首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composting is a method for preparing organic fertilizers that represents a suitable management option for the recycling of two-phase olive mill waste (TPOMW) in agriculture. Four different composts were prepared by mixing TPOMW with different agro-industrial by-products (olive pruning, sheep manure and horse manure), which were used either as bulking agents or as N sources. The mature composts were added during six consecutive years to a typical “Picual” olive tree grove in the Jaén province (Spain). The effects of compost addition on soil characteristics, crop yield and nutritional status and also the quality of the olive oil were evaluated at the end of the experiment and compared to a control treated only with mineral fertilization. The most important effects on soil characteristics included a significant increase in the availability of N, P, K and an increase of soil organic matter content. The application of TPOMW compost produced a significant increase in olive oil content in the fruit. The compost amended plots had a 15% higher olive oil content than those treatment with inorganic fertilization. These organics amendments maintained the composition and quality of the olive oil.  相似文献   

2.
Despite the long-time application of organic waste derived composts to crops, there is still no universally accepted index to assess compost maturity and stability. The research presented in this article investigated the suitability of seven types of seeds for use in germination bioassays to assess the maturity and phytotoxicity of six composts. The composts used in the study were derived from cow manure, sea weeds, olive pulp, poultry manure and municipal solid waste. The seeds used in the germination bioassays were radish, pepper, spinach, tomato, cress, cucumber and lettuce. Data were analyzed with an analysis of variance at two levels and with pair-wise comparisons. The analysis revealed that composts rendered as phytotoxic to one type of seed could enhance the growth of another type of seed. Therefore, germination indices, which ranged from 0% to 262%, were highly dependent on the type of seed used in the germination bioassay. The poultry manure compost was highly phytotoxic to all seeds. At the 99% confidence level, the type of seed and the interaction between the seeds and the composts were found to significantly affect germination. In addition, the stability of composts was assessed by their microbial respiration, which ranged from approximately 4 to 16 g O2/kg organic matter and from 2.6 to approximately 11 g CO2–C/kg C, after seven days. Initial average oxygen uptake rates were all less than approximately 0.35 g O2/kg organic matter/h for all six composts. A high statistically significant correlation coefficient was calculated between the cumulative carbon dioxide production, over a 7-day period, and the radish seed germination index. It appears that a germination bioassay with radish can be a valid test to assess both compost stability and compost phytotoxicity.  相似文献   

3.
An attempt was made to recycle waste biomass and mineral powder (waste mica) as an alternative source of potassium (K) through composting technology. Two different waste biomass, isabgol straw and palmarosa distillation waste along with two levels of waste mica (2 and 4% as K) were used for preparation of enriched composts. A notable decrease of C:N ratio was observed at the end of the composting (150 days) as an indicator of compost maturity. The mature composts were evaluated for K-supplying capacity through laboratory leaching and soil incubation study. Significantly higher water-soluble K released initially followed by a sharp decrease up to 21 days of leaching thereafter gradually decreased up to 35 days of leaching. Water-soluble K was released from K-enriched (mica charged) compost significantly higher than the ordinary compost throughout the leaching period. Soil incubation study also revealed that application of K-enriched compost greatly improved the available K (water soluble and exchangeable) pools in K-deficient soil which indicated that a considerable amount of K releases during composting. Therefore, K-enriched compost could be an effective alternative of costly commercial K fertilizer and eco-friendly approach to utilize low-cost waste mineral powder and plant residue.  相似文献   

4.
A new index for evaluating compost maturity was developed based on a germination test of Komatsuna seeds using water extract from compost. Several compost samples were collected from a kitchen-garbage composting plant to determine an index to evaluate compost maturity. Firstly, some extraction conditions for extracting compost ingredients with water were evaluated using the time course of total organic carbon concentration in water extract. The water temperature of 60?°C, periodic mixing, and extraction period >1 were selected. Secondly, applying these conditions, the germination test was performed using the water extract solutions at several dilution ratios. The relationship between the germination rate and the dilution ratio was expressed using a logistic regression curve. The dilution ratio to give a germination rate of 0.5, defined as DG50, was calculated with the parameters of the curve. Compared with other maturity indices, DG50 was the most effective. Moreover, it has a unique feature in that maturity is quantified even for the compost from which water extract results in a germination rate of 0. This feature can be used to compare the maturity of different kinds of composts and quantify the change in the levels of inhibitory substances in a composting process.  相似文献   

