首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper describes the measurement of total antimony and antimony species in "real world" mine contaminated sediments using ICPMS and HPLC-ICPMS. Low and high temperature microwave extraction procedures (90 degrees C and 150 degrees C, respectively) using a range of nitric-hydrochloric acid combinations were examined as to their efficacy to extract antimony from six mine contaminated soils and a certified reference material. The use of the higher temperature with nitric-hydrochloric acid (1:2 (v/v)) was suitable to release antimony from sediments and the certified reference material, NIST 2710 Montana soil. Antimony concentrations obtained using this acid mixture were similar to those obtained using a more aggressive extraction with nitric, hydrochloric, perchloric and hydrofluoric acid mixture. A 25 mM citric acid solution at 90 degrees C for 15 min extracted 47-78% of antimony from soils. A Hamilton PRP X-100 anion exchange column with 20 mM EDTA mobile phase, pH 4.5, flow rate 1.5 mL min(-1) and column temperature of 50 degrees C was used to separate antimony species. Column recoveries ranged from 78-104%. The predominant form of antimony was Sb(5+). Little conversion of Sb(5+) occurred (<5%) during extraction, however, significant conversion of Sb(3+) occurred (approximately 36%). The extraction of antimony species with citric acid should be useful in the determination of inorganic antimony available to plants, as plants commonly excrete carboxylic acids, including citric acid, into their rhizospheres to mobilise trace elements for nutritional purposes.  相似文献   

2.
Antimony is a naturally occurring and cumulatively toxic element. With increasing concern as an inorganic contaminant, research on its environmental behavior is becoming a necessity. However, very little is known about this element. To further understand its biogeochemical behaviors and roles in the ecosystem, the main species of dissolved inorganic antimony (Sb(iii) and Sb(v)) in Yangtze River Estuary and its adjacent waters were determined by hydride generation and atomic fluorescence (HG-AFS) in our study. Results show that in surface water, the concentration for Sb(iii) and Sb(v) were in the range 0.029 μg L(-1)~ 0.736 μg L(-1) and 0.121 μg L(-1)~ 2.567 μg L(-1), with averages of 0.152 μg L(-1) and 0.592 μg L(-1), respectively. While concentrations of Sb(iii) and Sb(v) in the bottom layer were much lower, ranging from 0.023 μg L(-1) to 0.116 μg L(-1) (average of 0.050 μg L(-1)) and from 0.047 μg L(-1) to 0.441 μg L(-1) (average of 0.194 μg L(-1)), respectively. Data analysis further demonstrates that the major processes controlling antimony geochemistry in the area are riverine input, atmospheric deposition, incursion of Taiwan Warm Current, and release from particulate phase. The surface-enrichment and bottom-depletion depth profile reveals it does appear as a mildly scavenged element but is less like arsenic than previously believed. Sb(v) was the predominant speciation in aquatic environment of our research, and Sb(iii) was a minor constituent of the total antimony. Regarding the adsorption-desorption process onto SPM, Sb(iii) has a higher affinity to particulate phase than Sb(v). Furthermore, the significant correlation between antimony and nutrients indicates it is an element with great biological potential, which is also an important behavior for antimony.  相似文献   

3.
Antimony is distributed in the environment in inorganic and organic species with different solubility and mobility characters. Here we investigate the transformation of antimony in view of biomethylation during sewage sludge fermentation as a case study for an anaerobic environment. Our approach was to identify if antimony methylation follows the Challenger pathway by using isotopically enriched antimonite (123Sb(v)). The antimony source was subjected to methylation in sewage sludge, an anaerobic dominant methanogenic Archaea community. The antimony species were determined in the gas phase using cryotrapping (CT)-GC-ICP-MS, and in the medium (sewage slude) by hydride generation (HG) prior CT-GC-ICP-MS. The determined 123/121Sb isotope ratios in the volatile trimethylstibine and non-volatile methylantimony species indicated that the methylation follows the proposed methylation pathway. With this approach we were able to quantify 123Sb incorporation into monomethyl-, dimethyl- and trimethylantimony, respectively. The incorporation decreased with further methylation from 91% to 82% and 73%. Volatilisation as trimethystibine was generally lower than 0.1%, however, up to 0.8% of added antimony was found methylated to methylantimony species and mainly accumulated in the cell. Moreover, antimony biomethylation was enhanced by stimulation of the anaerobic communities of methanogenic Archaea and sulfate reducing bacteria (SRB), with the methanogens showing a higher activity.  相似文献   

