首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
降水和风对大气PM2.5、PM10的清除作用分析   总被引:2,自引:0,他引:2  
对合肥2015—2017年的降水、风和PM_(2.5)、PM_(10)浓度观测数据统计研究发现,降水对PM_(2.5)、PM_(10)有一定的清除作用,尤其在秋冬季节.秋冬季节小雨、中雨分别导致PM_(2.5)和PM_(10)浓度降低23.1%、40.4%和32.0%、63.7%.雨日PM_(2.5)/PM_(10)比例上升8.4%,表明降水对PM_(10)清除作用更显著.降水前后PM_(2.5)浓度变化与降水前PM_(2.5)浓度、降水强度、降水时长密切相关.当降水强度大于4 mm·h~(-1)或PM_(2.5)初始浓度高于115μg·m~(-3)时,降水对PM_(2.5)产生明显清除作用;而降水强度小于1 mm·h~(-1)或PM_(2.5)初始浓度低于115μg·m~(-3)时由于吸湿增长作用极易造成PM_(2.5)浓度反弹升高;且持续3 h以上雨强介于1~4 mm·h~(-1)的降水也对PM_(2.5)产生清除作用.降水前后PM_(10)浓度变化与初始浓度密切相关,而与雨强相关性较弱.当PM_(10)初始浓度大于50μg·m~(-3),降水就对PM_(10)产生明显清除作用,且PM_(10)初始浓度越高,降水后PM_(10)浓度下降越多.风速大于2 m·s~(-1)可显著降低PM_(2.5)浓度,因此,当风速大于4 m·s~(-1)时合肥较少出现中度及以上污染,但易造成地面起尘,使PM_(10)浓度不降反升.合肥冬季严重污染主要出现在西北风向,夏季中度以上污染天气较少,主要出现在风速低于3 m·s~(-1)的东南风向.  相似文献   

2.
利用贵阳市2013~2016年空气质量监测及气象观测资料进行分析,研究云贵高原城市空气变化及气象影响作用.结果表明:近4a贵阳区域SO_2、NO_2、O_(3_8h)、PM_(10)、PM_(2.5)和CO年平均浓度分别为(20.78±19.71),(28.32±9.59),(107.59±27.54),(67.56±34.32),(42.53±24.52)μg/m3和(0.74±0.22)mg/m~3,除SO_2浓度接近或超出我国中东部城市之外,其它污染物均表现为相对清洁水平;地面O_3浓度逐年明显上升,但其它大气污染物水平均呈逐年下降趋势,且呈现与我国中东部一致的空气质量年际、月际和日变化特征.各功能区污染物区域差异明显,颗粒物和SO_2、NO_2、CO浓度水平表现为工业区居民区郊区,O_3浓度呈现为郊区居民区工业区的特征,表明人为活动对空气质量的影响.近4a O_3与PM_(2.5)夏季白天呈显著正相关,冬季显著负相关,反映了云贵高原城市空气质量的复合污染特性.大气污染物浓度与温度、边界层高度、太阳直接辐射和气压的相关性显著,而与相对湿度和风速相关性较弱,这不同于中东部地区风速主导大气污染物水平变化的特征.云贵高原夏季作为主要雨季,小雨和中雨量级降水对PM_(2.5)吸湿增长较弱,中雨以上降水对PM_(2.5)具有清除作用;而在PM_(2.5)浓度较高和干冷的冬季,小雨的PM_(2.5)吸湿增长明显,中雨以上降水对PM_(2.5)清除显著.  相似文献   

3.
针对哈尔滨市的PM_(2.5)空气污染问题,收集整理了哈尔滨市2014年全年的空气污染物数据和气象数据,分析研究了当地PM_(2.5)质量浓度变化特征,找出其影响因素。结果表明,哈尔滨市PM_(2.5)日均质量浓度为72.64μg/m~3,初步达到国家标准。PM_(2.5)月均质量浓度11月最高,约为148.27μg/m~3,9月最低,约为21.07μg/m~3。秋冬两季PM_(2.5)平均质量浓度较高。PM_(2.5)/PM10比例春季最低,约为0.5,PM_(2.5)已成为哈尔滨市可吸入颗粒物中的首要污染物。从PM_(2.5)与SO~2、NO~2、CO的相关性来看,哈尔滨市PM_(2.5)与CO的相关性最高,四季均在0.9左右。各类空气污染物的平均浓度降水日低于非降水日。PM_(2.5)与气象因子的相关性较小,与风速呈负相关。  相似文献   

