首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为提高酿酒废水产甲烷效率,采用新型单室无膜微生物电解池(MEC),以酿酒废水为基质,考察不同外加电压(0.4 V、0.8 V、1.2 V)和传统消化(AD)对COD的去除、甲烷产生速率和能量回收的影响.结果表明,MEC外加电压为0.8 V时,COD的去除负荷达7.09±0.74 kg m~(-3)·d~(-1),较厌氧消化AD(4.19(±0.5)kg m~(-3) d~(-1))增加了69%.外加电压显著促进了乙醇的降解,0.4 V、0.8 V、1.2 V的MEC乙醇降解速率分别为121.84.17±19.3 mgL~(-1_ h~(-1)、256.45±18.04 mgL~(-1) h~(-1)、625.57±81.76 mgL~(-1) h~(-1),分别是AD(88.02±15.13 mg L~(-1) h~(-1))的1.38倍、2.91倍和7.1倍.外加0.8 V,甲烷产生速率达到2019.78±76.41 mL L~(-1) d~(-1),与AD(851.91±48.31 mLL~(-1) d~(-1))相比,增加了1.37倍;总能量回收率达到77.75%±0.88%,是AD(39.59%±2.31%)的1.97倍.循环伏安扫描(CV)发现MEC的碳毡在-0.270 V附近和0.035 V附近存在明显的还原峰和氧化峰.菌群高通量测序表明MEC的优势菌群为Methanothrix sp.和Geobacter sp.,其在混合菌群中的相对丰度分别为38.4%和12.83%,AD对应菌群的相对丰度仅为8.72%和1.21%.上述结果表明新型微生物电解池可显著促进酿酒废水的处理并提高甲烷产生速率和能量回收率.  相似文献   

2.
为进一步挖掘酿酒副产物黄水的资源化利用空间,构建不锈钢单室微生物电解池(MEC)处理黄水并实现能源回收.以4%的黄水为基质,考察不同外加电压(0.4V、0.6V、0.8V、1.0V)对黄水处理过程中化学需氧量(COD)去除、各有机酸降解、甲烷产生及能量平衡等的影响.结果表明,当外加0.8V电压时,MEC中COD去除率达到94.90%±0.70%,较对照组(AD)的82.00%±0.70%增加了12.90%±0.74%.同时,COD去除负荷达(5.27±0.51)kgm~(-3)d~(-1),是AD(3.45±0.09)kgm~(-3)d~(-1)的1.53倍.对反应中甲烷产生速率和有机酸组分变化分析表明,当外加0.6V电压时,MEC中的甲烷产生速率为(1818.54±145.77)mLL~(-1)d~(-1),比AD(1014.88±121.44)mLL~(-1)d~(-1)增加了78.19%;当外加电压为0.8V时,MEC中的乙醇去除速率为(102.37±14.65)mgL~(-1)h~(-1),是AD组(57.31±10.45)mgL~(-1)h~(-1)的1.79倍;AD组的最高丙酸浓度高达(1436.10±84.42)mg/L,而外加1.0V电压的MEC组,其最高丙酸浓度为(845.57±76.72)mg/L,较之降低了(590.53±7.73)mg/L.当反应周期结束时,AD中残留的乙酸和丙酸浓度分别是MEC(外加0.8V电压)中的93.57和5.31倍.最后,反应器能量平衡分析的结果表明,当外加电压为1.0V时,其能量产生与净能量产生分别达到了(3.93±0.48)kWhkg~(-1)、(3.80±0.48)kWhkg~(-1),较AD组(2.92±0.37)kWhkg~(-1)分别增加了(1.01±0.12)kWhkg~(-1)、(0.88±0.12)kWhkg~(-1),且MEC均获得了较AD组更多的净能量.综上表明该MEC可有效促进黄水处理效率并回收甲烷,其最佳外加电压为0.8V.  相似文献   