4.
Methylated species of antimony, arsenic and tin were examined in urban soils of the Ruhr basin, near the cities of Duisburg and Essen, Germany. The main aim of this study was to investigate the occurrence of mono-, di- and trimethylated species of these elements in urban soils. The influence of historical and present land use upon the species content was examined. The distribution of inorganic As, Sb and Sn and their methylated species along the profile depth was investigated. As, Sb and Sn speciation was performed by pH-gradient hydride generation purge and trap gas chromatography, followed by inductively-coupled plasma mass spectrometry (HG-PT-GC/ICP-MS). Species' structures were confirmed by GC-EI/MS-ICP-MS. Monomethylated Sb and As were the dominant species detected: the concentration of these metal(loid) species varied between <0.07-56 microg kg(-1) per dry mass. All dimethylated species and monomethyltin concentrations were between <0.01-7.6 microg kg(-1) per dry mass, and for the trimethylated species of all examined elements, concentrations between <0.001-0.63 microg kg(-1) per dry mass were detected. The highest organometal(loid) concentrations were observed in agricultural soils and garden soils; lower concentrations were found in the soils of abandoned industrial sites (wasteland, primary forest and grassland) and a flood plain soil of the Rhine. This result can be ascribed to both the cultivation and the increased biological activity of the agricultural soils, and the generally higher contamination, the disturbed structure and the artificial substrates (deposits from industrial sources) of the abandoned industrial soils. Due to periodical sedimentation, the flood plain profile was the only one where no depth dependence of organometal(loid) species concentration was detected. The other soil profiles showed a decrease of species content with increasing depth; this was particularly noticeable in soils with a clear change from a horizon with an organic character towards a mineral horizon, i.e. decreasing vitality from profile top to bottom. It is not as yet clear whether the organometal(loid) species are formed in the mineral horizons of the profiles or whether they are displaced from the organic, biologically-active horizons towards the mineral horizons. Field studies revealed that soil parameters like pH, water content or temperature did not correlate significantly with the degree of biomethylation observed. In contrast to the lower in vitro biomethylation efficiency of Sb vs. As in microbial incubations, we consistently detected higher proportions of transformed Sb compounds in situ in soil samples. These data may indicate a need to re-examine the currently accepted model of Sb biogeochemical cycling in the real environment.  相似文献   

5.
Adopting recently developed clean laboratory techniques, antimony (Sb) and scandium (Sc) deposition were measured in a 63.72 m-long ice core (1842-1996) and a 5 m deep snow pit (1994-2004) collected on Devon Island, Canadian High Arctic. Antimony concentrations ranged from 0.07 to 108 pg g(-1) with a median of 0.98 pg g(-1)(N= 510). Scandium, used as a conservative reference element, revealed that dust inputs were effectively constant during the last 160 years. The atmospheric Sb signal preserved in the ice core reflects contamination from industrialisation, the economic boom which followed WWII, as well as the comparatively recent introduction of flue gas filter technologies and emission reduction efforts. Natural contributions to the total Sb inventory are negligible, meaning that anthropogenic emissions have dominated atmospheric Sb deposition throughout the entire period. The seasonal resolution of the snow pit showed that aerosols deposited during the Arctic winter, when air masses are derived mainly from Eurasia, show the greatest Sb concentrations. Deposition during summer, when air masses come mainly from North America, is still enriched in Sb, but less so. Snow and ice provide unambiguous evidence that enrichments of Sb in Arctic air have increased 50% during the past three decades, with two-thirds being deposited during winter. Most Sb is produced in Asia, primarily from Sb sulfides such as stibnite (Sb2S3), but also as a by-product of lead and copper smelting. In addition there is a growing worldwide use of Sb in automobile brake pads, plastics and flame retardants. In contrast to Pb which has gone into decline during the same interval because of the gradual elimination of gasoline lead additives, the enrichments of Sb have been increasing and today clearly exceed those of Pb. Given that the toxicity of Sb is comparable to that of Pb, Sb has now replaced Pb in the rank of potentially toxic trace metals in the Arctic atmosphere.  相似文献   

