首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 740 毫秒
1.
Establishing protected areas has long been an effective conservation strategy and is often based on readily surveyed species. The potential of any freshwater taxa to be a surrogate for other aquatic groups has not been explored fully. We compiled occurrence data on 72 species of freshwater fishes, amphibians, mussels, and aquatic reptiles for the Great Plains, Wyoming (U.S.A.). We used hierarchical Bayesian multispecies mixture models and MaxEnt models to describe species’ distributions and the program Zonation to identify areas of conservation priority for each aquatic group. The landscape‐scale factors that best characterized aquatic species’ distributions differed among groups. There was low agreement and congruence among taxa‐specific conservation priorities (<20%), meaning no surrogate priority areas would include or protect the best habitats of other aquatic taxa. Common, wideranging aquatic species were included in taxa‐specific priority areas, but rare freshwater species were not included. Thus, the development of conservation priorities based on a single freshwater aquatic group would not protect all species in the other aquatic groups.  相似文献   

2.
Abstract: Conserving rare species and protecting biodiversity and ecosystem functioning depends on sound information on the nature of rarity. Rarity is multidimensional and has a variety of definitions, which presents the need for a quantitative classification scheme with which to categorize species as rare or common. We constructed such a classification for North American freshwater fishes to better describe rarity in fishes and provide researchers and managers with a tool to streamline conservation efforts. We used data on range extents, habitat specificities, and local population sizes of North American freshwater fishes and a variety of quantitative methods and statistical decision criteria, including quantile regression and a cost‐function algorithm to determine thresholds for categorizing a species as rare or common. Species fell into eight groups that conform to an established framework for rarity. Fishes listed by the American Fisheries Society (AFS) as endangered, threatened, or vulnerable were most often rare because their local population sizes were low, ranges were small, and they had specific habitat needs, in that order, whereas unlisted species were most often considered common on the basis of these three factors. Species with large ranges generally had few specific habitat needs, whereas those with small ranges tended to have narrow habitat specificities. We identified 30 species not designated as imperiled by AFS that were rare along all dimensions of rarity and may warrant further study or protection, and we found three designated species that were common along all dimensions and may require a review of their imperilment status. Our approach could be applied to other taxa to aid conservation decisions and serve as a useful tool for future revisions of listings of fish species.  相似文献   

3.
The southern and south-central African terrestrial orchid genus Herschelia contains several rare and endangered species. The distribution patterns of the species were assessed and classified into the Rabinowitz rarity categories. The degree of rarity was correlated with habitat types and with the phylogenetic history. Of the 16 species recognized, two are too poorly known to be assessed further. Of the remainder, three species are shown to be "metaspecies," which can be interpreted as being ancestral to five narrowly endemic species. A. strong correlation between the age of the habitats, the relative age of the species, and the degree of rarity was demonstrated. I review the phylogenetic criteria for prioritizing species for conservation, and I develop a new criterion, the ability of a species to speciate into "new" environments. This suggests that it might be better to conserve metaspecies, which are found in the mountains, rather than the autapomorphic daughter species, which are found in the ephemeral habitats of the lowlands.  相似文献   

4.
Patterns of Rarity in the Birds of the Atlantic Forest of Brazil   总被引:1,自引:0,他引:1  
Patterns of rarity in species are generally explained by several factors: evolutionary history, spatial distribution, and genetic structure of each taxon. Human intervention also leads to or increases rarity in species. The discernment of causes of rarity is essential to the understanding of extinction patterns, and thus to devising conservation strategies. I examine patterns of rarity among bird species in the Atlantic forest region in Brazil, one of the most threatened ecosystems in the world. I assigned bird species to one of eight possible categories that differ in degree of vulnerability and that are based on three parameters of rarity: geographic distribution, habitat specificity, and population size. The Atlantic forest avifauna is a highly endangered group; 68% of the species are rare. Patterns of rarity among the birds in the region likely result from their specific ecologies or evolutionary histories. In addition, human alteration of natural habitats and hunting pressures have undoubtedly influenced rarity for a number of species.  相似文献   

