi to escape from C. quinquecirrha may be critically important in maintaining ctenophore populations in situ. Received: 14 November 1996 / Accepted: 4 December 1996  相似文献   

11.
M. Jawed 《Marine Biology》1973,23(2):115-120
Excretion rates of ammonia have been determined for zooplankton off the coasts of Washington and Oregon (USA). Rates varied from 0.16 to 0.60 g-at NH 4 + -N/mg dry weight/day for most planktonic animals, and from 0.02 to 0.06 for jellyfishes. Ammonia concentration in seawater was low in offshore regions. Ammonia released by zooplankton was studied in relation to primary productivity during summer. It was found that, in the Columbia River plume offshore, excreted ammonia contributed about 90% of the total nitrogen requirements of observed production rates. The ammonia-N contribution was 36% in oceanic waters, and was relatively unimportant in the inshore region. The significance of eddy diffusivity in offshore waters and upwelling in inshore waters is also discussed.Contribution No. 747 from the Department of Oceanography, University of Washington, Seattle, USA.  相似文献   

12.
Rates of ammonium remineralization were determined using a 15N isotope dilution technique for two oceanic regions, one coastal region, and one estuarine region, covering a wide range of ambient nutrient, light, and temperature conditions. Results showed that NH 4 + assimilative and regenerative fluxes were primarily in balance, even when the ambient nitrogenous pool was completely dominated by NO 3 - . Variations in uptake and remineralization rates relative to time of day and season were also determined. Size fraction studies at several of the sites showed that the smallest size fraction (<10 m) was usually the most important in remineralizing NH 4 + , and the importance of the apparent bacterial fraction (<1 m) may increase following blooms. The results support the concept that, over a wide variety of conditions, the fluxes of NH 4 + remineralization and uptake are tightly coupled; phytoplankton are able to utilize NH 4 + at the rate that it is produced by heterotrophic processes.  相似文献   

13.
The pelagic harpacticoid copepod, Macrosetella gracilis (A. Scott), is found in association with colonies of the nitrogen-fixing (diazotrophic), bloomforming cyanobacterium Trichodesmium spp. in tropical and subtropical waters. M. gracilis is one of the few direct grazers of these often toxic cyanobacteria. Experiments investigating NH + 4 regeneration by M. gracilis were conducted in the Caribbean in September 1992 and the Coral Sea, Australia in November 1994. Rates of M. gracilis ingestion of Trichodesmium thiebautii labelled with 15N2 measured in the eastern Caribbean indicated that M. gracilis could consume 33 to 45% of total T. thiebautii colony N d-1 and >100% of new N fixed d-1. We also measured the release of NH + 4 by M. gracilis feeding on T. thiebautii, as well as by non-feeding copepods, using 15N isotope dilution methods. In non-feeding copepods, rates of NH + 4 release increased as numbers of copepods were increased as both copepod numbers and food availability increased. In the presence of T. thiebautii colonies, M. gracilis had an average rate of NH + 4 regeneration of 7.7±1.5 nmol N copepod-1 h-1 (±SE), which was significantly higher than when food was absent (1.9±0.7 nmol N copepod-1 h-1). Rates of M. gracilis excretion were relatively high based on excretion: ingestion ratios, which could be due to having a high-N food source readily available, to sloppy-feeding effects, or as a response to toxins in the cyanobacterium. Incubations of M. gracilis with and without T. erythraeum resulted in significant increases in [NH + 4 ] as a function of copepod density only. Ammonium leakage from the cyanobacterium and/or microheterotroph associates was relatively low. M. gracilis, through excretion and possible mechanical breakage of cells while grazing, appears to provide a direct link between atmospherically derived new nitrogen and regenerated NH + 4 in the oligotrophic systems where Trichodesmium spp. are abundant.  相似文献   

14.
Taxonomic composition, biomass as organic carbon, numerical abundance, and size distribution of the microplankton were determined at 6 Southern California nearshore locations in late May–early June, 1970. Samples were taken at approximately 5 m (10 m at one station) intervals through the upper 40 to 50 m to reveal some of the small-scale differences and levels of variability in the populations. Total microplankton biomass over all euphotic zone samples varied by more than two orders of magnitude (7.6 to 1,200 g C l-1). Average biomass at comparable sites (n=5) ranged from 48 to 240 g C l-1; biomass range within stations varied from about 5-fold to 120-fold. Total microplankton numbers varied approximately 22-fold (4.3×105 to 9.5×106 organisms l-1) over all euphotic zone samples, but the range within stations was always less than an order of magnitude. At comparable stations, nanoplankton biomass had ranges extending from 3.7-fold to 12-fold; its average percentage contribution (±1 SD) to the total microplankton biomass varied from 39±5% to 54±13%. Netplankton biomass showed a similar minimal range, but its greatest range was more than two orders of magnitude. Ranges of abundance of major taxonomic groups within stations varied considerably from about 2-fold to more than three orders of magnitude. The small-scale variability of the populations probably affects the reliability of the microplankton as a food source for pelagic consumers.  相似文献   