5.
Compost can provide a rich organic nutrient source and soil conditioner for agricultural and horticultural applications. Ideal compost amendment rates, however, vary based on starting material and compost maturity or their interaction, and there is little consensus on appropriate methods to gauge maturity. In this study, electrical conductivity, carbon-to-nitrogen ratio, and carbon mineralization measurements were made on compost-amended soils and compared to phytotoxicity measured as cress (Lepidium sativum) germination. Cress germination in soil and compost mixtures incubated for 8-10 days significantly decreased with increasing electrical conductivity and carbon mineralization rate of the mixture and with carbon mineralization rate and mineralizable carbon associated with the compost. Cress germination was not related to carbon-to-nitrogen ratio or pH of soil and compost mixtures. The electrical conductivity of the soil and compost mixtures significantly decreased with decreasing mineralizable carbon suggesting that compounds contributing to electrical conductivity were present in the compost and decomposed upon soil amendment. The results of this study indicate that measurements of mineralizable carbon and mineralization rate of composts in soil, and electrical conductivity and mineralization rate of soil and compost mixtures, can be used as indicators of compost maturity.  相似文献   

6.
Compost application to turfgrass soils may increase dissolved organic C (DOC) levels which affects nutrient dynamics in soil. The objectives of this study were to investigate the influence of compost source and application rate on soil organic C (SOC), DOC, NO(3), and available P during 29 months after a one-time application to St. Augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] turf. Compost sources had variable composition, yet resulted in few differences in SOC, DOC, and NO(3) after applied to soil. Available NO(3) rapidly decreased after compost application and was unaffected by compost source and application rate. Available P increased after compost application and exhibited cyclical seasonal patterns related to DOC. Compost application decreased soil pH relative to unamended soil, but pH increased during the course of the study due to irrigation with sodic water. Increasing the compost application rate increased SOC by 3 months, and levels remained fairly stable to 29 months. In contrast, DOC continued to increase from 3 to 29 months after application, suggesting that compost mineralization and growth of St. Augustinegrass contributed to seasonal dynamics. Dissolved organic C was 75%, 78%, and 101% greater 29 months after application of 0, 80, and 160 Mg compostha(-1), respectively, than before application. Impacts of composts on soil properties indicated that most significant effects occurred within a few months of application. Seasonal variability of SOC, DOC, and available P was likely related to St. Augustinegrass growth stages as well as precipitation, as declines occurred after precipitation events.  相似文献   

7.
Compost air permeability controls air flow through compost during composting or when using compost as biofilter material. Air permeability is therefore an important characteristic of compost. The relationships between air permeability (k(a)) in compost and compost dry bulk density (rho b), gravimetric water content (omega), and volumetric air content (epsilon) was investigated for two types of composts. The composts used were produced from a digested sewage sludge-straw mixture and from garden waste and measurements were conducted on sieved and repacked 100 cm3 compost samples. Results showed a linear relation between log(k(a)) and rho b at constant values of omega for both composts, indicating an exponential relationship between k(a) and rho b. The slopes of these relationships generally became more negative with increasing rho b. The results further showed a linear relationship between log(k(a)) and log(epsilon) for both composts as also often observed for soils. It was observed that the log(k(a)) and log(epsilon) relationships for the garden waste compost all intercepted at the same location despite having very different slopes. This means that it is possible to predict the entire k(a)-epsilon relationship using only one measurement of corresponding (k(a), epsilon) for garden waste. It was not possible to determine whether this was also the case for the sewage sludge compost due to difficulties in sample preparation at low and high water content.  相似文献   

8.
Micronutrient content and availability in composts may be affected by the addition of wood chips or tree bark as a bulking agent in the compost feedstock. In the first part of this study, micronutrient levels were assessed in bark and wood of poplar and willow clones in a short-rotation coppice. Large differences between species were observed in bark concentrations for Cd, Zn and Mn. In the second part of the study, we aimed to determine the effect of feedstock composition and composting on Cd, Zn and Mn concentrations and availability. By means of three composting experiments we examined the effect of (a) bark of different tree species, (b) the amount of bark, and (c) the use of bark versus wood chips. In general, compost characteristics such as pH, organic matter and nutrient content varied due to differences in feedstock mixture and composting process. During the composting process, the availability of Cd, Zn and Mn decreased, although the use of willow and poplar bark or wood chips resulted in elevated total Cd, Zn or Mn concentrations in the compost. Cd concentrations in some composts even exceeded legal criteria. Cd and Zn were mainly bound in the reducible fraction extracted with 0.5 M NH2OH?HCl. A higher acid-extractable fraction for Mn than for Cd and Zn was found. Higher Cd concentrations in the compost due to the use of bark or wood chips did not result in higher risk of Cd leaching. The results of the pH-stat experiment with gradual acidification of composts illustrated that only a strong pH decline in the compost results in higher availability of Cd, Zn and Mn.  相似文献   