5.
Abstract: Some conservationists argue for a focused effort to protect the most critically endangered species, and others suggest a large‐scale endeavor to safeguard common species across large areas. Similar arguments are applicable to the distribution of scientific effort among species. Should conservation scientists focus research efforts on threatened species, common species, or do all species deserve equal attention? We assessed the scientific equity among 1909 mammals, birds, reptiles, and amphibians of southern Africa by relating the number of papers written about each species to their status on the International Union for Conservation of Nature Red List. Threatened large mammals and reptiles had more papers written about them than their nonthreatened counterparts, whereas threatened small mammals and amphibians received less attention than nonthreatened species. Threatened birds received an intermediate amount of attention in the scientific literature. Thus, threat status appears to drive scientific effort among some animal groups, whereas other factors (e.g., pest management and commercial interest) appear to dictate scientific investment in particular species of other groups. Furthermore, the scientific investment per species differed greatly between groups—the mean number of papers per threatened large mammal eclipsed that of threatened reptiles, birds, small mammals, and amphibians by 2.6‐, 15‐, 216‐, and more than 500‐fold, respectively. Thus, in the eyes of science, all species are not created equal. A few species commanded a great proportion of scientific attention, whereas for many species information that might inform conservation is virtually nonexistent.  相似文献   

6.
The distributions of the majority of the endangered cacti in the Chihuahuan Desert Region are concentrated in the southeastern and eastern segments of the area, where the predominance of narrow endemism is a remarkable phytogeographic phenomenon. We used three criteria—species richness, conservation value, and complementarity—to evaluate 37 cactus-rich area units in the Chihuahuan Desert. The evaluation of these three quantitative parameters together allowed us to determine that seven of these areas (Huizache, Tolimán, Ciudad Victoria, Metztitlán, Cuatro Ciénegas, Jaumave, and Xichú) should be considered conservation priorities because they hold the most significant assemblage of endangered species, in terms of their numbers and their rarity. Conservation actions in these seven areas would protect 52 (55.9%) of the 93 endangered species studied here, most of which have extremely narrow distributions. Geographically, these critical areas are located in the Queretaroan-Hidalgoan arid zone (in the States of Querétaro, Hidalgo, and Guanajuato), in the Jaumave Valley (Tamaulipas), and in two disjunct areas (San Luis Potosí and Coahuila) in the interior of the Chihuahuan Desert.  相似文献   

7.
At local scales, infectious disease is a common driver of population declines, but globally it is an infrequent contributor to species extinction and endangerment. For species at risk of extinction from disease important questions remain unanswered, including when does disease become a threat to species and does it co‐occur, predictably, with other threats? Using newly compiled data from the International Union for Conservation of Nature (IUCN) Red List, we examined the relative role and co‐occurrence of threats associated with amphibians, birds, and mammals at 6 levels of extinction risk (i.e., Red List status categories: least concern, near threatened, vulnerable, endangered, critically endangered, and extinct in the wild/extinct). We tested the null hypothesis that the proportion of species threatened by disease is the same in all 6 Red List status categories. Our approach revealed a new method for determining when disease most frequently threatens species at risk of extinction. The proportion of species threatened by disease varied significantly between IUCN status categories and linearly increased for amphibians, birds, and all species combined as these taxa move from move from least concern to critically endangered. Disease was infrequently the single contributing threat. However, when a species was negatively affected by a major threat other than disease (e.g., invasive species, land‐use change) that species was more likely to be simultaneously threatened by disease than species that had no other threats. Potential drivers of these trends include ecological factors, clustering of phylogenetically related species in Red List status categories, discovery bias among species at greater risk of extinction, and availability of data. We echo earlier calls for baseline data on the presence of parasites and pathogens in species when they show the first signs of extinction risk and arguably before. La Amenaza de Enfermedades Incrementa a Medida que las Especies se Aproximan a la Extinción  相似文献   

