首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Global pollinator declines have been attributed to habitat destruction, pesticide use, and climate change or some combination of these factors, and managed honey bees, Apis mellifera, are part of worldwide pollinator declines. Here we exposed honey bee colonies during three brood generations to sub-lethal doses of a widely used pesticide, imidacloprid, and then subsequently challenged newly emerged bees with the gut parasite, Nosema spp. The pesticide dosages used were below levels demonstrated to cause effects on longevity or foraging in adult honey bees. Nosema infections increased significantly in the bees from pesticide-treated hives when compared to bees from control hives demonstrating an indirect effect of pesticides on pathogen growth in honey bees. We clearly demonstrate an increase in pathogen growth within individual bees reared in colonies exposed to one of the most widely used pesticides worldwide, imidacloprid, at below levels considered harmful to bees. The finding that individual bees with undetectable levels of the target pesticide, after being reared in a sub-lethal pesticide environment within the colony, had higher Nosema is significant. Interactions between pesticides and pathogens could be a major contributor to increased mortality of honey bee colonies, including colony collapse disorder, and other pollinator declines worldwide.  相似文献   

2.
3.
Most animals can modulate nutrient storage pathways according to changing environmental conditions, but in honey bees nutrient storage is also modulated according to changing behavioral tasks within a colony. Specifically, bees involved in brood care (nurses) have higher lipid stores in their abdominal fat bodies than forager bees. Pheromone communication plays an important role in regulating honey bee behavior and physiology. In particular, queen mandibular pheromone (QMP) slows the transition from nursing to foraging. We tested the effects of QMP exposure on starvation resistance, lipid storage, and gene expression in the fat bodies of worker bees. We found that indeed QMP-treated bees survived much longer compared to control bees when starved and also had higher lipid levels. Expression of vitellogenin RNA, which encodes a yolk protein that is found at higher levels in nurses than foragers, was also higher in the fat bodies of QMP-treated bees. No differences were observed in expression of genes involved in insulin signaling pathways, which are associated with nutrient storage and metabolism in a variety of species; thus, other mechanisms may be involved in increasing the lipid stores. These studies demonstrate that pheromone exposure can modify nutrient storage pathways and fat body gene expression in honey bees and suggest that chemical communication and social interactions play an important role in altering metabolic pathways.  相似文献   

4.
Antibacterial properties of honey largely depend on the accumulation of hydrogen peroxide (H2O2), which is generated by glucose oxidase (GOX)-mediated conversion of glucose in diluted honey. However, honeys exhibit considerable variation in their antibacterial activity. Therefore, the aim of the study was to identify the mechanism behind the variation in this activity and in the H2O2 content in honeys associated with the role of GOX in this process. Immunoblots and in situ hybridization analyses demonstrated that gox is solely expressed in the hypopharyngeal glands of worker bees performing various tasks and not in other glands or tissues. Real-time PCR with reference genes selected for worker heads shows that the gox expression progressively increases with ageing of the youngest bees and nurses and reached the highest values in processor bees. Immunoblot analysis of honey samples revealed that GOX is a regular honey component but its content significantly varied among honeys. Neither botanical source nor geographical origin of honeys affected the level of GOX suggesting that some other factors such as honeybee nutrition and/or genetic/epigenetic factors may take part in the observed variation. A strong correlation was found between the content of GOX and the level of generated H2O2 in honeys except honeydew honeys. Total antibacterial activity of most honey samples against Pseudomonas aeruginosa isolate significantly correlated with the H2O2 content. These results demonstrate that the level of GOX can significantly affect the total antibacterial activity of honey. They also support an idea that breeding of novel honeybee lines expressing higher amounts of GOX could help to increase the antibacterial efficacy of the hypopharyngeal gland secretion that could have positive influence on a resistance of colonies against bacterial pathogens.  相似文献   

5.
 Honey bees, Apis mellifera, maintain constant colony temperatures throughout the year. Honey bees fan their wings to cool the colony, and often spread fluid in conjunction with this behavior to induce evaporative cooling. We present an additional, previously undescribed mechanism used by the honey bee to maintain constant colony temperature in response to localized temperature increases. Worker bees shield the comb from external heat sources by positioning themselves on hot interior regions of the hive's walls. Although honey comb and brood comb were both shielded, the temperature-sensitive brood received a greater number of heat shielders and was thus better protected from overheating. Heat shielding appears to be a context-dependent adaptive behavior performed by worker bees who would previously have been considered "unemployed." Received: 16 November 1998 / Accepted in revised form: 31 March 1999  相似文献   

