首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to evaluate the effect of hairy vetch cover crop residue on runoff losses of atrazine and metolachlor under both no-till corn field plots and from a laboratory runoff system. A 2-year field study was conducted in which losses of atrazine and metolachlor from vetch and non-vetch field plots were determined from the first runoff event after application (5 and 25 days after application in 1997 and 1998, respectively). A laboratory study was conducted using soil chambers, designed to simulate field soil, water, vegetation, and herbicide treatment conditions, subjected to simulated rain events of 5, 6, 20 and 21 days after application, similar to the rainfall pattern observed in the field study. Atrazine losses ranged from 1.2 to 7.2% and 0.01 to 0.08% and metolachlor losses ranged from 0.7 to 3.1% and 0.01 to 0.1% of the amount applied for the 1997 and 1998 runoff events, respectively. In the laboratory study, atrazine runoff losses ranged from 6.7 to 22.7% and 4.2 to 8.5% and metolachlor losses ranged from 3.6 to 9.8% and 1.1 to 4.7% of the amount applied for the 5-6 and 20-21 day events, respectively. The lower losses from the field study were due to smaller rainfall amounts and a series of small rains prior to the runoff event that likely washed herbicides off crop residue and into soil where adsorption could occur. Runoff losses of both herbicides were slightly higher from non-vetch than vetch field plots. Losses from the laboratory study were related to runoff volume rather than vegetation type.  相似文献   

2.
Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler-irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47-mm rain falling in a 2-hour event 24 hours after application of alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)-acetamide) and atrazine (6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2, 4-diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its' solubility were observed. When the herbicides were applied in 64,000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally-treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

3.
Abstract

Rainfall simulation was used with small packed boxes of soil to compare runoff of herbicides applied by conventional spray and injection into sprinkler‐irrigation (chemigation), under severe rainfall conditions. It was hypothesized that the larger water volumes used in chemigation would leach some of the chemicals out of the soil surface rainfall interaction zone, and thus reduce the amounts of herbicides available for runoff. A 47‐mm rain falling in a 2‐hour event 24 hours after application of alachlor (2‐chloro‐N‐(2,6‐diethylphenyl)‐N‐(methoxymethyl)‐acetamide) and atrazine (6‐chloro‐N‐ethyl‐N‐(1‐methylethyl)‐1,3,5‐triazine‐2,4‐diamine) was simulated. The design of the boxes allowed a measurement of pesticide concentrations in splash water throughout the rainfall event. Initial atrazine concentrations exceeding its’ solubility were observed. When the herbicides were applied in 64000 L/ha of water (simulating chemigation in 6.4 mm irrigation water) to the surface of a Tifton loamy sand, subsequent herbicide losses in runoff water were decreased by 90% for atrazine and 91% for alachlor, as compared to losses from applications in typical carrier water volumes of 187 L/ha. However, this difference was not due to an herbicide leaching effect but to a 96% decrease in the amount of runoff from the chemigated plots. Only 0.3 mm of runoff occurred from the chemigated boxes while 7.4 mm runoff occurred from the conventionally‐treated boxes, even though antecedent moisture was higher in the former. Two possible explanations for this unexpected result are (a) increased aggregate stability in the more moist condition, leading to less surface sealing during subsequent rainfall, or (b) a hydrophobic effect in the drier boxes. In the majority of these pans herbicide loss was much less in runoff than in leachate water. Thus, in this soil, application of these herbicides by chemigation would decrease their potential for pollution only in situations where runoff is a greater potential threat than leaching.  相似文献   