4.
根据浏阳市城区空气自动监测站点、浏阳市气象站实测数据,得出城区首要污染物、污染因子及其气象因素的月、季均浓度变化图,并求出污染因子和气象因素的相关性。结果表明:PM_(2.5)和O_3对浏阳市城区环境空气污染的贡献较大,SO_2、NO_2、PM_(10)对环境空气质量影响相对较小;空气质量较好的时间段主要集中在第三个季度;NO_2浓度与气温具有极显著的负相关性,与气压具有极显著的正相关性;PM_(10)浓度与风速具有较显著的负相关性;PM_(2.5)浓度与气温具有极显著负相关性,与风速具有较显著负相关性,与气压具有极显著正相关性;O_3浓度与湿度具有较显著负相关性,与气压具有极显著负相关性,与气温具有极显著正相关性。  相似文献   

5.
依据实测北京冬季人体呼吸高度PM_(2.5)质量浓度、湿度、风速、风向、温度数据,利用相关性分析、非线性回归分析、统计分析,分别探讨轻中度空气污染天、一次重污染过程,气象因子对PM_(2.5)质量浓度生成、变化的影响.结果表明:1轻中度污染天,若温度较低、日平均风速较小,湿度大时,湿度是影响PM_(2.5)质量浓度变化的决定性因素;而温度、风速、湿度均较大时,PM_(2.5)质量浓度变化受三者共同作用;当风速、湿度、温度均较小时,PM_(2.5)质量浓度变化主要受前两者影响.这反映出,人体呼吸高度的PM_(2.5)质量浓度变化对气象因子微小变化响应极为敏感.2一次空气质量从良到重度污染的过程中,PM_(2.5)质量浓度积累主要是由于空气湍流较弱、加之湿度大导致的,此外白天西北风、东北风较大,但持续时间短,而夜间东南风、西南风风速较小,持续时间长,也有利于污染物的累积.3短时微小量降雪使温度降低、空气湿度增加,不仅不能降低PM_(2.5)质量浓度,反而使其上升了72%,造成颗粒物浓度的跃升现象.4短时风速较大,风速达到2.0 m·s~(-1),持续2 h,虽然在一定程度上降低局地PM_(2.5)质量浓度,但并不能彻底改变空气质量状况.只有当风速大于3.5 m·s~(-1),且持续4 h以上,才能够迅速地扩散空气中的细颗粒物,空气质量由重度污染转变为优.  相似文献   

6.
该研究基于2013年11-12月的宁波市空气质量监测数据和气象资料数据,分析了PM_(2.5)质量浓度变化特征,探讨了PM_(2.5)与其它粒径颗粒物、气体污染物以及多个气象因子之间的相关性及影响规律,构建了包含气象和污染气体因子的逐步回归模型,综合分析了2类因子对宁波市PM_(2.5)浓度的影响。研究结果表明:(1)研究时间段内的宁波PM_(2.5)质量浓度范围为(100.66±72.98)μg/m~3,超过粗颗粒PM_(2.5-10)的质量浓度,是可吸入颗粒物的主要组成部分。(2)PM_(2.5)与3种污染气体均表现出显著的相关性,其中与CO的质量浓度相关性最高,R=0.85。风速与PM_(2.5)呈现负相关,受西北-北风向影响下的PM_(2.5)浓度要明显高出其它风向影响下的浓度。降水对PM_(2.5)影响显著,降水日的PM_(2.5)平均质量浓度随降水强度呈现幂函数递减,为非降水日的48.4%。非降水日的PM_(2.5)浓度与相对湿度显著正相关,与日照时数显著负相关。(3)逐步回归结果表明,气象和污染气体两类因子能够解释PM_(2.5)浓度82.4%的变异。其中,CO是影响宁波市秋冬季PM_(2.5)浓度的首要显著因子。本研究对明确城市PM_(2.5)污染特征和影响因素具有参考价值和意义。  相似文献   