6.
The effect of queen pheromones on worker honey bee ovary development   总被引:11,自引:4,他引:11  
We report results that address a long-standing controversy in honey bee biology, the identity of the queen-produced compounds that inhibit worker honey bee ovary development. As the honey bee is the only organism for which identities have been proposed for any pheromone that regulates reproduction, the resolution of its identity is of broad significance. We examined the effects of synthetic honey bee queen mandibular pheromone (QMP), four newly identified queen retinue pheromone components, and whole-queen extracts on the ovary development of caged worker bees. The newly identified compounds did not inhibit worker ovary development alone, nor did they improve the efficacy of QMP when applied in combination. QMP was as effective as queen extracts at ovary regulation. Caged workers in the QMP and queen extract treatments had better developed ovaries than did workers remaining in queenright colonies. We conclude that QMP is responsible for the ovary-regulating pheromonal capability of queens from European-derived Apis mellifera subspecies.  相似文献   

7.
Although most bees feed on nectar and pollen, several exceptions have been reported. The strangest of all is the habit found in some neotropical stingless bees, which have completely replaced pollen-eating by eating animal protein from corpses. For more than 20 years, it was believed that carrion was the only protein source for these bees. We report that these bees feed not only off dead animals, but on the living brood of social wasps and possibly other similar sources. Using well developed prey location and foraging behaviors, necrophagous bees discover recently abandoned wasps nests and, within a few hours, prey upon all immatures found there.  相似文献   

8.
Social harmony often relies on ritualised dominance interactions between society members, particularly in queenless ant societies, where colony members do not have developmentally predetermined castes but have to fight for their status in the reproductive and work hierarchy. In this behavioural plasticity, their social organisation resembles more that of vertebrates than that of the “classic” social insects. The present study investigates the neurochemistry of the queenless ant species, Streblognathus peetersi, to better understand the neural basis of the high behavioural plasticity observed in queenless ants. We report measurements of brain biogenic amines [octopamine, dopamine, serotonin] of S. peetersi ants; they reveal a new set of biogenic amine influences on social organisation with no common features with other “primitively organised societies” (bumble bees) and some common features with “highly eusocial” species (honey bees). This similarity to honey bees may either confirm the heritage of queenless species from their probably highly eusocial ancestors or highlight independent patterns of biogenic amine influences on the social organisation of these highly derived species.  相似文献   

9.
Floral volatile organic compounds (VOCs) play important roles in plant-pollinator interactions. We investigated the reproductive ecology and floral VOCs of Zygopetalinae orchids to understand the relationship between floral scents and pollinators. We performed focal observations, phenological censuses and breeding system experiments in eight species in southeast Brazil. Floral scents were collected and analysed using SPME/GC-MS. We performed multivariate analyses to group species according to affinities of their VOCs and define compounds associated to each plant. Dichaea cogniauxiana was pollinated by weevils which use their developing ovules, while D. pendula was pollinated by the same weevils and perfume-collecting male euglossine bees. The other species were deceit-pollinated by bees. Zygopetalum crinitum was pollinated by carpenter bees, while W. warreana, Z. mackayi and Z. maxillare were bumblebee-pollinated. The latter was also pollinated by Centris confusa. Breeding system varied widely with no association to any pollinator group. Most VOCs are common to other floral scents. Zygopetalum crinitum presented an exclusive blend of VOCs, mainly composed of benzenoids. The scents of Pabstia jugosa, Promenaea xanthina and the Zygopetalum spp. were similar. The bumblebee-pollinated species have flowering periods partially overlapped, thus neither phenology nor pollinators constitute hybridization barriers among these species. Euglossines are not the only pollinators of Zygopetalinae. Different VOCs, size and lifespan of flowers are associated with distinct pollinators. A distinctive VOC bouquet may determine specialisation in carpenter bees or male euglossines within bee-pollinated flowers. Finally, visitation of deceit-pollinated flowers by perfume-collecting euglossines allows us to hypothesise how pollination by this group of bees had evolved.  相似文献   

10.
Liu F  He J  Fu W 《Die Naturwissenschaften》2005,92(6):297-299
Honey bees have a highly developed nest homeostasis, for example, maintaining low CO2 levels and stable nest temperatures at 35°C.We investigate the role of nest homeostasis in deactivating phenolic compounds present in the nectar of Aloe littoralis. We show that the phenolic content in nectar was reduced (from 0.65% to 0.49%) after nectar was incubated in a nest of Apis cerana, and that it was reduced still more (from 0.65% to 0.37%) if nectar was mixed with hypopharyngeal gland proteins (HGP) of worker bees before being placed inside a nest. HGP had little effect on samples outside a nest, indicating that nest conditions are necessary for HGP to deactivate phenolics in nectar. Consequently, the highly controlled nest homeostasis of honey bees facilitates direct deactivation of phenolics in nectar, and plays a role in the action of HGP as well.  相似文献   