4.
Phytoremediation encompasses an array of plant-associated processes known to mitigate contaminants from soil, sediment, and water. Modification of pesticides associated with agricultural runoff includes processes directly associated with aquatic macrophytes in addition to changes in soil geochemistry and associated rhizospheric degradation. Remediation attributes of two vegetative species common to agricultural drainages in the Mississippi Delta, USA, were assessed using atrazine and lambda-cyhalothrin. Concentrations used in 8-d hydroponic exposures were calculated using recommended field applications and a 5% runoff model from a 0.65-cm rainfall event on a 2.02-ha field. While greater atrazine uptake was measured in Juncus effusus, greater lambda-cyhalothrin uptake occurred in Ludwigia peploides. Maximum pesticide uptake was reached within 48h for each exposure and subsequent translocation of pesticides to upper plant biomass occurred in macrophytes exposed to atrazine. Sequestration of 98.2% of lambda-cyhalothrin in roots of L. peploides was measured after 8d. Translocation of lambda-cyhalothrin in J. effusus resulted in 25.4% of pesticide uptake partitioned to upper plant biomass. These individual macrophyte remediation studies measured species- and pesticide-specific uptake rates, indicating that seasonality of pesticide applications and macrophyte emergence might interact strongly to enhance mitigation capabilities in edge-of-field conveyance structures.  相似文献   

5.
The chemical fate and movement of pesticides may be subject to transient storage in unsaturated soils during periods of light rainfall, and subsequent release into shallow groundwater by increased rainfall. The objective of this study was to conduct field-scale experiments to determine the relative importance of transient storage and subsequent release of agrichemicals from the vadose zone into potential aquifers. Two field-scale experiments were conducted under a rain exclusion shelter. In the 1x experiment, atrazine and chlorpyrifos were applied at application-rate equivalents (1.6 kg ha(-1) and 1.3 kg ha(-1), respectively). In the 4x experiment, atrazine was applied in an amount that was four times greater than that usually applied to fields (6.7 kg ha(-1)). Water was either applied to simulate rain or withheld to simulate dry periods. In the 1x experiment, atrazine was detected in the water samples whereas chlorpyrifos was not detected in the majority of the samples. The dry period imposed on the treatment plot did not appear to result in storage of the chemicals, whereas the wet period resulted in greater leaching of atrazine, although the concentrations remained less than the Maximum Contaminant Level of 3 microg L(-1). Both chemicals were detected in soil samples collected from a 20- to 30-cm depth, but it appeared that both chemicals dissipated before the field experiment was concluded. It appeared that the one-time application of atrazine and chlorpyrifos at the label rates did not result in a sufficient mass to be stored and flushed in significant concentrations to the saturated zone. When atrazine was applied at 4x and a longer drought period was imposed on the treatment plot, the resulting concentrations of dissolved atrazine were still less than 3 microg L(-1) . Atrazine was detected in only the near-surface (0 to 15 cm) soil samples and the herbicide dissipated before the onset of the dry period in the treatment plot. The results of this field study demonstrated that atrazine and chlorpyrifos were not sufficiently persistent to be stored and then released in significantly large concentrations to the saturated zone. The dissipation half-life of atrazine in the 4x application was about 44 days. This study, in addition to others, suggested that atrazine may be less persistent in surface soil than has been generally reported.  相似文献   

6.
Atrazine sorption and fate in a Ultisol from humid tropical Brazil   总被引:1,自引:0,他引:1  
This study combined laboratory based microcosm systems as well as field experiments to evaluate the mobility of atrazine on a Ultisol under humid tropical conditions in Brazil. Results from sorption experiments fit to the Freundlich isotherm model [K(f) 0.99 mg kg(-1)/(mg l(-1))(1/n)], and indicate a low sorption capacity for atrazine in this soil and consequently large potential for movement by leaching and runoff. Microcosm systems using (14)C-atrazine to trace the fate of the applied herbicide, showed that 0.33% of the atrazine was volatilized, 0.25% mineralized and 6.89% was recorded in the leachate. After 60 d in the microcosms, 75% of the (14)C remained in the upper 5 cm soil layer indicating atrazine or its metabolites remained close to the soil surface. In field experiments, after 60 d, only 5% of the atrazine applied was recovered in the upper soil layers. In the field experiments atrazine was detected at a depth of 50 cm indicating leaching. Simulating tropical rain in field experiments resulted in 2.1% loss of atrazine in runoff of which 0.5% was adsorbed onto transported soil particles and 1.6% was in solution. Atrazine runoff was greatest two days after herbicide application and decreased 10 fold after 15 d. The use of atrazine on Ultisols, in the humid tropics, constitutes a threat to water quality, causing surface water and ground water pollution.  相似文献   

