共查询到19条相似文献,搜索用时 46 毫秒
1.
于2019年8—9月,采用大气预浓缩-气相色谱质谱联用仪(GC-MS)对泰州市3个监测点位环境空气中57种挥发性有机物(VOCs)进行分析,并开展了VOCs组成特征、臭氧生成潜势(OFP)、VOCs来源及健康风险评价研究。结果表明:3个点位环境空气中φ(VOCs)范围为1.3×10^(-9)~46.9×10^(-9),平均值为8.5×10^(-9)。烷烃在VOCs中所占比例最大。各点位φ(VOCs)平均值依次为:工业园区>公园路>天德湖公园。公园路点位VOCs中苯系物受汽车尾气排放影响较大,天德湖公园和工业园区点位除了受汽车尾气排放影响,还受到有机溶剂和涂料的挥发影响,主要受本地污染主导。OFP中贡献最大的物质为乙烯,OFP值为5.5μg/m^(3),其次为烷烃。健康风险评价结果显示,各点位VOCs非致癌类风险均较低,处于安全范围内。各点位夏季环境空气中苯对人体均具有一定致癌风险。 相似文献
2.
利用手工及自动监测数据,结合最大增量反应活性(MIR)系数法,对广州市大气挥发性有机物(VOCs)污染特征及臭氧生成潜势(OFP)进行了研究。结果表明:广州市大气VOCs总体积分数为73.85×10-9,其中,丙烷、甲醛、乙酸乙酯的体积分数最高,分别为5.59×10-9、4.87×10-9、4.25×10-9。组成特征分析结果显示,含氧挥发性有机物(OVOCs)和烷烃为主要污染物种类,分别贡献了总VOCs的34.32%和32.34%。在空间分布上,各站点VOCs体积分数自南向北不断降低,番禺市桥站(南部,76.16×10-9)>公园前站(中部,75.58×10-9)>花都梯面站(北部,69.80×10-9)。广州市大气中甲醛和乙醛的比值为1.22,表明本地排放对广州市醛酮类化合物的贡献较大;乙苯和间/对-二甲苯的比值为0.35,表明广州市气团老化程度低,VOCs主要受本地排放影响;甲苯和苯的比值显示,公园前站苯系物主要受机... 相似文献
3.
青岛市环境空气中VOCs的污染特征及化学反应活性 总被引:9,自引:0,他引:9
利用2012年青岛市挥发性有机物(VOCs)监测数据,系统分析了VOCs的污染特征、来源和化学反应活性。结果表明,青岛市VOCs浓度处于较低水平,且烷烃是VOCs的主要组分,占60%以上。夏、秋季的VOCs浓度高于春、冬季,且9月的浓度高于其他月份,日变化呈现\"两峰一谷\"趋势,与交通早晚高峰对应。VOCs各组分均表现出周末效应,说明机动车源和工业源的重要影响,优势物种的相关性分析进一步证明了这一点。对比各组分的OH消耗速率,得出烯烃的臭氧生成贡献高于烷烃和芳香烃,控制机动车尾气、溶剂挥发、化石工业等VOCs排放源将有利于降低大气中的臭氧浓度。 相似文献
4.
在2020年8月11—15日的一次典型光化学污染过程中,在江苏省东南沿江传输通道城市同步开展了大气挥发性有机物(VOCs)的加密观测,使用基于观测的OBM模型诊断了典型城市臭氧(O_(3))生成机制,并分析其污染成因,梳理了通道城市VOCs化学组成特征、O_(3)生成潜势(OFPs)及污染日与清洁日的差异。结果表明,监测期间大部分城市呈现首尾(8月11和15日)O_(3)超标、中间达标的特征,气象要素影响较小,与前体物关联更为密切。沿江通道城市污染日VOCs总体积分数为15.79×10^(-9)~54.9×10^(-9),均值为31.88×10^(-9),是清洁日城市总体积分数均值(18.08×10^(-9))的1.76倍。南京、镇江、扬州等城市O_(3)生成总体处于VOCs控制区,泰州8月11日处于NOx控制区。各城市VOCs化学组成均以烷烃为主(平均占比31.8%),其次是含氧挥发性有机物(OVOCs)(26.5%)和卤代烃(19.1%),其他组分占比较低。污染日烷烃、炔烃和芳香烃的体积分数升幅显著高于其他类组分,尤其是芳香烃,增幅为45.1%~296.3%。各城市OFPs中,优势组分均为芳香烃和烯烃,其中乙烯、丙烯、甲苯、乙苯和间对二甲苯等物种质量浓度在污染日上升显著,对O_(3)生成影响较大。 相似文献
5.