7.
利用2013—2017年冬季成都市国家环境监测子站PM_(2.5)小时数据,结合MICAPS常规气象观测数据及ERA-interim再分析资料,对成都市2013—2017年冬季空气质量状况、气象条件及近10年大气扩散能力进行综合评估.结果发现,2013—2017年成都冬季12月末—1月初易发生持续性重污染事件,2015—2017年冬季持续性重污染事件总天数较2013—2014年有所减少,2013年冬季PM_(2.5)浓度值最高,达到(149.3±72.2)μg·m~(-3),2015年最低((80.7±44.1)μg·m~(-3)),5年内冬季PM_(2.5)浓度值呈波动下降趋势,下降率为9.65%,成都市冬季空气质量状况总体有所改善.2013—2017年成都冬季日降水量清除率表明,大于1 mm的降水对PM_(2.5)有明显清除作用,而弱风和低边界层(加权平均)对PM_(2.5)的累积效应显著,2013和2016年空气质量较差由于累积气象主控导致,2015年空气质量较优是由于清除气象主控.综合PM_(2.5)浓度、边界层高度、地面风速和降水等因子,使用2498个有效样本构建成都地区冬季空气停滞气象条件阈值经验公式,为地面风速小于2.2 m·s~(-1)、边界层高度小于520 m且无有效降水(日降水量1 mm).以2015年冬季大气扩散条件为基准,量化同等扩散条件下减排对PM_(2.5)的影响,结果显示减排有效,但近10年成都地区大气扩散能力有所下降,说明今后大气污染防控将面临更大的挑战.  相似文献   

8.
利用2012年全年北京市SO_2、NO_y、O_3、CO和PM_(2.5)监测数据,讨论PM_(2.5)和反应性气体的变化特征及其与气象条件的相关关系.结果表明:北京地区2012年PM_(2.5)平均质量浓度为52.0μg/m~3,年波动范围较大,特别是秋冬两季,呈现出慢累积而快清除的变化特征;NO_y、NO、CO、SO_2与PM_(2.5)质量浓度增减呈相同的变化趋势,O_3变化趋势相反;PM_(2.5)质量浓度0~25μg/m~3之间出现的频率最高,为27%;NO_y、NO、CO、SO_2和PM_(2.5)在风速小于3m/s时,随风速增大均呈显著的下降趋势,其中PM_(2.5)的下降率约为25%/m/s,风速大于3m/s后,污染物下降到较低浓度后趋于平缓;清洁天,相对湿度增大对PM_(2.5)质量浓度的影响不显著,而污染天,在较高相对湿度下,PM_(2.5)的质量浓度迅速升高.  相似文献   

9.
岳岩裕  周悦  王晓玲  祝波 《环境科学学报》2018,38(12):4612-4619
基于2013—2016年93次冷锋影响过程,研究了冷锋和降水对武汉市PM_(2.5)浓度增加和降低的影响机制,并对浓度下降幅度开展了定量分析.结果表明:受冷锋影响PM_(2.5)浓度变化表现为"两类五型",其中,PM_(2.5)浓度下降占比为62%,平均下降幅度为41μg·m~(-3),主要发生在中等强度冷锋过程中,下降幅度最大时24 h变温、24 h变压和极大风速的区间分别为-4~-2℃、8~12 hPa和8 m·s~(-1);而PM_(2.5)浓度上升主要出现在弱冷锋影响下,上升幅度最大的相应区间分别为-2~0℃、6 hPa和4 m·s~(-1).直接下降型风速最大,直接上升型冷锋强度偏弱,先升后降型PM_(2.5)浓度平均值最高.71%的冷锋过程伴有降水.对于重污染过程,污染持续时间最长的天气型为低压倒槽,PM_(2.5)浓度值最大的天气型为均压场.同时,清除方式中冷空气和降水共同作用占44.4%,单纯冷空气影响占37.0%,仅冷空气作用时的清除速度最快,下降速度为71.1μg·m~(-3)·d~(-1),但结束时的浓度最高;配合降水时清除效果明显,结束浓度一般在46μg·m~(-3)左右,但清除速率较小.  相似文献   