7.
Losses by leaching of chlorotoluron, isoproturon and triasulfuron from small intact columns of a structured clay loam and an unstructured sandy loam soil were measured in five separate field experiments. In general, losses of all three herbicides were greater from the clay loam than from the sandy loam soil and the order between herbicides was always triasulfuron > isoproturon > chlorotoluron. Differences between experiments were also consistent for every soil/herbicide combination. There was no relationship between total loss and either total rainfall or cumulative leachate volume. When weighting factors were applied to the rainfall data to make early rainfall more important than later rainfall, there were significant positive relationships between cumulative weighted rainfall and total losses. Also, there were significant negative correlations between total losses and the delay to accumulation of 25 mm rainfall (equivalent to one pore volume of available water) in the different experiments. In laboratory incubations, there was a more rapid decline in aqueous (0.01 M calcium chloride) extractable residues than in total solvent extractable residues indicating increasing sorption with residence time. However, the rate of change in water extractable residues could not completely explain the decrease in leachability with ageing of residues in the field. Short-term sorption studies with aggregates of the two soils indicated slower sorption by those of the clay loam than by those of the sandy loam suggesting that diffusion into and out of aggregates may affect availability for leaching in the more structured soil. Small scale leaching studies with aggregates of the soils also demonstrated reductions in availability for leaching as residence time in soil was increased, which could not be explained by degradation. These results therefore indicate that time-dependent sorption processes are important in controlling pesticide movement in soils, although the data do not give a mechanistic explanation of the changes in leaching with ageing of residues.  相似文献   

8.
Laabs V  Amelung W  Pinto A  Altstaedt A  Zech W 《Chemosphere》2000,41(9):1441-1449
Pesticide pollution of ground and surface water is of growing concern in tropical countries. The objective of this pilot study was to evaluate the leaching potential of eight pesticides in a Brazilian Oxisol. In a field experiment near Cuiabá, Mato Grosso, atrazine, chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, metolachlor, monocrotofos, simazine, and trifluraline were applied onto a Typic Haplustox. Dissipation in the topsoil, mobility within the soil profile and leaching of pesticides were studied for a period of 28 days after application. The dissipation half-life of pesticides in the topsoil ranged from 0.9 to 14 d for trifluraline and metolachlor, respectively. Dissipation curves were described by exponential functions for polar pesticides (atrazine, metolachlor, monocrotofos, simazine) and bi-exponential ones for apolar substances (chlorpyrifos, lambda-cyhalothrin, endosulfane alpha, trifluraline). Atrazine, simazine and metolachlor were moderately leached beyond 15 cm soil depth, whereas all other compounds remained within the top 15 cm of the soil. In lysimeter percolates (at 35 cm soil depth), 0.8-2.0% of the applied amounts of atrazine, simazine, and metolachlor were measured within 28 days after application. Of the other compounds less than 0.03% of the applied amounts was detected in the soil water percolates. The relative contamination potentials of pesticides, according to the lysimeter study, were ranked as follows: metolachlor > atrazine = simazine > monocrotofos > endsulfane alpha > chlorpyrifos > trifluraline > lambda-cyhalothrin. This order of the pesticides was also achieved by ranking them according to their effective sorption coefficient Ke, which is the ratio of Koc to field-dissipation half-life.  相似文献   

9.
Abstract

The Foliar Washoff of Pesticides (FWOP) Model was developed to provide an empirical simulation of pesticide washoff from plant leaf surfaces as influenced by rainfall amount. To evaluate the technique, simulations by the FWOP Model were compared to those by the foliar washoff algorithm of the Chemical, Runoff and Erosion from Agricultural Management Systems (CREAMS) Model. The two algorithms were linked individually to the Pesticide Runoff Simulator (PRS) for the comparison. Five years of test data from a Mississippi watershed were used to evaluate six insecticides (carbaryl, profenofos, methyl parathion, permethrin, phorate, and toxaphene).