11.
The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae—Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects.  相似文献   

12.
A brood pheromone identified in honeybee larvae has primer and releaser pheromone effects on adult bees. Using gas chromatography–mass spectrometry (GC–MS) to evaluate fatty acid esters—the pheromonal compounds—in different parts of the larvae, we have localized the source of the esters as the larval salivary glands. A histochemical study describes the glands and confirms the presence of lipids in the glands. Epithelial cells of the gland likely secrete the fatty acids into the lumen of the gland. These results demonstrate the salivary glands to be a reservoir of esters, components of brood pheromone, in honeybee larvae.  相似文献   

13.
Several species of Doryphorina leaf beetles from Central- and South America produce oleanane triterpene glycosides in their defensive glands. The presence of pentacyclic triterpenes in insects is intriguing since they lack the key enzymes necessary to synthesize these compounds. Since -amyrin is a common constituent of leaf waxes, we hypothesized that these leaf beetles use this compound as a precursor to their oleanane glycosides. To test this hypothesis we first confirmed the presence of -amyrin in Ipomoea batatas, the food plant of Platyphora kollari. Next, adults of P. kollari were fed for 10 days with I. batatas leaf disks painted with a solution of [2,2,3-2H3]-amyrin ([2,2,3-2H3]-1). The secretion from their defensive glands was collected and analyzed by HPLC-ESIMS. The results demonstrated that the secretion of beetles fed with an amount of [2,2,3-2H3]-amyrin corresponding to the quantity of unlabeled (natural) -amyrin present in the leaf disks contained on average 5.1% of [2,2,3-2H3]-3-O--d-glucopyranosyl-(1-->4)--d-glucuronopyranosyl-hederagenin ([2,2,3-2H3]-2), whereas the secretions of beetles fed with 10 times this amount of [2,2,3-2H3]-amyrin contained on average 23.9% of [2,2,3-2H3]-2. In both series of experiments, the percentage of labeled versus unlabeled triterpene glycoside in the secretion was positively correlated with the amount of deuterated -amyrin ingested. These results demonstrate for the first time that some leaf beetles are able to metabolize a widespread triterpenic constituent of leaf wax into more complex glycosides that are stored in their defensive glands.  相似文献   

14.
Myrmecophily provides various examples of how social structures can be overcome to exploit vast and well-protected resources. Ant nest beetles (Paussinae) are particularly well suited for ecological and evolutionary considerations in the context of association with ants because life habits within the subfamily range from free-living and predatory in basal taxa to obligatory myrmecophily in derived Paussini. Adult Paussini are accepted in the ant society, although parasitising the colony by preying on ant brood. Host species mainly belong to the ant families Myrmicinae and Formicinae, but at least several paussine genera are not host-specific. Morphological adaptations, such as special glands and associated tufts of hair (trichomes), characterise Paussini as typical myrmecophiles and lead to two different strategical types of body shape: while certain Paussini rely on the protective type with less exposed extremities, other genera access ant colonies using glandular secretions and trichomes (symphile type). We compare these adaptations with other taxonomic groups of insects by joining contemporary research and early sources and discuss the possibility of an attracting or appeasing effect of the secretion. Species that are ignored by their host ants might use chemical mimicry instead. Furthermore, vibrational signals may contribute to ant–beetle communication, and chemical signals have proven to play a role in host finding. The powerful defense chemistry of paussines as “bombardier beetles” is not used in contact with host ants. We attempt to trace the evolution of myrmecophily in paussines by reviewing important aspects of the association between paussine beetles and ants, i.e. morphological and potential chemical adaptations, life cycle, host specificity, alimentation, parasitism and sound production.
Stefanie F. GeiselhardtEmail:
  相似文献   

15.
Varroa jacobsoni is an ectoparasite of honey bees which reproduces in capped brood cells. Multi-infestation is frequently observed in worker brood and can be interpreted as an aggregative phenomenon. The aim of this study was to determine whether the distribution of V. jacobsoni in worker brood cells relies on a random or an aggregative process. We studied the distribution of Varroa females in capped worker brood at similar age by comparing, by a Monte Carlo test, the observed frequency distribution of mites per cell to simulated distributions based on a random process. A complementary approach, using the "nearest neighbor distances" (NND) with Monte Carlo tests, was investigated to study the spatial distribution (a) between mites in different cells and (b) between infested cells in brood. The observed distributions did not differ significantly from that expected by a random process, and we conclude that there is no aggregation during invasion of V. jacobsoni in worker brood. Received: 29 April 1999 / Accepted in revised form: 26 August 1999  相似文献   