10.
李珊珊  徐峻  孟凡  闫静 《环境工程》2015,33(12):84-89
采用轨迹模拟与观测资料相结合的方式,对北京市2014年10月6—12日1次典型空气重污染过程的大气环境背景、气象条件和形成原因进行分析。结果表明:京津冀区域稳定的气象条件是形成重污染的主要原因,重污染过程中大气层结稳定,平均逆温强度每100 m为3.42℃,平均风速为1.56 m/s,平均湿度为83.13%;重污染过程中10月8—11日污染最重,北京ρ(PM_(2.5))日均值平均为264μg/m~3,且京津冀约20×104km~2国土面积处于重度污染水平;模拟结果显示污染最重的8—11日区域输送对北京PM_(2.5)贡献率在61%~69%;区域输送对北京PM2.5浓度起着更为重要的作用。  相似文献   

11.
利用2015年6—8月重庆市沙坪坝区大气污染物连续监测数据和LVCJY-02气象数据采集仪获得的同期降水数据,分析夏季降水对大气污染物的清除效果。结果表明:1)日降水强度对大气污染物的清除效果有影响。当日降水量小于5 mm时,降水对大气污染物清除能力较小;当日降水量大于5mm时,污染物清除效果随降水量增大而增大,日降水量越大,清除率越大,空气质量越好,最大清除率可达48.55%。夏季降水强度对各大气污染物平均清除率从大到小依次为PM_(10)、SO_2、 PM_(2.5)、NO_2和O_3。2)日降水时长对大气污染物的影响也存在差异。其中0~5 h时长降水对大气污染物平均清除率为负值;5~10 h时长降水对PM_(10)平均清除效果最好,为6.17%;10~15 h时长降水对NO_2平均清除率最大,为50.67%;15~20 h时长降水对SO_2平均清除率最大,为59.76%;夏季降水时长对SO_2平均清除率最高,随后依次为PM_(10)、NO_2、 PM_(2.5)和O_3。3)累积降水量与PM_(10)和 PM_(2.5)浓度多呈负相关,随着累积降水量的增加,大气颗粒物浓度会有降低,但累积降水量与气态污染物的相关性不如大气颗粒物。  相似文献   

12.
利用2014年12月至2015年11月常州市区6个国控监测站空气污染物浓度逐时数据,分析了PM_(2.5)浓度季节变化特征,采用增强回归树模拟分析了PM10、4种气态污染物和7个气象因子对ρ(PM_(2.5))日变化的贡献.结果表明,常州市区PM_(2.5)污染季节差异明显,冬季污染严重且持续时间长,夏季污染较轻.四季ρ(PM_(2.5))空间分布特征存在一定差异,但各季内不同监测站差异较小.增强回归树对ρ(PM_(2.5))日均值进行模拟和验证得到,训练数据的相关性为0.981,交叉验证的相关性为0.957.此外,模拟值与实测值的标准化平均偏差为1.80%,标准化平均误差为10.41%,可见模型拟合效果较好.PM10、气态污染物、气象因子和区域输送及扩散这4种影响类型对全年ρ(PM_(2.5))日均值差异的贡献率分别为23.4%、28%、36.2%和12.6%,表明在对ρ(PM_(2.5))日均值差异的影响上,气象因子二次形成一次源区域输送及扩散.在对ρ(PM_(2.5))日均值差异贡献率大于5%的因子中,ρ(PM_(2.5))日均值与PM10、相对湿度、CO和O3正相关,与温度、SO2和混合层高度负相关,与大气压和NO2关系较复杂.区域输送及扩散方面,东南风向、偏西风向和偏北风向等上风向周边城市的污染物输送对常州市区PM_(2.5)污染存在较大的负面影响.  相似文献   

13.
基于快速聚类方法分析常州市区PM2.5的统计特性   总被引:1,自引:1,他引:0  
王振  余益军  徐圃青  李艳萍  夏京  殷磊 《环境科学》2016,37(10):3723-3729
运用统计方法研究常州市区2013~2014年6个国控点六项基本污染物(SO_2、NO_2、CO、O_3、PM_(2.5)和PM_(10))月平均浓度变化,结果表明,除O_3外,其它五项污染物月平均浓度夏季较低冬季较高.颗粒物与风速之间的关系为PM_(2.5)浓度随风速的升高一直降低,PM_(10)随风速的升高浓度先降低后升高.采用快速聚类分析(k-means)并运用SWV和DIV指数对六项基本污染物进行分类,得到4个样本分类.与依据颗粒物化学成分或粒径谱对PM进行源解析方法不同,本研究更多是从PM_(2.5)与其它污染物相关关系以及污染程度等角度按照欧式距离进行分类.不同类中PM_(2.5)来源明显不同,类1中PM_(2.5)与化石燃料燃烧排放密切相关,类2与O_3密切相关,类3与城市不完全燃烧排放、区域灰霾污染密切相关,类4可以归类于城市"背景"类.快速聚类分析结果也表明常州市区PM_(2.5)有着复杂的来源.  相似文献   