2018年4月至2019年3月对杭州市城区大气中117种挥发性有机物(VOCs)开展了为期一年的手工采样观测,分析了VOCs各组分的浓度特征、臭氧生成潜势(OFP)和二次有机气溶胶(SOA)生成潜势。结果显示,观测期杭州市大气VOCs体积分数均值为(56.72±29.56)×10-9,含氧挥发性有机物(OVOCs)、烷烃和卤代烃是其主要组分,分别占33.86%、30.70%、15.73%。VOCs体积分数前10位的物种为丙烷、甲醛、异丁烷、乙烷、乙酸乙酯、二氯甲烷、正丁烷、丙酮、甲苯和1,2-二氯乙烷。杭州市VOCs的OFP为135.18×10-9,各VOCs组分的OFP贡献为OVOCs(45%)>芳香烃(22%)>烯烃和炔烃(21%)>烷烃(11%)>卤代烃(1%),其中甲醛、乙烯和乙醛是OFP主要贡献者。SOA生成潜势为1.64μg/m3,芳香烃是最重要的SOA前体物。SOA生成潜势最大的5种VOCs物种为甲苯、对/间二甲苯、乙苯、邻二甲苯和苯,因此控制来自机动车尾气和溶剂使用过程中产生的VO... 相似文献
6.
基于2016-2022年南京市大气挥发性有机物(VOCs)自动监测数据,分析VOCs污染特征及其臭氧生成潜势(OFP).结果表明:2016-2022年南京市大气VOCs及其组分体积分数均显著下降,TVOCs 7年均值为21.7 × 10-9,各组分占比从大到小依次为烷烃>烯烃>芳香烃>炔烃;TVOCs及烷烃、烯烃、芳香烃季节变化一致,均为冬季>秋季>春季>夏季,炔烃为冬季>春季>秋季>夏季;TVOCs及烷烃、烯烃、炔烃月变化整体呈\"V\"字型特征,芳香烃近似为\"W\"型;除炔烃外,小时体积分数日变化基本呈\"单峰型\"特征.2016-2022年OFP年际变化呈显著下降趋势,7年均值为132.1µg/m3;OFP贡献较大的组分为烯烃(39.1%)和芳香烃(38.1%),臭氧生成的VOCs关键物种为乙烯、间/对二甲苯、甲苯、丙烯和异戊二烯,控制烯烃和芳香烃排放有利于南京市的臭氧污染防治. 相似文献
7.
利用南京市2022年挥发性有机物(VOCs)在线监测数据,对VOCs污染特征、来源及对臭氧的影响进行了分析研究。结果表明:2022年南京市φ(TVOCs)年均值为25.1×10-9,其中各组分占比为烷烃>含氧挥发性有机物(OVOCs)>氯代烃>烯烃>芳香烃>炔烃。TVOCs及烷烃、烯烃和芳香烃的体积分数季节变化表现为冬季>秋季>春季>夏季,φ(OVOCs)季节变化表现为夏季>秋季>春季>冬季。烷烃、烯烃和炔烃日变化呈“双峰型”特征,芳香烃和氯代烃为“单峰型”。臭氧生成潜势(OFP)贡献总体表现为OVOCs>烯烃>芳香烃>烷烃>氯代烃>炔烃,但冬季烯烃的贡献率最高。南京市臭氧生成的关键VOCs物种为乙醛、乙烯、丙烯、间/对-二甲苯和甲苯。正交矩阵因子分解结果显示,机动车尾气、生物质燃烧和工业生产是南京VOCs的主要来源;对南京臭氧生成贡献最大的VOCs来源为溶剂涂料使用和石化行业。 相似文献
8.
为探究威海市秋季挥发性有机物(VOCs)污染特征及来源,于2021年9月10—20日采用手工加密监测法对威海市秋季大气中VOCs进行监测,分析了气象因素对臭氧(O3)及其前体物的影响和VOCs污染特征,并利用正交矩阵因子模型(PMF)方法对VOCs来源进行了研究。结果表明,威海市温度对O3生成影响明显,尤其是高温、低湿、扩散较差气象条件下,有利于O3前体物的反应消耗,促使O3生成及累积。观测期间,威海市秋季φ(VOCs)平均值为47.84×10-9,VOCs中体积分数占比最高的为含氧挥发性有机物(OVOCs),占比为58.0%,其次为烷烃(21.6%)、卤代烃(10.2%)。O3生成潜势(OFP)平均值为393.95μg/m3,对OFP的贡献占比最高的为OVOCs(74.1%),其次为芳香烃(12.6%)、烷烃(7.0%)和烯烃(5.4%)。PMF源解析结果显示,机动车尾气排放源、工艺过程源、船舶尾气排放源和溶剂使用源是威海市秋季VOCs排放主要来源,贡献占比分别为30.4%,23.9%,21.1%,16.5%。控制机动车排放和工艺过程排放是控制威海市秋季VOCs污染的重要途径。 相似文献
9.