Initially, the FWOP model was used to evaluate the relative impact of chemical distribution (foliage versus soil) on the subsequent foliar washoff and soil surface contributions to runoff losses. Results indicated that runoff losses were low If all of the insecticide was applied to the foliage whereas high losses occurred if applied only to the soil. When an assumed application was distributed between the plant and soil (i.e., 90% to foliage and 10% to soil), predicted runoff losses compared well with observed field data (<3% of the application rate).

Except for toxaphene, the FWOP model generally predicted less washoff and subsequent runoff losses than the CREAMS approach. Simulated toxaphene washoff losses were in good agreement with observed field data. Statistical comparisons of the two modeling approaches using the Kolmogorov‐Smirnov test showed differences in the two cumulative frequency distributions for washoff but smaller differences for runoff. Average 5‐year runoff losses, however, were greater using the CREAMS approach—by factors of 2, 3, and 3 for profenofos, methyl parathion and phorate, respectively.

Results from this study will be useful for upgrading current exposure assessment models to more accurately address foliar washoff losses of pesticides as well as for assessing the impact of foliar‐applied chemicals on environmental quality.  相似文献   

10.
Bioremediation is the use of living organisms, primarily microorganisms, to degrade environmental contaminants into less toxic forms. Nine biobeds (ground cavity filled with a mixture of composted organic matter, topsoil, and a surface grass) were established at Kentucky State University research farm (Franklin County, KY) to study the impact of this practice on reducing surface runoff water contamination by residues of dimethazone and trifluralin herbicides arising from an agricultural field. Biobed (biofilter) systems were installed at the bottom of the slope of specially designed runoff plots to examine herbicides retention and degradation before entering streams and rivers. In addition to biobed systems, three soil management practices: municipal sewage sludge (SS), SS mixed with yard waste compost (SS + YW), and no-mulch rototilled bare soil (NM used for comparison purposes) were used to monitor the impact of soil amendments on herbicide residues in soil following natural rainfall events. Organic amendments increased soil organic matter content and herbicide residues retained in soil following rainfall events. Biobeds installed in NM soil reduced dimethazone and trifluralin by 84 and 82%, respectively in runoff water that would have been transported down the land slope of agricultural fields and contaminated natural water resources. Biobeds installed in SS and SS+YW treatments reduced dimethazone by 65 and 46% and trifluralin by 52 and 79%, respectively. These findings indicated that biobeds are effective for treating dimethazone and trifluralin residues in runoff water.  相似文献   

11.
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 microg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 microg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 microg/L in the NCGA sites and from 1.04 to 4.1 microg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were > or = 1 microg/L throughout the season, while DEA concentrations were mostly <0.5 microg/L before planting but increased after planting and application of herbicides to concentrations >2 microg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 microg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall.  相似文献   

12.
The present work describes the application of an analytical procedure, utilizing ultra performance liquid chromatography (UPLC) coupled with mass spectrometry instrumentation, for the determination of 253 multiclass pesticides, classified in six different groups. Solid phase extraction was applied for the isolation and pre-concentration of target compounds in water samples. Surface waters of the lakes located in Northern Greece (Volvi, Doirani, and Kerkini), were collected in two time periods (fall/winter 2010 and spring/summer 2011) and analyzed, applying the developed analytical methods. Spatial distribution of detected pesticides was visualized using interpolation methods and geographical information systems (GIS). Pesticides with maximum concentrations were amitrole, propoxur, simazine, chlorpyrifos, carbendazim, triazophos, disulfoton-sulfone, pyridaben, sebuthylazine, terbuthylazine, atrazine, atrazine-desethyl, bensulfuron-methyl, metobromuron, metribuzin, rotenone, pyriproxyfen, and rimsulfuron. In Lake Kerkini, mainly carbamates and triazines were determined at elevated concentrations, near the coastal point of the NW side of the lake. Seasonal variations were strong among the applied pesticide classes and determined concentrations, indicating the contribution of pesticide application patterns and rainfall. Lake Doirani exhibited organophosphate pesticides at higher concentrations mainly at coastal points, while triazines emerged as the main pollutant during spring sampling. Lake Volvi exhibited the highest pesticide concentrations, mostly triazines and ureas at the central part of the lake. The occurrence of extreme values and nonconstant seasonal variations indicated that the concentrations were increased disproportionately during the second sampling, as a result of the varying contribution of pollution sources right after the application period. In all cases, the total concentration of pesticides increased during the second sampling period.  相似文献   