14.
雾炮作业已经被许多城市作为降低空气颗粒物(PM)浓度的常规手段在使用,但其对PM浓度的降低效果如何目前缺少深入研究。文章通过对受雾炮作业影响和不受其影响监测站空气PM浓度对比分析,就不同条件下雾炮作业降低空气PM浓度问题进行了研究。结果表明,雾炮车对降低城市空气中PM浓度效果非常有限,PM_(10)和PM_(2.5)浓度的降幅为0~2%,有效作用时长为10~15 min,在5~10 min时效果较好;雾炮作业对空气中PM_(2.5)的降低率略高于PM_(10);雾炮作业在污染物浓度上升期、PM_(10)和PM_(2.5)浓度为优和轻度污染、高相对湿度环境下效果更好,原因可能是这些环境条件下有利于雾炮产生的雾滴在空气中的存留。文章研究结果对于规范当前中国城市的雾炮作业具有一定的指导意义。  相似文献   

15.
文章对2013年9~11月金沙区域大气本底站的PM_(2.5)连续在线数据日变化和同期的气象资料的平均日变化进行了分析,并与过去的5年同期数据进行对比分析。结果表明:金沙区域秋季PM_(2.5)质量浓度有明显的日变化规律,受局地排放和气象条件的共同影响,颗粒物质量浓度在凌晨、夜间显著上升。降水对PM_(2.5)的清除量与初始质量浓度、降水量均呈正相关关系,金沙站的云下清除更多取决于PM_(2.5)的初始质量浓度;风向风速对细颗粒物影响明显,来自金沙站北部和东部的气流使大气颗粒物质量浓度升高,而来自西部和南部的风使大气颗粒物浓度降低,大于7 m/s的东风对PM_(2.5)有稀释作用,而北风对细颗粒物几乎无稀释作用。  相似文献   

16.
区域PM_(2.5)浓度影响因子及显著程度对区域PM_(2.5)浓度模拟和污染控制具有重要意义。该研究应用广义加性模型(GAM)建立模型分析2013年京津冀区域PM_(2.5)浓度与AOD、气象因子(相对湿度、温度、降雨量、大气压、风速)和土地利用类型(水体、林地、耕地、建设用地、裸地)之间的相关关系。结果表明,温度、大气压、AOD、林地、建设用地和裸地显著的影响PM_(2.5)浓度;且温度、AOD、裸地、林地与PM_(2.5)存在复杂相关关系,大气压、建设用地与PM_(2.5)浓度存在线性相关关系。GAM模型R~2为0.952,拟合结果与实测结果的线性回归方程系数为0.959,模型交叉验证后得到R2为0.792。结果表明,利用GAM能有效的识别区域PM_(2.5)浓度的影响因子,根据影响因子进行PM_(2.5)浓度拟合并得到可靠的拟合结果。  相似文献   

17.
降雨对不同粒径气溶胶粒子碰撞清除能力   总被引:6,自引:3,他引:3  
董群  赵普生  陈一娜 《环境科学》2016,37(10):3686-3692
利用与惯性碰撞紧密相关的斯托克斯数Stk计算公式,结合海淀宝联大气成分站和海淀自动观测站2012年10月~2014年10月两年实测的逐时PM_(2.5)浓度数据和对应时刻的气象要素数据,并挑选典型降水过程分析降水对不同粒径气溶胶的碰撞清除作用.惯性碰撞是降水对气溶胶的最主要清除方式,斯托克斯数Stk的计算结果显示,降水对粒径小于2μm的气溶胶的直接碰撞清除作用很小,对粒径大于2μm的粗粒子的清除作用相对较大;实际观测数据统计分析表明,PM_(2.5)浓度明显减少的降水过程及降水时次很少,而43.2%的降水时次PM_(2.5)浓度有所升高;通过对典型降水过程气溶胶粒径分布数据分析表明,降水对爱根核模态(0.1μm)和粗模态气溶胶(1.0μm)有明显的清除作用,但对积聚模态清除作用不明显,由于PM_(2.5)的质量浓度主要分布在积聚模态,因此,降水对环境中PM_(2.5)的碰撞清除作用很弱.  相似文献   