9.
Parameters that affect the degree of humification for humic substances (HSs) are deeply related to the maturity of the compost. In general, the matured composts contain HSs with a higher degree of humification. In addition, microbial activities during composting are also one of the indices for compost maturation. Branched-chain fatty acids are metabolites as the result of microbial activities in a soil environment. Such branched-chain fatty acids, regarded as humic precursors, are incorporated into HSs during the composting process. To determine whether branched-chain fatty acids in HSs can be used as biomarkers during composting processes or not, HSs were extracted from three types of composts with the different maturation, and the branched-chain fatty acids in the HSs were analyzed by pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py–GC/MS). HSs with a higher degree of humification (higher aromaticity and lower molecular weight) contained higher levels of branched-chain fatty acids. These results show that branched-chain fatty acids in HSs from matured compost samples can be used as biomarkers, which indicate the history of microbial activities during overall composting process.  相似文献   

10.
Representative samples of the following biowastes typically generated in Castilla La Mancha (Spain) were composted using a pilot-scale closed rotary drum composting reactor provided with adequate control systems: waste from the olive oil industry (olive mill waste; OMW), winery–distillery waste containing basically grape stalk and exhausted grape marc (WDW), and domestic sewage sludge. Composting these biowastes was only successful when using a bulking agent or if sufficient porosity was supported. OMW waste composting was not possible, probably because of its negligible porosity, which likely caused anaerobic conditions. WDW was successfully composted using a mixture of solid wastes generated from the same winery. SS was also successfully composted, although its higher heavy metal content was a limitation. Co-composting was an adequate strategy because the improved mixture characteristics helped to maintain optimal operating conditions. By co-composting, the duration of the thermophilic period increased, the final maturity level improved and OMW was successfully composted. Using the proposed reactor, composting could be accelerated compared to classical outdoor techniques, enabling easy control of the process. Moisture could be easily controlled by wet air feeding and leachate recirculation. Inline outlet gas analysis helped to control aerobic conditions without excessive aeration. The temperature reached high values in a few days, and sufficient thermal requirements for pathogen removal were met. The correct combination of biowastes along with appropriate reactor design would allow composting as a management option for such abundant biowastes in this part of Spain.  相似文献   

11.
In order to study the suitability of composting olive mill wastewater (OMW-L) by repeated applications, OMW-L was added to one mixture of lawn trimmings and olive husks as bulking agents. The composting process of this mixture was compared with another pile having 35% of olive mill wastewater sludge (OMW-S) obtained from evaporation ponds and a third, as a control, without olive mill wastewater. The repeated applications of OMW-L resulted in a sharp decrease in respiration measurements after the first 20 days of composting and showed a re-increase after 40 days following the substituting of OMW-L by water. The OMW-L addition increased the rate of water-soluble phenols in the compost and caused the appearance of a phenol fraction of high molecular-mass (510 kDa) at the end of composting. OMW-L addition also caused a clear decrease in both thermophilic bacteria and thermophilic eumycete counts. A longer persistence of phytotoxicity was observed in comparison with the other piles. However, the OMW-S produced a compost with a high degree of maturity.  相似文献   

12.
Composting of animal manures is believed as an alternative way for directly recycling them in farms, and therefore assessment of compost maturity is crucial for achieving high quality compost. Fluorescence excitation-emission matrices (EEMs) combined with regional integration analysis is presented to assess compost maturity. The results showed that the EEM contours of water-extract organic matter (WEOM) from immature composts exhibited four peaks at excitation/emission (Ex/Em) of 220/340 nm, 280/340 nm, 220/410 nm, and 330/410 nm, whereas EEM contour of WEOM from mature composts had only two peaks at Ex/Em of 230/420 nm and 330/420 nm. Pearson correlation demonstrated that peaks intensity rather than their ratios had a significantly correlation with the common indices assessing compost maturity, whereas the normalized excitation-emission area volumes (Φi,ns) from regional integration analysis had a stronger correlation with the common indices assessing compost maturity than peaks intensity. It is concluded that the Φi,ns from regional integration analysis are more suitable to assess the maturity of compost than the intensities of peaks. Therefore, the fluorescence spectroscopy combined with regional integration analysis can be used as a valuable industrial and research tool for assessing compost maturity, given its high sensitivity and selectivity.  相似文献   