8.
Chemical defenses are widespread among animals, and the compounds involved may be either synthesized from nontoxic precursors or sequestered from an environmental source. Defensive sequestration has been studied extensively among invertebrates, but relatively few examples have been documented among vertebrates. Nonetheless, the number of described cases of defensive sequestration in tetrapod vertebrates has increased recently and includes diverse lineages of amphibians and reptiles (including birds). The best-known examples involve poison frogs, but other examples include natricine snakes that sequester toxins from amphibians and two genera of insectivorous birds. Commonalities among these diverse taxa include the combination of consuming toxic prey and exhibiting some form of passive defense, such as aposematism, mimicry, or presumptive death-feigning. Some species exhibit passive sequestration, in which dietary toxins simply require an extended period of time to clear from the tissues, whereas other taxa exhibit morphological or physiological specializations that enhance the uptake, storage, and/or delivery of exogenous toxins. It remains uncertain whether any sequestered toxins of tetrapods bioaccumulate across multiple trophic levels, but multitrophic accumulation seems especially likely in cases involving consumption of phytophagous or mycophagous invertebrates and perhaps consumption of poison frogs by snakes. We predict that additional examples of defensive toxin sequestration in amphibians and reptiles will be revealed by collaborations between field biologists and natural product chemists. Candidates for future investigation include specialized predators on mites, social insects, slugs, and toxic amphibians. Comprehensive studies of the ecological, evolutionary, behavioral, and regulatory aspects of sequestration will require teams of ecologists, systematists, ethologists, physiologists, molecular biologists, and chemists. The widespread occurrence of sequestered defenses has important implications for the ecology, evolution, and conservation of amphibians and reptiles.  相似文献   

9.
Abstract: The International Union for Conservation of Nature (IUCN) Red List of Threatened Species was increasingly used during the 1980s to assess the conservation status of species for policy and planning purposes. This use stimulated the development of a new set of quantitative criteria for listing species in the categories of threat: critically endangered, endangered, and vulnerable. These criteria, which were intended to be applicable to all species except microorganisms, were part of a broader system for classifying threatened species and were fully implemented by IUCN in 2000. The system and the criteria have been widely used by conservation practitioners and scientists and now underpin one indicator being used to assess the Convention on Biological Diversity 2010 biodiversity target. We describe the process and the technical background to the IUCN Red List system. The criteria refer to fundamental biological processes underlying population decline and extinction. But given major differences between species, the threatening processes affecting them, and the paucity of knowledge relating to most species, the IUCN system had to be both broad and flexible to be applicable to the majority of described species. The system was designed to measure the symptoms of extinction risk, and uses 5 independent criteria relating to aspects of population loss and decline of range size. A species is assigned to a threat category if it meets the quantitative threshold for at least one criterion. The criteria and the accompanying rules and guidelines used by IUCN are intended to increase the consistency, transparency, and validity of its categorization system, but it necessitates some compromises that affect the applicability of the system and the species lists that result. In particular, choices were made over the assessment of uncertainty, poorly known species, depleted species, population decline, restricted ranges, and rarity; all of these affect the way red lists should be viewed and used. Processes related to priority setting and the development of national red lists need to take account of some assumptions in the formulation of the criteria.  相似文献   

10.
Abstract:  We assessed the extinction risks of Malagasy amphibians by evaluating their distribution, occurrence in protected areas, population trends, habitat quality, and prevalence in commercial trade. We estimated and mapped the distribution of each of the 220 described Malagasy species and applied, for the first time, the IUCN Red List categories and criteria to all species described at the time of the assessment. Nine species were categorized as critically endangered, 21 as endangered, and 25 as vulnerable. The most threatened species occur on the High Plateau and/or have been subjected to overcollection for the pet trade, but restricted extent of occurrence and ongoing habitat destruction were identified as the most important factors influencing extinction threats. The two areas with the majority of threatened species were the northern Tsaratanana-Marojejy-Masoala highlands and the southeastern Anosy Mountains. The current system of protected areas includes 82% of the threatened amphibian species. Of the critically endangered species, 6 did not occur in any protected area. For conservation of these species we recommend the creation of a reserve for the species of the Mantella aurantiaca group, the inclusion of two Scaphiophryne species in the Convention on the International Trade in Endangered Species Appendix II, and the suspension of commercial collecting for Mantella cowani . Field surveys during the last 15 years reveal no pervasive extinction of Malagasy amphibians resulting from disease or other agents, as has been reported in some other areas of the world.  相似文献   