6.
Distribution of antimony and its inorganic species in soil samples along two traffic routes (A14, Rankweil and S36, Knittelfeld) in Austria was determined, since vehicle emissions are an important anthropogenic source of Sb in soil. The samples were taken along three parallel lines at about 0.2, 2 and 10 m distances from the edge of the road and in two depths range (0-5 and 5-10 cm from the soil surface). The optimized extraction was carried out using 100 mmol L(-1) citric acid at pH 2.08 applying an ultrasonic bath for 45 min at room temperature. Speciation analyses were done using on-line isotope dilution after a chromatographic separation of Sb species. Results of the two traffic routes confirmed significant accumulations of Sb at surface (0-5 cm depth) exceeding the natural background values by more than ten times at the S36 or four times at the A14. Concentrations of the extractable inorganic species decreased to natural background levels within a few meters from the edge of the traffic lane. The predominant Sb species was Sb(V). The Sb(III) concentrations at 5-10 cm depths range are nearly constant with distance from the edges of the two roads. Magnetic susceptibility data of all soil samples show the same distribution pattern as Sb and Sb(V) concentrations along the two traffic roads with an excellent correlation. This is an evidence for an anthropogenic source of Sb such as abrasions of motor vehicles surfaces or braking linings. The input of Sb and its inorganic species at one of the sampling sites (Knittelfeld) in samples taken in 2002 and in those taken recently (2005) was monitored. An increase in Sb (>or=30%), Sb(v)(>or=51%) and Sb(iii)(>or=10%) concentrations was only observed near the edge (相似文献   

7.
Occupational exposure to antimony compounds   总被引:4,自引:0,他引:4  
The toxicology of antimony and its compounds is known from three sources: its medicinal use over centuries, studies of process workers in more recent times, and more recent still, studies of its presence in modern city environments and in domestic environments. Gross exposure to antimony compounds over long periods, usually the sulfide (SbS3) or the oxide (Sb2O3) has occurred in antimony miners and in antimony process workers. There have been relatively few of these, and few studies of possible symptoms have been made. Antimony sulfide imported from, at different times, China, South Africa, and South America was processed in the North-East of England from about 1870 to 2003. The process workers in North-East England have been studied at different times, notably by Sir Thomas Oliver in 1933, and by the Newcastle upon Tyne University Department of Occupational Medicine on later occasions. Studies which have been made of the working environment, and in particular of the risk of lung cancer in process workers, have underlined the high levels of exposure to antimony compounds and to other toxic materials. However, the working conditions in antimony processing have improved markedly over the last 30 years, and the workforce had been much reduced in numbers following automation of the process. Prior to the cessation of the industry in the UK it had become a 'white coat' operation with relatively few people exposed to high concentrations of antimony. Antimony, which is normally present in domestic environments, has also been studied as a possible cause of cot death syndrome (SIDS) but extensive investigations have not confirmed this. The full importance of environmental antimony has still to be determined, and evidence of specific effects has not yet been presented.  相似文献   