江苏省是长江三角洲的重要组成,近年来以臭氧(O3)和细颗粒物(PM2.5)为特征的区域复合型污染突出。挥发性有机物(VOCs)是O3和PM2.5的重要前体物。2020年4月、8月和2021年1月在江苏省13个城市开展大气VOCs样品离线同步观测,在此基础上分析了江苏省大气VOCs的浓度水平、化学组成和空间分布。整体来看,全省平均VOCs体积分数为40.3×10-9,其中烷烃(41.8%)是主要贡献者,其次为含氧有机物(16.6%)、芳香烃(12.5%)、卤代烃(12.9%)和烯烃(9.6%)。从具体城市来看,VOCs高值区主要集中在苏南及苏中地区,呈现出明显的“南高北低”的区域分布特征,排名前3的城市分别为常州(52.0×10-9)、泰州(49.8×10-9)和苏州(45.2×10-9)。臭氧生成潜势(OFP)表明,芳香烃和烯烃是对江苏省O3生成贡献最大的组分,OFP排名前3的组分均包括间/对二甲苯、甲苯和乙烯。利用正交矩阵因子(PMF)模型对江苏省VOCs进行来源解析,共解析出5个因子。工业排放是主要贡献者(40.1%),之后依次为机动车尾气(33.0%)、溶剂与涂料使用(15.9%)、油气挥发(8.4%)和天然源(2.6%)。对于省内各市而言,VOCs来源结构具有差异。常州、苏州工业排放源相对贡献最高;连云港、徐州、扬州和淮安的机动车尾气相对贡献较高;溶剂与涂料使用和油气挥发对各市VOCs贡献较低。优先控制交通相关排放和工业相关排放能够有效地控制长三角中部地区的大气O3和PM2.5污染问题。 相似文献
10.
2017年9月1日至11月30日采用Syntech Spectras GC955在线气相色谱仪对杭州市不同功能区大气环境中的挥发性有机化合物(VOCs)进行了在线连续监测,分析了不同功能区VOCs及各组分的体积分数、日变化规律及大气化学反应活性。结果显示,下沙周边工业区总VOCs浓度整体高于朝晖周边居民区,其中夜间更为显著。烷烃和芳香烃浓度在夜间时段工业区较居民区高得更为明显,其中芳香烃组分表现尤为突出,2个功能区烯烃体积分数相差不大。杭州市主要VOCs体积分数总体上在国内处于中间水平。不同功能区烷烃和芳香烃均呈现夜间浓度高于白天的日变化特征,居民区各VOCs组分日变化基本呈现双峰结构,工业区烷烃和芳香烃体积分数日变化呈现单峰结构,烯烃体积分数没有明显的日变化特征。不同功能区中芳香烃对臭氧生成潜势贡献最大,烯烃次之,烷烃贡献最小。下沙周边工业区大气化学活性(尤其是芳香烃组分)较朝晖周边居民区强。同种VOCs物质在不同功能区对臭氧生成潜势的贡献大小不同,但关键贡献物质均为低碳烷烃、低碳烯烃及苯系物。 相似文献
11.
于2019年在南通市采用TH-300B大气挥发性有机物(VOCs)在线分析仪对57种VOCs开展在线监测,对比分析了VOCs组分变化、季节变化、日变化特征,并用最大增量反应活性(MIR)估算了VOCs的臭氧生成潜势(OFP),找到了南通市VOCs的优控物种.结果表明,2019年南通市VOCs平均体积分数为15.57×1... 相似文献
12.
利用物料衡算和源排放测试对江苏省典型汽车涂装企业VOCs排放特征进行研究,并提出最佳治理技术。结果表明,大客车单位涂装面积VOCs排放量达到300 g/m2以上,小轿车为40~60 g/m2。苯系物是VOCs排放的重要组分,最高占比为33.2%~64.6%。乙酸丁酯、异丙醇、丁醇等醇酯类物质近年来广泛用于代替苯系物溶剂,其排放占比为29.6%~61.2%。汽车涂装行业最佳治理技术包括采用3C1B、水性免中涂等先进涂装工艺,用粉末涂料、水性涂料和高固体成分涂料等代替溶剂型涂料,从源头控制排放。采用干式漆雾分离技术、转轮浓缩吸附-蓄热式焚烧技术等先进尾气治理技术,VOCs去除率可达99%以上。 相似文献
13.