11.
Abstract:  The Global Strategy of Plant Conservation states that at least 60% of threatened plant species should be within protected areas. This goal has been met in some regions with long traditions of plant protection. We used gap analysis to explore how particular groups of species of conservation interest, representing different types of natural or anthropogenic rarity, have been covered by protected areas on a national scale in Estonia during the last 100 years. Species-accumulation curves indicated that plant species that are naturally rare (restricted global or local distribution, always small populations, or very rare habitat requirements) needed almost twice as many protected areas to reach the 60% target as plant species that are rare owing to lack of suitable management (species depending on grassland management, moderate forest disturbances, extensive traditional agriculture, or species potentially threatened by collecting). Temporal analysis of the establishment of protected areas suggested that grouping plant species according to the predominant cause of rarity accurately reflected the history of conservation decision making. Species found in very rare habitats have previously received special conservation attention; species dependent on traditional extensive agriculture have been largely ignored until recently. Legislative initiative and new nature-protection schemes (e.g., Natura 2000, network of protected areas in the European Union) have had a positive influence on all species groups. Consequently, the species groups needing similar action for their conservation are sensitive indicators of the effectiveness of protected-area networks. Different species groups, however, may not be uniformly conserved within protected areas, and all species groups should fulfill the target of 60% coverage within protected areas.  相似文献   

12.
Abstract:  In the northeastern United States, pitch pine (  Pinus rigida Mill.)–scrub oak ( Quercus ilicifolia Wang.) communities are increasingly threatened by development and fire suppression, and prioritization of these habitats for conservation is of critical importance. As a basis for local conservation planning in a pitch pine–scrub oak community in southeastern Massachusetts, we developed logistic-regression models based on multiscale landscape and patch variables to predict hotspots of rare and declining bird and moth species. We compared predicted moth distributions with observed species-occurrence records to validate the models. We then quantified the amount of overlap between hotspots to assess the utility of rare birds and moths as indicator taxa. Species representation in hotspots and the current level of hotspot protection were also assessed. Predictive models included variables at all measured scales and resulted in average correct classification rates (optimal cut point) of 85.6% and 89.2% for bird and moth models, respectively. The majority of moth occurrence records were within 100 m of predicted habitat. Only 13% of all bird hotspots and 10% of all moth hotspots overlapped, and only a few small patches in and around Myles Standish State Forest were predicted to be hotspots for both taxa. There was no correlation between the bird and moth species-richness maps across all levels of richness ( r =−0.03, p = 0.62). Species representation in hotspots was high, but most hotspots had limited or no protection. Given the lack of correspondence between bird and moth hotspots, our results suggest that use of species-richness indicators for conservation planning may be ineffective at local scales. Based on these results, we suggest that local-level conservation planning in pitch pine–scrub oak communities be based on multitaxa, multiscale approaches.  相似文献   

13.
Female choice on the basis of male traits has been described in an array of taxa but has rarely been demonstrated in reptiles. In the sand lizard (Lacerta agilis), and possibly in other non-territorial reptiles, a male's contribution to a female's fitness is restricted to his genes. In order to choose males of high genetic quality, females have to trade the fitness gain against the costs of active choice. In a Swedish population of sand lizards, long-lived males sired offspring with higher embryonic survival compared to offspring sired by short-lived males. In spite of this female sand lizards did not mate selectively with older and/or larger males. There appeared to be mo reliable cues to male longevity; age-specific male body size was highly variable. Furthermore, estimates of male nuptial coloration did not covary with ectoparasite load and, hence, females cannot use male coloration as a cue to heritable resistance to pathogenic parasite effects. When cues to male genetic quality are poor, or inaccurate, and males make no parental investment, we predict that female choice will be rare. Sand lizard females mating with many partners lay clutches with higher hatching success. Thus, females may obtain good genes for their young by multiple mating, thereby avoiding costs associated with mate choice.  相似文献   

14.
Geographical Range Size and the Conservation of Mexican Mammals   总被引:2,自引:0,他引:2  
Range was estimated for the 423 noninsular mammals of Mexico to identify those species with more restricted distributions and to detect priority areas for conservation based on the presence of such species. Thirty-eight percent of nonvolant mammals and 15.4% of bats are restricted in Mexico to areas of less than 114,000 km2. Restricted species were defined as those occurring in ranges smaller than the median for bats and for nonvolant species. Following this criterion, most nonvolant species with restricted distribution in Mexico are either endemic to the country or are shared with the United States, whereas endemic chiropteran species are few, and most Mexican bats with restricted distribution also occur in South America. Nonvolant mammals with restricted distribution in Mexico tend to be of small body size, herbivore or granivore, and fossorial or semifossorial. Among bats, gleaners are significantly more restricted than aerial insectivores. Species with restricted distribution are inadequately represented in the current official list of endangered species, particularly in the case of nonvolant mammals. Similarly, some areas of Mexico that harbor several species with restricted distribution are not represented in the Mexican system of protected areas. Therefore, rarity, in this case measured by the area of distribution, should be included as an additional criterion for conservation of the Mexican mammal fauna.  相似文献   