8.
Elder and poplar leaves from various sampling sites were studied with respect to their antimony content. Moreover, a retrospective determination of Sb was performed in representative limnic and terrestrial samples of the Federal Environmental Specimen Bank of Germany which have been collected over 14 years. The analytical procedure is based on an open vessel acid digestion of freeze-dried biological samples and the subsequent quantification of Sb in the digests by flow injection hydride generation atomic absorption spectrometry. Strict quality control schemes were applied to the entire procedure to guarantee accurate and precise results. No long-term changes of the Sb concentrations were found in spruce shoots or poplar leaves from different sampling sites. However, spruce shoots from a semi-natural region showed concentrations of Sb (approximately 22 ng g-1; range: 17-29 ng g-1) that were approximately four times lower than in corresponding samples from an urban-industrialized area. The analysis of virgin and washed elder leaves revealed that approximately 20-30% of the Sb is present on the leaf surface. Sb levels in elder leaves ranged from 5.2 +/- 0.3 ng g-1 in samples from Argentina to 589 +/- 30 ng g-1 in leaves collected directly beside a motorway in Germany. Similarly, poplar leaves from Argentina and Chile showed about 4 ng Sb g-1, whereas 150 ng Sb g-1 was found in poplar leaves from Germany. The lowest concentrations of Sb were determined in digests of pigeon eggs (approximately 2 ng g-1), bream liver (approximately 4 ng g-1) and deer liver (approximately 6 ng g-1). A similar pattern of Sb concentrations in spruce shoots, leaves or liver samples from an industrialized area and an agrarian ecosystem in Germany was established. Concentrations of Sb in elder leaves were closely associated with car traffic, giving maximum concentrations of 589 ng g-1 directly beside a motorway, 207 ng g-1 50 m from the motorway and 153 ng g-1 in a close residential area.  相似文献   

9.
A method is presented for the determination of antimony in whole human blood samples with an ICP-MS instrument using a quadrupole mass analyzer. A nitric acid/hydrogen peroxide open digestion procedure was employed for the blood sample treatment and preparation for analysis. The precision and accuracy of the method were evaluated by analyzing several Seronorm trace elements whole blood reference materials. The precision of the method at various antimony levels was better than 4% RSD and the recovery was greater than 92% at all levels. The detection limit, calculated as three times the standard deviation of the blank (3sigma, n= 12), was 0.03 microg L(-1). The method was successfully applied for the determination of antimony in blood samples from school children in rural areas of Kwazulu/Natal, South Africa and adults from Dearborn, Michigan. Blood antimony levels ranged from <0.03 to 3.82 microg L(-1) in children and 1.40 to 4.35 microg L(-1) for adults.  相似文献   

10.
Antimony is an element of increasing environmental significance but one whose chemical speciation has received little attention and, until recently, one which had not been modelled in any comprehensive way. This paper reports thermodynamic data for computer speciation models of antimony in aqueous, multicomponent solutions of environmental and biological interest involving low molecular mass organic ligands. The available data have been critically evaluated and entered into a thermodynamic database. The JESS suite of computer programs has been used to develop the thermodynamically-consistent mass balance equations used for modelling purposes. No data could be found for Sb(V) complexes and only a few of the existing data for Sb(III) complexes can be considered as being reliably described.  相似文献   

11.
This paper presents the results of the determination of arsenic, antimony and selenium concentrations of inorganic speciation in surface water samples from Gniezno city (western Poland) and its neighborhood. The concentration of elements were up to 1.85 ng/ml for arsenic, 1.61 ng/ml for antimony and 0.45 ng/ml for selenium (detection limits: 0.04 ng/ml for As and Sb and 0.03 ng/ml for Se). A variety of concentrations for the determined elements has been obtained in waters from Gniezno city’s neighborhood and in water from down-town reservoirs which are under strong anthropogenic pressure.  相似文献   

12.
A suitable method for the extraction of antimony species from plant materials prior to IC-HG-AFS analysis is presented. The extraction efficiency with different extraction systems using various aqueous and aqueous/solvent mixtures was initially evaluated by analysing the Virginia Tobacco Leaves Certified Reference Material. The concentration of antimony extracted was compared with the total antimony content in the plant material measured by HG-AFS after focused microwave-acidic digestion using HNO3 and H2O2. The proposed extraction procedures were applied to antimony speciation in several plants from a natural terrestrial environment impacted by mining activities. End-over-end agitation (4 h) followed by sonication (1 h) extraction using 0.1 mol l(-1) citric acid was found to provide the best extraction efficiency while also giving reliable speciation information. Both inorganic and methylantimony species were found in the extractable portion of some terrestrial plants.  相似文献   