13.
The co-composting of olive mill wastewater with a variety of agricultural wastes was investigated. To reduce the toxicity of the phenolic fraction and to improve the degree of maturity of the compost, inoculation with the white-rot fungus Phanerochaete chrysosporium was carried out during the maturation phase. The results showed that agricultural wastes that contain high levels of lignin-related compounds, such as the residue from trimmings, improved the microbial activity and thus reduced the soluble phenols residue. The inoculation of P. chrysosporium during compost maturation reduced and modified the phenolic fraction, allowing a reduction in the time to reach compost maturity with the improvement in the germination index of 100% after 36 days in two of three trials performed.  相似文献   

14.
Distillery slop is the waste from alcohol manufacture, as from breweries or distilleries, which produce highly organic pollutants. This experiment studied bioextract that used distillery slop instead of molasses as a carbon source for the anaerobic digestion process. In this study, raw materials consisting of water spinach (Impomoea aquatica) residual, pineapple (Ananus comosus) residual, and fresh fish residual were used in the process to obtain the bioextract. The experiment was divided into three parts: a controlled experiment, mixed carbon sources (molasses and distillery slop), and a single carbon source (only distillery slop). The anaerobic digestibility of the bioextract was evaluated by a batch reactor at ambient temperature for a period of 90 days. The results of this study showed, by observing chemical oxygen demand (COD) at the initial and final processes, that the anaerobic digestive processes have a gradually decreasing rate throughout the fermentation period. The pH of the bioextract decreased at the beginning phase from pH 4 and increased to pH 7 in the last phase during the 90-day period. The results of a test with bean seeds showed compost maturity of over 80% following the organic fertilizer standard requirements of Thailand. With respect to variability, the optimal ratio generating the maximal compost maturity was 1:500 for the bioextract using only molasses as a carbon source and 1:250 for the bioextract using only distillery slop as a carbon source.  相似文献   

15.
There are many well‐established bioremediation technologies applied commercially at contaminated sites. One such technology is the use of compost material. Composting matrices and composts are rich sources of microorganisms, which can degrade contaminants to innocuous compounds such as carbon dioxide and water. In this article, composting of contaminated soil and sediment was performed on a laboratory bench‐scale pile. Fertilizer was added to increase the nutrient content, and the addition of commercial compost provided a rich source of microorganisms. After maintaining proper composting conditions, the feasibility of composting was assessed by monitoring pH, total volatile solids, total microbial count, temperature, and organic contaminant concentration. The entire composting process occurred over a period of five weeks and resulted in the degradation of contaminants and production of compost with a high nutritional content that could be further used as inocula for the treatment of hazardous waste sites. © 2006 Wiley Periodicals, Inc.  相似文献   

16.
The goal of this research was to investigate the effect of the C/N ratio on the in-vessel composting, under air pressure, of organic fraction of municipal solid waste in Morocco. Firstly, an in-vessel bioreactor was designed and used to evaluate the appropriate initial pressure for the composting process. Secondly, five bioreactors were run with C/N ratios of 26 (control; no C supplement), 32.2, 38.4, 44.6, and 50.8. Parameters monitored included internal air pressure, C/N ratio, temperature, volatile solids reduction, and maturity of the obtained composts. The relative microbial activity was observed indirectly using volatile solids removal and the relative heat generation data. The experimental results showed that organic waste could be composted within 10?days and the operating initial parameters that converted the most volatile solids and carbons in the feedstock were as follows: 0.6?×?105 Pa for the initial air pressure and 26 for the C/N ratio. Maturity tests, in optimal conditions, showed that the final compost has characteristics of stable compost and can be used as a soil conditioner. In addition, compost obtained from the experiment that considered a C/N ratio of 32.2 showed good maturity levels and may also be used for agricultural applications.  相似文献   