15.
Michaelis-Menten uptake kinetics were observed at all light intensities. With constant illumination, the Vmax and K1 in nitrate uptake over the natural light intensity range of 0 to 2000 E were 0.343 g-at NO3–N(g)-1 at protein-N h-1 and 26 E, respectively. Nitrate uptake was inhibited at higher light intensities. The Ks for nitrate uptake did not vary as a function of light intensity remaining relatively constant at 0.62 g-at NO3–N 1-1. With intermittent illumination, the Vmzx for light intensity in nitrate uptake over a light intensity range of 0 to 5000 E was 0.341 g-at NO3–N(g)-1-at protein-N h-1. No inhibition of nitrate uptake was observed at higher than natural light intensities. Chaetoceros curvisetus will probably never experience light inhibition of nitrate uptake under natural conditions.  相似文献   

16.
The dissolved organic nitrogen (DON) pool in marine waters contains a diverse mixture of compounds. It is therefore difficult to accurately estimate planktonic uptake of DON using the limited number of radiolabeled compounds commercially available. We describe a method to estimate DON uptake rates using 15N-labeled DON recently released from phytoplankton. To make 15N-labeled DON, we incubated surface water with 15NH 4 + and then isolated the DON, including any recently released DO15N, with ion retardation resin. This DON was then added to a freshly collected water sample from the same environment to quantify the rate of DON uptake. The technique was applied to investigate rates of DON uptake relative to inorganic nitrogen in the mesohaline Chesapeake Bay during May 1990 and August 1991. The May experiment took place after the spring bloom, and rates of DON uptake [ranging from 0.31 to 0.53 g-atom (g-at) Nl-1 h-1] often exceeded rates of NH 4 + and NO 3 - uptake combined. The rates of DON uptake at this time were higher than estimated bacterial productivity and were not correlated with bacterial abundance or bacterial productivity. They were, however, correlated with rates of NO 3 - uptake. In May, we estimate that only 7 to 32% of DON uptake was a result of urea utilization. In contrast, in August, when regenerated nutrients predominate in Chesapeake Bay, rates of DON uptake (ranging from 0.14 to 0.51 g-atom Nl-1 h-1) were an average of 50% of the observed rates of NH 4 + uptake. Consistent with the May experiment, rates of DON uptake were not correlated with bacterial production. A sizable fraction of DON uptake, however, appeared to be due to urea utilization; rates of urea uptake, measured independently, were equivalent to an average of 74% of the measured rates of DON uptake. These findings suggest that, during both periods of study, at least a fraction of the measured DON uptake may have been due to utilization by phytoplankton.  相似文献   

17.
The concentrations of total dissolved carbohydrate (TCHO), monosaccharide (MCHO) and polysaccharide (PCHO) were followed over a total of ten diel cycles in a salt marsh and a 13 m3 seawater tank simulating an estuarine ecosystem. Their patterns are compared to those for total dissolved organic carbon (DOC), CO2, pH, O2, chlorophyll a, phaeopigments and solar radiation. During 5 of the 6 marsh studies, PCHO underwent periods of sustained accumulation starting in the late morning or early afternoon and continuing into the early evening. These periods possibly represent release of recently synthesized PCHO from phototrophs. similar patterns were not found in the tank although direct associations between TCHO and phaeopigment dynamics suggest that zooplankton excretion was an important source of dissolved carbohydrate. The numbers of planktonic bacteria determined in one tank study increased rapidly during a late morning PCHO pulse and varied inversely with PCHO throughout the afternoon and evening, indicating that they were able to respond rapidly and control natural substrate concentrations on a time scale of a few hours. MCHO fluctuated to a much lesser extent than PCHO at both locations with levels possibly maintained near the bacterial uptake threshold or in a closely regulated steady state. TCHO concentration changes over 2-to 3-h sampling intervals suggest very rapid net system release and uptake with summer rates frequently exceeding 30 g C l-1h-1 in the marsh and 20 g C l-1 h-1 in the tank.  相似文献   