13.
Using clean lab methods and protocols developed for measuring Sb in polar snow and ice, we report the abundance of Sb in fifteen brands of bottled water from Canada and forty-eight from Europe. Comparison with the natural abundance of Sb in pristine groundwaters, water bottled commercially in polypropylene, analyses of source waters prior to bottling, and addition of uncontaminated groundwater to PET bottles, provides unambiguous evidence of Sb leaching from the containers. In contrast to the pristine groundwater in Ontario, Canada containing 2.2 +/- 1.2 ng l(-1) Sb, 12 brands of bottled natural waters from Canada contained 156 +/- 86 ng l(-1) and 3 brands of deionized water contained 162 +/- 30 ng l(-1); all of these were bottled in PET containers. Natural water from Ontario bottled in polypropylene contained only 8.2 +/- 0.9 ng l(-1). Comparison of three German brands of water available in both glass bottles and PET containers showed that waters bottled in PET contained up to 30 times more Sb. To confirm that the elevated Sb concentrations are due to leaching from the PET containers, water was collected in acid-cleaned LDPE bottles from a commercial source in Germany, prior to bottling; this water was found to contain 3.8 +/- 0.9 ng l(-1) Sb (n = 5), compared with the same brand of water purchased locally in PET bottles containing 359 +/- 54 ng l(-1) (n = 6). This same brand of water in PET bottles, after an additional three months of storage at room temperature, yielded 626 +/- 15 ng l(-1) Sb (n = 3). Other German brands of water in PET bottles contained 253-546 ng l(-1) Sb (n = 5). The median concentration of Sb in thirty-five brands of water bottled in PET from eleven other European countries was 343 ng l(-1) (n = 35). As an independent check of the hypothesis that Sb is leaching from PET, the pristine groundwater from Canada (containing 2.2 +/- 1.2 ng l(-1) Sb) was collected from the source using PET bottles from Germany: this water contained 50 +/- 17 ng l(-1) Sb (n = 2) after only 37 days, even though it was stored in the refrigerator, and 566 ng l(-1) after six months storage at room temperature.  相似文献   

14.
Investigations of the existing chemical forms and the concentrations of arsenic (As), selenium (Se) and antimony (Sb) in samples of fly ash obtained from six coal-fired power stations in various countries were carried out. The concentration of As was found to vary from 5.4 to 22.3 mg kg(-1), and the most common mode of occurrence of As in the fly ashes is in association with carbonates or Fe-Mn oxides. The concentrations of Se and Sb ranged from 2.3-5.2 and 1.0-3.9 mg kg(-1), respectively. The dominant chemical forms of Se and Sb in the fly ashes were as extractable species. Also, water-soluble As, Se and Sb in the fly ashes were extracted, and the chemical species of As, Se and Sb in the extract determined using HPLC-ICP-MS. This was done as the potential release of soluble As, Se and Sb through leaching of fly ash is of environmental concern. The most abundant form of As in the extract was the low toxicity As(V). The main species of Se was Se(IV), although it was found that the ratio of Se(VI) to Se(IV) in acidic fly ashes is higher than in alkaline fly ash samples. Antimony was mostly present as Sb(III).  相似文献   