18.
利用2014年3月1日至2015年2月28日北京、广州和南京三市6种污染物浓度(PM_(2.5)、PM_(10)、SO_2、CO、NO_2、O_3)的日平均数据,统计分析了三市各污染物浓度的变化特征及其与气象条件的关系。结果表明:(1)3个城市中,广州空气质量最好,南京次之,北京最差。广州优、良出现的天数最多,分别为98和222天,占全年的26.8%和60.8%,没有出现重度污染和严重污染的现象。北京优出现的天数为55天,高于南京的29天,但是中度污染、重度污染和严重污染天数要高于南京,分别为61、34和8天;南京则为30、14和0天,南京没有出现过严重污染。(2)整个1年间,北京PM_(2.5)、PM_(10)、SO_2、NO_2、O_3年平均浓度分别为80.5、112.9、16.8、53.4和57.3μg/m~3,广州平均浓度分别为45.9、67.2、16.6、45.7和47.9μg/m~3,南京平均浓度分别为70.6、120.1、21.5、50.3和54.9μg/m~3,北京、广州和南京CO年平均浓度分别为1.2、1.0和0.9mg/m~3。(3)上述三个城市PM_(2.5)日均值超标率分别为42.7%、7.9%和38.4%,而PM_(10)日均值超标率分别为23.0%、1.6%和25.2%,NO_2日均值超标率分别为14.0%、3.8%和7.1%,CO浓度仅北京超标,超标率为1.4%,3个城市SO_2无超标现象。(4)3个城市SO_2和NO_2均随风速的增大而减小。风速对广州CO浓度影响不大,而北京和南京CO浓度则随风速的增大而减小。风速越大,南京PM_(2.5)和PM_(10)浓度越小,但当风速≥4m/s时,北京PM_(10)和广州PM_(2.5)与PM_(10)浓度增加。此外,风向对污染物的传输也有影响。  相似文献   

19.
运用WRF-CMAQ模式对2016年1月1日~1月7日青岛市的PM_(2.5)重污染天气进行了模拟研究,分析了青岛市PM_(2.5)重污染形成、持续和清除过程的主要影响因素.与观测对比表明,模式能够较好地模拟出青岛市主要气象要素和近地面PM_(2.5)浓度的变化特征.在重污染形成期,持续的西南气流将山东南部、安徽、江苏等地PM_(2.5)及其前体物传输至青岛地区;逆温层的出现及大气边界层高度的降低使得输送至青岛地区的PM_(2.5)在近地面积累,浓度升高.由山东西南部、安徽北部、河南东部等地传输至山东西北部和京津冀地区的PM_(2.5)及其前体物,在重污染持续期沿近地面传输至青岛,加之液相化学过程生成了大量的二次气溶胶,导致PM_(2.5)浓度一直维持在200μg/m~3以上.重污染清除期,风速加大,水平传输作用加强,高浓度的PM_(2.5)污染带向下风向转移.区域传输对此次青岛市PM_(2.5)重污染事件具有重要贡献,3个时期的贡献率分别为87.0%、68.5%和57.6%.  相似文献   

20.
《环境保护科学》2015,(6):94-98
利用2013年哈尔滨市环境监测资料及气象资料,分析了4种主要污染物(PM_(10)、PM_(2.5)、SO_2、NO_2)的时空分布特征及各种气象条件对城市大气污染的影响。结果表明:风速在采暖期对污染物浓度的影响尤为显著,相关系数达-0.87;混合层高度对雾霾天气形成影响较大,PM_(2.5)浓度与混合层高度呈现负相关;气温、气压、降水与PM_(2.5)浓度均有较好相关性,哈尔滨市污染物特征受气象条件影响较大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号