家具制造企业密集区空气中VOCs污染状况及健康风险评价 总被引:3,自引:0,他引:3
采用Tenax管吸附-热脱附-气相色谱法测定家具制造企业密集区空气中挥发性有机物(VOCs),并应用美国国家环保局(USEPA)的健康风险评价模型评估其对周边人群的影响。结果表明,家具制造企业密集区总VOCs的质量浓度为0.931 mg/m3,11种目标物中乙酸乙酯、丙酮和乙酸丁酯所占比例较高,分别占总VOCs的20.2%、10.7%和9.1%。该区总VOCs的累积非致癌风险指数为3.47×10-7,低于1,不会对人体产生明显的非致癌健康危害;其累积致癌风险指数为2.49×10-5,是可接受致癌风险值(1.0×10-6)的25倍,可能对人群存在致癌影响。 相似文献
14.
针对某化工园区重点行业企业挥发性有机物(VOCs)污染问题,通过对其中50家企业的原料、设备、数据调查以及现场考察,总结其VOCs的使用种类与数量、治理设备与排放情况。对一些典型VOCs排放企业分析,提出针对性减污措施。根据化工园区的VOCs特点与危害性,提出管理、控制、治理等方面的建议。 相似文献
15.
对典型医化园区中的挥发性有机物(VOCs)污染特征进行研究,采用便携式气相色谱质谱法监测园区及周边14个点位的环境空气,大气预浓缩气相色谱质谱法监测10个点位排气筒中废气。结果表明,废气中非甲烷总烃为1. 77~218 mg/m3,环境空气中甲苯、二氯甲烷、丙酮、乙酸乙酯、四氢呋喃的质量浓度分别为0. 048~0. 833,0. 022~3. 07,0. 011~0. 312,0. 004~0. 754和0. 004~0. 529 mg/m3;废气和环境空气中均检出含量较高的芳香烃、卤代烃、酯类、酮类等化合物,以及园区特征的氟苯类和噻吩类化合物。园区环境空气明显受到工业源VOCs污染,分布趋势为生产越密集区域VOCs值越高,经过园区后沿着风向逐渐降低,园区下风向11 km处可测到园区特征氟苯类物质。 相似文献
16.
利用2020年3月28日—5月3日南京某典型化工园区挥发性有机物(VOCs)离线监测数据,分析了园区内VOCs污染特征及臭氧生成潜势(OFP)。结果表明,春季园区φ(VOCs)范围为22.3×10-9 ~892.6×10-9,82.1%频率的φ(VOCs)<100×10-9;VOCs组分占比表现为:烷烃>含氧挥发性有机物(OVOCs)>烯烃>卤代烃>芳香烃>炔烃>有机硫。高体积分数VOCs中烷烃和烯烃占比高于低体积分数VOCs,受园区内部储罐存储、运输、转运等过程产生的油气挥发及石油化工原料、合成材料的生产影响显著。不同时刻φ(VOCs)表现为夜间最高、早晨其次、下午最低的变化特征,这与园区内部VOCs排放累积、大气边界层抬升和大气光化学反应等因素有关。OFP值范围为166.2~6 920.9 ,μg/m3,56.0%频率的OFP<500。 相似文献
17.
针对现有TH_PKU-300B挥发性有机机物快速在线监测系统在测定含氧挥发性有机化合物(OVOCs)、含氮挥发性有机物(NVOCs)和高沸点挥发性有机物时存在灵敏度低、精密度差、线性响应较差、记忆效应明显等不足,根据其原理,对其GC-MS通道的部分气路进行改进。通过实验对比分析,证明改进后的仪器系统响应更加灵敏、线性拟合度更高、精密度及解析效率均显著提高,同时检出限也由改进前的体积分数0.1×10~(-9)~1.0×10~(-9)降低至0.02×10~(-9)~0.08×10~(-9),并解决了记忆效应问题。改进后的系统在OVOCs、NVOCs和高沸点挥发性有机物测定方面要优于原系统。 相似文献
18.
综合考虑国内外优先控制污染物筛选的方法,结合实际调查情况,制定了石家庄市大气中优先控制挥发性有机物筛选的原则。对检出率高、贡献率高,可能对人体健康存在潜在危害性的挥发性有机物作筛选,提出了包含20种化合物的优先控制名单,其中卤代烃7种,芳香烃5种,酯类3种,酮类2种,烯烃、醛类和硫化物各1种。从化合物的用途和应用领域分析,医药化工行业可能是石家庄市区大气中挥发性有机物的主要排放源。 相似文献
19.
简述了我国制药工业概况和行业挥发性有机物(VOCs)排放现状,解读了生态环境部和国家市场监督管理总局联合发布的《制药工业大气污染物排放标准》(GB 37823—2019),介绍了该标准的分类控制思路、控制重点、污染物控制指标设置、排放限值确定以及无组织控制要求等内容与特点。该标准从全过程控制的角度构建了适用于制药工业的VOCs控制指标体系,对完善制药工业污染物排放管理体系、补齐VOCs污染防治短板、打赢蓝天保卫战具有重要的支撑作用。 相似文献