15.
The pore water transport of antimony and titanium, applied as nanoparticles (NPs), was studied by spiking stable suspensions of two different nanomaterials on the surface of an undisturbed floodplain soil. For preparation of stable dispersions, two different strategies were followed. (i) Comparable to those used in industrial applications: titanium dioxide nanoparticles, with an average diameter of 99 nm, were prepared by high-energy ball milling in water, whereas for (ii) antimony trioxide (Sb(2)O(3); average diameter 121 nm) a dispersing agent (sodium salt of poly[(naphthaleneformaldehyde)sulfonate] (pNFS) in water) was used. The upper 17 cm of a floodplain soil (river Rhine, Germany) was sampled using the minimally invasive sediment or fauna incubation experiment (SOFIE? two compartment cell; 3 l volume each), which preserved the pore system of the soil. The cells were equipped with 450 and 100 nm filter probes at different depths providing a non-invasive sampling of the pore water. The pore water was sampled at different times (T = 0, 24, 48, 96 and 196 h) and analysed by inductively coupled plasma quadrupole mass spectrometry (ICP-QMS). Sb and Ti were transported via the pore water of the floodplain soil to a depth of 14 cm, corresponding to the maximum cell depth. The highest Sb concentration in the pore water was detected after 24 h at a depth of 5.5-8 cm. Although the spiked concentration was higher for Ti than for Sb, the total Ti concentration in the pore water of the spiked cell was lower. This indicates a stronger agglomeration of TiO(2) NPs or a more intensive interaction of Ti with the solid matrix and a faster transport of Sb towards deeper soil layers. The results show that metal(loid)s from metal oxide NPs are transported in the soil pore water and, hence, have the potential to act as the source of contamination of deeper soil layers after soil surface contamination.  相似文献   

16.
分析和统计的86家印染工业企业当中,废水总排口中的总锑超标率为25.6%,质量浓度0.050 mg/L以下较低排放浓度所占比例最大,达62.8%。印染废水锑排放源主要有涤棉和涤纶化纤类布料的染色、印花工艺废水,碱减量工艺废水等,工业液碱、废酸以及硫酸铝污水处理剂等原料当中含锑浓度较高。印染废水经污水处理厂集中纳管深度处理后,锑排放浓度较低,锑去除效率最高达到88.0%,大大降低了环境地表水体锑污染的风险。  相似文献   

17.
Methodologies for the environmental analysis of total antimony and aqueous chemical speciation are critically reviewed, including preparation techniques for aqueous and solid matrices and the determination of solid state partitioning and recommendations are given for future research directions. Concentrations of total antimony commonly present in aqueous and solid environmental samples are readily determined using present day analytical techniques. This has resulted primarily from technological advances in microwave digestion for solid matrices and the development of plasma based analyte detection systems. ICP-AES and ICP-MS techniques are both utilised for the environmental analysis of total antimony concentrations. However, ICP-MS is increasingly favoured as a result of reduced spectral interferences and the potential for analyte detection in the pg mL(-1) range. Determination of aqueous antimony speciation presents a number of complex analytical challenges and highly selective separation and identification techniques are required prior to detection. The majority of published techniques including common applications of hydride generation are insufficiently selective for the determination of intrinsic chemical speciation and often only oxidation state data are obtained. The recent in-line applications of HPLC-ICP-MS offer the potential for highly selective separations of aqueous antimony species and determination of detailed chemical speciation data. However, considerable development work is required to optimise chromatographic separations and identify uncharacterised species resident in environmental systems. Analytical techniques to aid the determination of antimony's associations with solid environmental matrices include the application of chemical extraction procedures and leaching experiments. To date, this area of analytical research has received little attention and further studies are required to elucidate this aspect of antimony's environmental chemistry.  相似文献   

18.
Antimony (Sb) emissions to the environment are increasing, and there is a dearth of knowledge regarding Sb fate and behaviour in natural systems. In particular, there is a lack of understanding of sorption of the oxidised Sb(V) species onto soils and soil phases. In this study sorption of Sb(V) by two organic rich soils with high levels of oxalate extractable Fe was examined over the pH range of 2.5-7. Furthermore, the sorption behaviour of Sb(V) was examined in two phases mimicking those dominant in the experimental soils, namely a solid humic acid and an amorphous Fe(OH)3, across the same pH range. Sorption of Sb by the soils and the humic acid fitted a Freundlich type isotherm, with the equation parameters reflecting changes in bonding affinity corresponding to pH changes. The soils sorbed >75% of the added Sb in all trials, and 80-100% at pH values less than approximately 6.5. The Fe(OH)3 retained >95% of the added Sb in all experiments. The humic acid sorbed up to 60% of the added Sb at acidic pH values, but sorption decreased to zero at higher pH values. Further adsorption studies are recommended, such as examining the effects of ion competition and changes in ionic strength.  相似文献   