15.
Evaluation of Museum Collection Data for Use in Biodiversity Assessment   总被引:12,自引:0,他引:12  
Abstract: Natural-history collections in museums contain data critical to decisions in biodiversity conservation. Collectively, these specimen-based data describe the distributions of known taxa in time and space. As the most comprehensive, reliable source of knowledge for most described species, these records are potentially available to answer a wide range of conservation and research questions. Nevertheless, these data have shortcomings, notably geographic gaps, resulting mainly from the ad hoc nature of collecting effort. This problem has been frequently cited but rarely addressed in a systematic manner. We have developed a methodology to evaluate museum collection data, in particular the reliability of distributional data for narrow-range taxa. We included only those taxa for which there were an appropriate number of records, expert verification of identifications, and acceptable locality accuracy. First, we compared the available data for the taxon of interest to the "background data," comprised of records for those organisms likely to be captured by the same methods or by the same collectors as the taxon of interest. The "adequacy"of background sampling effort was assessed through calculation of statistics describing the separation, density, and clustering of points, and through generation of a sampling density contour surface. Geographical information systems (GIS) technology was then used to model predicted distributions of species based on abiotic (e.g., climatic and geological) data. The robustness of these predicted distributions can be tested iteratively or by bootstrapping. Together, these methods provide an objective means to assess the likelihood of the distributions obtained from museum collection records representing true distributions. Potentially, they could be used to evaluate any point data to be collated in species maps, biodiversity assessment, or similar applications requiring distributional information.  相似文献   

16.
In the U.S. rare and endangered species protection is a public policy responsibility commonly ascribed to the federal or state governments. We make three related claims: 1) the scale of local and regional land use control and open-space acquisitions matches the range sizes of many rare, endemic species, 2) land acquisition is the most attractive approach to conserving many rare taxa, especially endangered flora, and 3) at least some local governments and non-governmental organizations have the policy capacity necessary to identify, acquire, and manage critical habitats for endangered species. Although local involvement can have conservation payoffs throughout the United States, we focus on California in general and, in particular, use as a case study the biology and political resources of four adjoining counties in the central coast region of the state: San Mateo, Santa Cruz, Santa Clara, and Monterey. We close with a discussion of policy implications for coordinating local, state, and federal conservation efforts. These include 1) brokering land acquisition deals with input from public land managers and private owners, 2) shifting funding priorities for rare, well-known species away from research to habitat acquisition and management, and 3) encouraging biologists to invest more effort in local land use regulations so that they may make more effective use of local land management and conservation opportunities.  相似文献   

17.
Many conservation actions are justified on the basis of managing biodiversity. Biodiversity, in terms of species richness, is largely the product of rare species. This is problematic because the intensity of sampling needed to characterize communities and patterns of rarity or to justify the use of surrogates has biased sampling in favor of space over time. However, environmental fluctuations interacting with community dynamics lead to temporal variations in where and when species occur, potentially affecting conservation planning by generating uncertainty about results of species distribution modeling (including range determinations), selection of surrogates for biodiversity, and the proportion of biodiversity composed of rare species. To have confidence in the evidence base for conservation actions, one must consider whether temporal replication is necessary to produce broad inferences. Using approximately 20 years of macrofaunal data from tidal flats in 2 harbors, we explored variation in the identity of rare, common, restricted range, and widespread species over time and space. Over time, rare taxa were more likely to increase in abundance or occurrence than to remain rare or disappear and to exhibit temporal patterns in their occurrence. Space–time congruency in ranges (i.e., spatially widespread taxa were also temporally widespread) was observed only where samples were collected across an environmental gradient. Fifteen percent of the taxa in both harbors changed over time from having spatially restricted ranges to having widespread ranges. Our findings suggest that rare species can provide stability against environmental change, because the majority of species were not random transients, but that selection of biodiversity surrogates requires temporal validation. Rarity needs to be considered both spatially and temporally, as species that occur randomly over time are likely to play a different role in ecosystem functioning than those exhibiting temporal structure (e.g., seasonality). Moreover, temporal structure offers the opportunity to place management and conservation activities within windows of maximum opportunity.  相似文献   