18.
Benthic community respiration and the cycling of N and P were seasonally investigated in the unprotected, sandy sediments (Z5m) of the nearshore zone of the Georgia Bight, USA in 1981 and 1982. Nutrient exchange across the sediment-water interface was calculated from a diffusive model, measured by in-situ enclosure experiments and estimated from whole core incubations. Seasonally changing pore water profiles indicated that the sediments were not in steady-state with respect to N and P and showed the characteristics of enhanced interstitial water movement by benthic animals. Over an annual period the total flux of nitrogen measured in situ averaged 1812 mol m-2 d-1 from the sediments. NH 4 + flux accounted for the vast majority of the total directly measured N flux (77%), followed by nitrate + nitrite (14%), and dissolved organic nitrogen (9%). Phosphorus flux averaged 537 mol m-2 d-1. A large ratio of in-situ fluxes to calculated diffusive fluxes (5.2:1) indicated flux enhancement due to benthic animal activity. ammonium fluxes measured in situ did not agree well with the rate of NH 4 + produced in incubated whole cores (11.7 mmol m-2 d-1). Relative rates of C, N and P release throughout the year fluctuated considerably. Generally, nutrient fluxes were not simply related to respiration or temperature. As respiration was highly correlated with temperature, however, this suggested that respiration-regeneration was temporarily decoupled from exchange across the sediment-water interface. The annual C-N-P flux stoichiometry was 130:3.1:1. Using the rate at which NH 4 + was produced in incubated cores the stoichiometry was 120:21:1. The anomalously low N flux measured in situ was attributed to a combination of denitrification and wave-and current-induced sediment nutrient flushing. The potential for sediment flushing is high as experiments showed that sediments were fluidized or resuspended down to 25 cm during large storms. Benthic nutrient flux contributed 40% to the annual P but only 11% to the annual N requirements of the pelagic primary producers.This is Contribution No. 558 from the University of Georgia Marine Institute. This work was supported by the Georgia Sea Grant College Program maintained by the National Oceanic and Atmospheric Administration, US Department of Commerce, under Grant No. NA80AA-D-00091  相似文献   

19.
The vertical distribution, diel gut pigment content and oxygen consumption of Calanus euxinus were studied in April and September 1995 in the Black Sea. Gut pigment content of C. euxinus females was associated with diel vertical migration of the individuals, and it varied with depth and time. Highest gut pigment content was observed during the nighttime, when females were in the chlorophyll a (chl a) rich surface waters, but significant feeding also occurred in the deep layer. Gut pigment content throughout the water column varied from 0.8 to 22.0 ng pigment female–1 in April and from 0.2 to 21 ng pigment female–1 in September 1995. From the diel vertical migration pattern, it was estimated that female C. euxinus spend 7.5 h day–1 in April and 10.5 h day–1 in September in the chl a rich surface waters. Daily consumption by female C. euxinus in chl a rich surface waters was estimated by taking into account the feeding duration and gut pigment concentrations. Daily carbon rations of female C. euxinus, derived from herbivorous feeding in the euphotic zone, ranged from 6% to 11% of their body carbon weight in April and from 15% to 35% in September. Oxygen consumption rates of female and copepodite stage V (CV) C. euxinus were measured at different temperatures and at different oxygen concentrations. Oxygen consumption rates at oxygen-saturated concentration ranged from an average of 0.67 g O2 mg–1 dry weight (DW) h–1 at 5°C to 2.1 g O2 mg–1 DW h–1 at 23°C for females, and ranged from 0.48 g O2 mg–1 DW h–1 at 5°C to 1.5 g O2 mg–1 DW h–1 at 23°C for CVs. The rate of oxygen consumption at 16°C varied from 0.62 g O2 mg–1 DW h–1 at 0.65 mg O2 l–1 to 1.57 g O2 mg–1 DW h–1 at 4.35 mg O2 l–1 for CVs, and from 0.74 g O2 mg–1 DW h–1 at 0.57 mg O2 l–1 to 2.24 g O2 mg–1 DW h–1 at 4.37 mg O2 l–1 for females. From the oxygen consumption rates, daily requirements for the routine metabolism of females were estimated, and our results indicate that the herbivorous daily ration was sufficient to meet the routine metabolic requirements of female C. euxinus in April and September in the Black Sea.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

20.
Concentrations of dissolved inorganic nitrogen compounds above the pycnocline in the Oslofjord are very low in the summer, with turnover times of the inorganic N pools of no more than a few hours. To investigate the possibility that continued phytoplankton growth in the summer depends on ammonium excretion by microzooplankton, rates of NH 4 + regeneration and assimilation were measured by a 15N isotope dilution method. Daytime regeneration rates at 0–2 m depth were 0–28% of the calculated assimilation rates at ambient NH 4 + concentrations. Regeneration was faster during a dinoflagellate bloom in August than in mixed diatom-dinoflagellate blooms in June and September. Most of the NH 4 + appeared to be produced by juvenile copepods, rotifers, tintinnids, and heterotrophic dinoflagellates in the size fraction 45–200 m.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号