16.
The morphology of the variously coloured scoli (bristle-bearing structures on the integument, producing an exocrine secretion) on caterpillars of Hyalophora cecropia and the secondary chemistry of the discharged secretions have been investigated for the first time and compared. According to our scanning electron microscopic study, the red/orange, yellow and blue coloured groups of these glands differ morphologically. Gas chromatographic-mass spectrometric analyses showed that the patterns of secondary compounds in the respective glandular secretions are also different. Furthermore, the secretion of the penultimate larval instar is chemically distinct from that of the last instar, as are both secretions from the respective haemolymph. The results favour the idea that the differences in scoli colour, morphology and chemistry could affect various predator species differently.Electronic Supplementary Material  Supplementary material is available for this article if you access the article at . A link in the frame on the left on that page takes you directly to the supplementary material.  相似文献   

17.
The discovery of a novel silk production system in a marine amphipod provides insights into the wider potential of natural silks. The tube-building corophioid amphipod Crassicorophium bonellii produces from its legs fibrous, adhesive underwater threads that combine barnacle cement biology with aspects of spider silk thread extrusion spinning. We characterised the filamentous silk as a mixture of mucopolysaccharides and protein deriving from glands representing two distinct types. The carbohydrate and protein silk secretion is dominated by complex β-sheet structures and a high content of charged amino acid residues. The filamentous secretion product exits the gland through a pore near the tip of the secretory leg after having moved through a duct, which subdivides into several small ductules all terminating in a spindle-shaped chamber. This chamber communicates with the exterior and may be considered the silk reservoir and processing/mixing space, in which the silk is mechanically and potentially chemically altered and becomes fibrous. We assert that further study of this probably independently evolved, marine arthropod silk processing and secretion system can provide not only important insights into the more complex arachnid and insect silks but also into crustacean adhesion cements.  相似文献   

18.
The spontaneous occurrence of colour preferences without learning has been demonstrated in several insect species; however, the underlying mechanisms are still not understood. Here, we use a comparative approach to investigate spontaneous and learned colour preferences in foraging bees of two tropical and one temperate species. We hypothesised that tropical bees utilise different sets of plants and therefore might differ in their spontaneous colour preferences. We tested colour-naive bees and foragers from colonies that had been enclosed in large flight cages for a long time. Bees were shortly trained with triplets of neutral, UV-grey stimuli placed randomly at eight locations on a black training disk to induce foraging motivation. During unrewarded tests, the bees’ responses to eight colours were video-recorded. Bees explored all colours and displayed an overall preference for colours dominated by long or short wavelengths, rather than a single colour stimulus. Naive Apis cerana and Bombus terrestris showed similar choices. Both inspected long-wavelength stimuli more than short-wavelength stimuli, whilst responses of the tropical stingless bee Tetragonula iridipennis differed, suggesting that resource partitioning could be a determinant of spontaneous colour preferences. Reward on an unsaturated yellow colour shifted the bees’ preference curves as predicted, which is in line with previous findings that brief colour experience overrides the expression of spontaneous preferences. We conclude that rather than determining foraging behaviour in inflexible ways, spontaneous colour preferences vary depending on experimental settings and reflect potential biases in mechanisms of learning and decision-making in pollinating insects.  相似文献   

19.
Explanations for the evolution of multiple mating by social insect (particularly honey bee) queens have been frequently sought. An important hypothesis is that multiple mating is adaptive because it increases intracolonial genetic diversity and thereby reduces the likelihood that parasites or pathogens will catastrophically infect a colony. We tested one assumption of this model: that honey bee worker patrilines should differ in disease resistance. We used American foulbrood (caused by the bacterium Paenibacillus larvae) as a model pathogen. We found that patrilines within colonies do indeed vary in their resistance to this disease.  相似文献   

20.
In Acromyrmex octospinosus leaf-cutting ants the metapleural glands produce an array of antibiotic compounds that serve as a general defence against unwanted microbes on the cuticle. Leaf-cutting ants also grow mutualistic Pseudonocardiaceae bacteria on their cuticle that produce antibiotics controlling a microfungal parasite of their fungus gardens. Interaction between this bacterium and gland secretion therefore seems unavoidable. We document the typical development of bacterial growth on the cuticle of young major workers, show that growth starts a few days after eclosion, and that the maximal cover is reached after 2–3 weeks and gradually declines when workers mature. Experimental closure of the metapleural glands had no effect on the initial exponential growth phase of the bacterium, but significantly reduced the cover during the decline phase. The age-dependent abundance of the bacterium and its partial dependence on metapleural gland secretion support the hypothesis that the abundance of this mutualist is actively regulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号