18.
The causes of species rarity are of critical concern because of the high extinction risk associated with rarity. Studies examining individual rare species have limited generality, whereas trait‐based approaches offer a means to identify functional causes of rarity that can be applied to communities with disparate species pools. Differences in functional traits between rare and common species may be indicative of the functional causes of species rarity and may therefore be useful in crafting species conservation strategies. However, there is a conspicuous lack of studies comparing the functional traits of rare species and co‐occurring common species. We measured 18 important functional traits for 19 rare and 134 common understory plant species from North Carolina's Sandhills region and compared their trait distributions to determine whether there are significant functional differences that may explain species rarity. Flowering, fire, and tissue‐chemistry traits differed significantly between rare and common, co‐occurring species. Differences in specific traits suggest that fire suppression has driven rarity in this system and that changes to the timing and severity of prescribed fire may improve conservation success. Our method provides a useful tool to prioritize conservation efforts in other systems based on the likelihood that rare species are functionally capable of persisting.  相似文献   

19.
Effects of Economic Prosperity on Numbers of Threatened Species   总被引:2,自引:0,他引:2  
Abstract: We used data from over 100 countries to investigate the link between numbers of threatened species and per-capita gross national product. We corrected for factors that might otherwise confound such a relationship. Our study was motivated by the continuing debate over the relationship between environmental degradation and per-capita income. Proponents of the environmental Kuznets-curve hypothesis argue that although environmental degradation may increase initially, increases in per-capita income will eventually result in greater environmental quality. Theoretical objections and the lack of widespread empirical evidence recently have thrown doubt on the existence of such a pattern. Treating threat to biodiversity as one potential indicator of environmental degradation, we divided threatened species into seven taxonomic groups ( plants, mammals, birds, amphibians, reptiles, fishes, and invertebrates) and analyzed each group separately. Count-data regression analysis indicated that the number of threatened species was related to per-capita gross national product in five of seven taxonomic groups. Birds were the only taxonomic group in which numbers of threatened species decreased throughout the range of developed countries' per-capita gross national product. Plants, amphibians, reptiles, and invertebrates showed increasing numbers of threatened species throughout this same range. If these relationships hold, increasing numbers of species from several taxonomic groups are likely to be threatened with extinction as countries increase in prosperity. A key challenge is to understand the interactions among consumer preferences, biology, and institutions that lead to the relationship observed for birds and to see whether this knowledge can be applied to conservation of other taxa.  相似文献   

20.
Abstract:  The herpetofauna (amphibians and reptiles) of northwestern forests (U.S.A.) is diverse, and many species are locally abundant. Most forest amphibians west of the Cascade Mountain crest are associated with cool, cascading streams or coarse woody material on the forest floor, which are characteristics of mature forests. Extensive loss and fragmentation of habitat resulted from logging across approximately 50% of old-growth forests in northern California and approximately 80% of stands in Oregon and Washington. There is a complex landscape mosaic and overlap of northern and southern biotic elements in the Klamath-Siskiyou Region along the Oregon and California border, creating a biodiversity hotspot. The region experiences many low-severity fires annually, punctuated by periodic major fires, including the Biscuit fire, the largest in North America in 2002. In the fire's northern portion, severe fire occurred on >50% of stands of young, managed trees but on only about 25–33% of old-growth stands. This suggests that the legacy of timber harvest may produce fire-prone stands. Calls for prescribed fire and thinning to reduce fuel loads will remove large amounts of coarse woody material from forests, which reduces cover for amphibians and alters nutrient inputs to streams. Our preliminary evidence suggests no negative effects of wildfire on terrestrial amphibians, but stream amphibians decrease following wildfire. Most reptiles are adapted to open terrain, so fire usually improves their habitat. Today, the challenge is to maintain biodiversity in western forests in the face of intense political pressures designed to "prevent" catastrophic fires. We need a dedicated research effort to understanding how fire affects biota and to proactively investigate outcomes of fuel-reduction management on wildlife in western forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号