13.
The retention and behavior of two herbicides, metribuzin [4-amino-6-tert-butyl-4, 5-dihydro-3-methylthio-1, 2, 4-triazin-5-one] and DCPA [1, 4-Benzenedicarboxylic acid, 2, 3, 5, 6-tetrachloro-, dimethyl] ester, in runoff and seepage water from agricultural fields were investigated. The objectives of this investigation were to: (i) determine the dissipation and half-life (T 1/2) of metribuzin and DCPA herbicides in soil under three management practices: chicken manure (CM), sewage sludge (SS), and no-mulch native soil (NM); (ii) monitor herbicides residues in runoff and infiltration water following addition of soil amendments; and (iii) determine the impact of soil amendments on the transport of NO3, NH4, and PO4 from soil into surface and subsurface water. Half-life (T 1/2) values of metribuzin were 24, 18, and 12 d in CM, SS, and NM treatments, respectively. Similarly, T 1/2 values of DCPA were greater in CM and SS incorporated soil (45.8 and 52.2 d, respectively) compared to NM native soil (26.2 d). Addition of CM and SS to native agricultural soil increased water infiltration, lowering runoff water volume and herbicide residues in runoff following natural rainfall events. We concluded that soil amendments could be used to intercept pesticide-contaminated runoff from agricultural fields. This practice might provide a potential solution to pesticide contamination of surface and seepage water from farmlands.  相似文献   

14.
Solid-phase microextraction coupled with gas chromatography-mass spectrometry (SPME-GC-MS) was used to analyze two triazine (atrazine and simazine) and three chloroacetamide herbicides (acetochlor, alachlor, and metolachlor) in water samples from a midwest US agricultural drainage ditch for two growing seasons. The effects of salt concentration, sample volume, extraction time, and injection time on extraction efficiency using a 100-mum polydimethylsiloxane-coated fiber were investigated. By optimizing these parameters, ditch water detection limits of 0.5 microgL(-1) simazine and 0.25 microgL(-1) atrazine, acetochlor, alachlor, and metolachlor were achieved. The optimum salt concentration was found to be 83% NaCl, while sample volume (10 or 20 mL) negligibly affected analyte peak areas. The optimum extraction time was 40 min, and the optimum injection time was 15 min. Results indicated that atrazine levels in the ditch water exceeded the US maximum contaminant level for drinking water 12% of the time, and atrazine was the most frequently detected among studied analytes.  相似文献   

15.
Pesticide contamination of ground water in the United States--a review   总被引:2,自引:0,他引:2  
Over 70 pesticides have been detected in ground water. Aldicarb and atrazine along with the soil fumigants EDB and DCP and DBCP have been the pesticides most frequently detected in ground water. Atrazine concentrations have been correlated with high nitrate concentrations. The triazine herbicides, simazine and cyanazine, have also been detected in ground water. The annual amount of recharge, soil type, depth of aquifer from the surface, nitrate contamination and soil pH are important field parameters in determining ground-water contamination potential by pesticides. Pesticide leaching is reduced by proper choice of crop rotation, increasing pesticide application efficiency, and integrated pest management.  相似文献   

16.
In this study, preliminary tests were conducted aiming to validate the use of ceramic porous cup for collecting soil water samples and monitoring pesticides contents, as usually made for nitrates. Interactions between porous cup and pesticides were examined under different experimental conditions for three herbicides (atrazine, isoproturon, 2,4-D) and one insecticide (carbofuran).