17.
In this study we observed the production of volatile fatty acids (VFAs) during the composting process of compost heaps in two different bioreactors (open and closed) at three different depths (0, 40 and 80 cm). The compost was prepared as a mixture of bio-waste, horse manure, grass and sawdust to ensure sufficient pH conditions in compost heaps. VFA contents in the composting materials were analysed weekly over 14–119 d. The degradation process was monitored, along with temperature, pH, total organic carbon, oxidizable carbon and mono- and oligosaccharides. VFA contents were evaluated with regard to the depth of the sample site in the compost heap and to conditions in the bioreactors. The maximum VFA occurrence was observed during the first 35 d; acetic and propionic acids in particular were determined to occur in each sample. Considerable variations in their formation and elimination were observed in the two bioreactors as well as at the various depths in the compost heaps. Significant correlations were found between individual VFAs, as well as between VFA concentrations and organic carbon contents.  相似文献   

18.
A pollutant solid material called "alperujo" (AL), which is the main by-product from the Spanish olive oil industry, was composted with a cotton waste as bulking agent, and the compost obtained (ALC) was compared with a cattle manure (CM) and a sewage sludge compost (SSC) for use as organic amendment on a calcareous soil. The experiment was conducted with a commercial pepper crop in a greenhouse using fertigation. Composting AL involved a relatively low level of organic matter biodegradation, an increase in pH and clear decreases in the C/N and the fat, water-soluble organic carbon and phenol contents. The resulting compost, which was rich in organic matter and free of phytotoxicity, had a high potassium and organic nitrogen content but was low in phosphorus and micronutrients. The marketable yields of pepper obtained with all three organic amendments were similar, thus confirming the composting performance of the raw AL. When CM and SSC were used for soil amendment, the soil organic matter content was significantly reduced after cultivation, while it remained almost unchanged in the ALC-amended plots.  相似文献   

19.
Changes in the chemical and chemical-structural composition of the organic matter of two different sewage sludges (aerobic and anaerobic) mixed with sawdust (1:1 and 1:3, v/v) during composting were determined by monitoring chemical and microbiological parameters as well as by pyrolysis-gas chromatography. Composting was carried out in periodically turned outdoor piles, which were sampled for analysis 1, 30, 60 and 90 days after the beginning of the composting process. Both volatile organic matter and the water soluble C fraction decreased during composting, indicating that the more labile C fractions are mineralized during the process. Microbial activity as measured by microbial respiration (CO(2) evolved from compost samples during incubation) also decreased with composting, reflecting the more stable character of the resulting compost. No major differences were observed between the four composts studied as regards their chemical-structural characteristics. The acetonitrile, acetic acid and phenol pyrolytic fragment tended to increase with composting. Although the final composts were more aromatic in nature than the starting materials, a low degree of humification was observed in all four composts studied, as determined by their high proportion of polysaccharides and alkyl compounds. For this reason, the relationship between pyrolytic fragments, such as benzene/toluene or benzene+toluene/pyrrol+phenols, which are used as indices of humification for soil organic matter, are not of use for such poorly evolved sludge composts; instead, ratios that involve carbohydrate derivatives and aromatic compounds, such as furfural+acetic/benzene+toluene or acetic/toluene, are more sensitive indices for reflecting the transformations of these materials during composting. Both the chemical and microbiological parameters and pyrolytic analysis provided valuable information concerning the nature of the compost's organic matter and its changes during the composting process.  相似文献   

20.
The influence of bulking agents on organic matter (OM) stability and nitrogen (N) availability in sewage sludge composts was investigated. The same sludge was composted on an industrial plant with different mixtures of bulking agents. The composting process included an active phase and a curing phase, both lasting 6 weeks, separated by the screening of composts. The OM evolution was characterised by carbon (C) and N mass balances in biochemical fractions. The OM stability and N potential availability of final composts were measured during soil incubations. During composting, the C and N losses reached more than 62% of the initial C and more than 45% of the initial N, respectively, due to C mineralisation or N volatilisation and screening. The bulking materials mostly influenced OM evolution during the active phase. They contributed to the mitigation of N losses during the active phase where N immobilisation through active microbial activity was favoured by bulking agents increasing the C:N ratio of the initial mixtures. However, the influence of bulking agents on OM evolution was removed by the screening; this induced the homogenisation of compost characteristics and led to the production of sludge composts with similar organic matter characteristics, C degradability and N availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号