19.
While antimony has been reported to migrate from PET bottles into contents, reports on bottled water and soft drinks usage and PET bottle reuse patterns are currently unavailable in the literature. Bottle use conditions and patterns are important determinants of antimony migration. In this work a survey assessing the pattern of bottle use and reuse in Britain and Nigeria was undertaken. The survey findings influenced the design of laboratory experiments that assessed the migration of antimony from PET bottles into water and soft drinks. Typical storage durations for bottled contents between purchase and opening for use were 7 days or less. However storage of up to one year was reported. Bottle reuse was high and similar for the two countries with reuse durations being higher in Nigeria. The antimony concentration in 32 PET bottle materials from Britain and Nigeria were similar and ranged between 177 and 310 mg kg(-1). For 47 freshly purchased British bottled contents antimony concentration ranged between 0.03 and 6.61 μg L(-1) with only one sample exceeding the EU acceptable limit. Concentrations of Cd, Ge, Zn, Al, Be, Ti, Co and Pb were also measured. At realistic temperatures of 40 and 60 °C antimony concentration in deionised water in bottles remained below the EU acceptable limit even after 48 h exposure. The limit was exceeded for most exposures at 80 °C. Concentration of antimony in some bottled contents exceeded the EU limit after 11 months of storage at room temperature. Bottle aging and increase in bottle volume were associated with decreased migration of antimony from bottles.  相似文献   

20.
Bioindicators are widely used in the study of trace elements inputs into the environment and great efforts have been conducted to separate atmospheric from soil borne inputs on biomass accumulation. Many monitoring studies of trace element pollution take into account the dust particles located in the plant surface plus the contents of the plant tissues. However, it is usually only the trace element content in the plant tissues that is relevant on plant health. Enrichment factor equations take into account the trace element enrichment of biomasses with respect soil or bedrocks by comparing the ratios of the trace element in question to a lithogenic element, usually Al. However, the enrichment equations currently in use are inadequate because they do not take into account the fact that Al (or whichever reference element) and the element in question may have different solubility-absorption-retention levels depending on the rock and soil types involved. This constrain will become critical when results from different sites are compared and so in this article we propose that the solubility factors of each element are taken into account in order to overcome this constrain. We analysed Sb, Co, Ni, Cr, Pb, Cd, Mn, V, Zn, Cu, As, Hg, and Al concentration in different zones of Catalonia (NE Spain) using the evergreen oak Quercus ilex and the moss Hypnum cupressiforme as target species. We compared the results obtained in rural and non industrial areas with those from the Barcelona Metropolitan Area. We observed differences in Al concentrations of soils and bedrocks at each different site, together with the differences in solubility between Al and the element in question, and a weak correlation between total soil content and water extract content through different sites for most trace elements. All these findings show the unsuitability of the current enrichment factors for calculating lithospheric and atmospheric contributions to trace element concentrations in biomass tissues. The trace element enrichment factors were calculated by subtracting the part predicted by substrate composition (deduced from water extracts from soils and bedrock) from total concentrations. Results showed that for most of the trace elements analysed, trace elements enrichment factors were higher inside the Barcelona Metropolitan Area than outside, a finding that indicates that greater atmospheric inputs occur in urban areas. The results show that the most useful and correct way of establishing a reference for lithospheric and atmospheric inputs into the plant tissues is, first, to analyse samples of the same plant species collected from a number of sites possessing similar environmental conditions (climate, vegetation type, soil type) and, second, to use this new enrichment factor obtained by subtracting from the total concentration in plant tissue the predicted contribution of soil or bedrock extracts instead of that of total soil or bedrock concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号