The results showed that ceramic was not inert for pesticides : as much as 80% of the applied pesticide could be retained during the flowing of the first tenth milliliters of solution. Interactions were attributed to sorption and “screening” of molecules by the porous walls and were related to the ionic character of pesticides. However, retention was not irreversible, since pesticides were quickly released by rinsing with distilled water.

After these tests, porous ceramic cups could be considered as suitable samplers for pesticide determinations in soil solution, contingent on gaining further informations about soil - porous cup - pesticide interactions.  相似文献   


17.
A contamination of off-site aquatic environments with pesticides has been observed in the tropics, yet only sparse information exists about pesticide fate in such ecosystems. The objective of our semi-field study was to elucidate the fate of alachlor, atrazine, chlorpyrifos, endosulfan, metolachlor, profenofos, simazine, and trifluralin in the aqueous environment of the Pantanal wetland (MT, Brazil). To this aim, water and water/sediment microcosms of two sizes (0.78 and 202 l) were installed in the outskirts of this freshwater lagoon environment and pesticide dissipation was monitored for up to 50 d after application. The physical-chemical water conditions that developed in the microcosms were reproducible among field replicates for both system sizes. Pesticide dissipation was substantially enhanced for most pesticides in small microcosms relative to the large ones (reduced DT(50) by a factor of up to 5.3). The presence of sediment in microcosms led to increased persistence of chlorpyrifos, endosulfan, and trifluralin in the test systems, while for polar pesticides (alachlor, atrazine, metolachlor, profenofos, and simazine) a lesser persistence was observed. Atrazine, simazine, metolachlor, and alachlor were identified as the most persistent pesticides in large water microcosms (DT(50) > or = 47 d); in large water/sediment systems endosulfan beta, atrazine, metolachlor, and simazine showed the slowest dissipation (DT(50) > or = 44 d). A medium-term accumulation in the sediment of tropical ecosystems can be expected for chlorpyrifos and endosulfan isomers (11-35% of applied amount still extractable at 50 d after application). We conclude that the persistence of the studied pesticides in aquatic ecosystems of the tropics is not substantially lower than during summer in temperate regions.  相似文献   

18.
A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha?1, respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.  相似文献   

19.
The Soil and Water Assessment Tool (SWAT) was calibrated for hydrology conditions in an agricultural watershed of Orestimba Creek, California, and applied to simulate fate and transport of two organophosphate pesticides chlorpyrifos and diazinon. The model showed capability in evaluating pesticide fate and transport processes in agricultural fields and instream network. Management-oriented sensitivity analysis was conducted by applied stochastic SWAT simulations for pesticide distribution. Results of sensitivity analysis identified the governing processes in pesticide outputs as surface runoff, soil erosion, and sedimentation in the study area. By incorporating sensitive parameters in pesticide transport simulation, effects of structural best management practices (BMPs) in improving surface water quality were demonstrated by SWAT modeling. This study also recommends conservation practices designed to reduce field yield and in-stream transport capacity of sediment, such as filter strip, grassed waterway, crop residue management, and tailwater pond to be implemented in the Orestimba Creek watershed.  相似文献   

20.
含莠去津和乙草胺河水灌溉对苗期水稻危害的研究   总被引:3,自引:0,他引:3  
本文以1988、1992和1993年洋河流域张家口市部分水稻田污染受害事故为背景,通过事故现场调查资料分析、洋河水质监测、宣化区污染源调查、水稻的药害暴露实验和模型计算,研究了含有除草剂莠去津和乙草胺的河水灌溉对苗期水稻的危害。结果显示,河水中莠去津和乙草胺对水稻苗期的安全灌溉浓度分别为0.01mg/L和0.05mg/L;河水中莠去津对水稻的致死浓度是0.1mg/L;pH、NH3-N和表面活性剂对这种危害作用具有一定的协同效应;为了满足河水对水稻的灌溉水质要求,污染源允许排放的莠去津和乙草胺分别为1.0kg/d和2.0kg/d。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号