3.
连续流微生物电解池能有效应用于污水处理中,为了解不同有机负荷率(OLR)对单室微生物电解池(MEC)性能的影响,采用连续流方式,以生活污水为基质,研究恒定外加电压0.6 V、不同OLR(810、920、1 080、1 484、1 680、2 531、2 780 mg L~(-1) d~(-1))情形下化学需氧量(COD)去除率、甲烷(CH4)产率及能耗等.结果表明,随着OLR增加,COD去除率和能量消耗呈降低趋势,而CH4产率呈增加趋势.实验初期,外加电压为0.6 V,进水COD浓度为200 mg/L,MEC对COD去除率达到70%,而厌氧消化(AD)只能达到41%,此时MEC中CH4含量为8.39%,而AD只有6.44%.实验过程中,外加电压为0.6 V,OLR为2 780 mg L~(-1) d~(-1)时,CH4产率达到了(126.72±0.30)m L L~(-1) d~(-1),而能量消耗为(0.032 0±0.0052)k W h/kg COD.菌群高通量分析结果显示,MEC阳极碳毡的优势菌群为Methanothrix sp.和Geobacter sp.,其丰度分别为39.05%和21.83%,而AD组相应丰度只占2.00%和11.76%.综上,MEC可以在低能耗下有效处理低浓度生活污水并同步产CH4,这为生活污水处理提供了新的思路.  相似文献   

4.
为进一步提高有机废水的厌氧处理效率,同时实现能源物质的回收,采用微生物电解池并结合连续流工艺处理有机废水并同步回收甲烷,系统地研究不同水力停留时间、有机负荷、外加电压对微生物电解池内基质浓度的降解、甲烷生产速率等方面的影响.结果表明,在同一有机负荷下,随着外加电压(0.6 V,1.0 V,1.2 V)的升高,微生物电解池COD的去除效率和甲烷生产率也同时提高.在进水COD浓度为1 178 mg L-1、水力停留时间为8 h、外加电压为1.2V的条件下,其COD去除率、甲烷浓度、甲烷产生速率分别为97.7%、96%、1 071 m L L-1 d-1,较普通厌氧发酵(对照组)分别提高了31.5%、13.6%、123%;当进水COD浓度为4 812 mg L-1、水力停留时间为20 h、外加电压为1.2 V时,甲烷的产生速率达1 888 m L L-1 d-1,达理论产率的98.0%,而此条件下对照组甲烷产生速率仅为理论值的64.9%.说明连续流微生物电解池能够明显提高有机废水的处理效率,并实现处理过程中稳定回收甲烷的目的.高通量分析结果显示:微生物电解池阳极碳毡优势菌群为methanogens与Geobacter sp.,其丰度分别占总菌群的53.3%和7.5%,而对照组碳毡相应丰度仅为25.2%和0.7%.此外,研究发现有机负荷与电解池能量的消耗呈负相关,当外加电压为0.6 V时,有机负荷由3.5 kg m-3d-1提升至5.7 kg m-3d-1时,电解池能量消耗降低了79.3%.据此认为,通过优化水力停留时间和外加电压来处理有机废水并同步生产甲烷是可行的.  相似文献   

5.
以鸡粪、农村餐厨垃圾、奶酪乳清、玉米秸秆和牧草5种农业废弃物为底物,采用批式方式研究其厌氧消化产气潜力和动力学特性。结果表明,不同VS含量(w分别为2%、3%、4%和5%)条件下,各底物(以VS计)最大产甲烷潜力由高到低依次为奶酪乳清、农村餐厨垃圾、玉米秸秆、牧草和鸡粪,最大累积甲烷产量分别为1 270. 9(5%)、1 113. 6(5%)、646. 7(2%)、645. 0(2%)和364. 7 mL·g~(-1)(4%)。修正的Gompertz模型与各底物单独厌氧消化结果拟合度高(R2=0. 961~0. 990),其预测结果可用于评价鸡粪与其他底物厌氧共消化的可行性。基于修正的Gompertz模型预测结果,以鸡粪为主要发酵底物,通过与奶酪乳清、玉米秸秆和牧草进行多底物混合优化C/N,可有效降低鸡粪厌氧消化产甲烷延滞期并提高产甲烷潜力,甲烷产量可提高52. 2%~112. 9%。鸡粪与奶酪乳清混合比例为50∶50(C/N为28. 02)时,系统产甲烷潜力最高。  相似文献   

6.
基于超声联合热碱破解污泥最佳工艺参数,对预处理污泥进行半连续式中温厌氧消化研究。结果表明,预处理污泥日产甲烷量是原泥的1. 94倍,达234 mL·d~(-1)。运用修正的冈珀兹模型进行累计甲烷产量动力学分析,发现预处理污泥和原泥累计产甲烷曲线与修正的冈珀兹模型拟合系数R2分别达0. 998和0. 993。预处理污泥的动力学参数如下:最大累计产气量达5 376. 4 mL,最大产甲烷速率达394. 8 mL·d~(-1),细菌产甲烷的延迟时间为2. 8 d。预处理污泥的甲烷转化率为82. 17%。从有机物浓度变化来看,厌氧消化期间预处理污泥溶解性化学需氧量、溶解性蛋白质和多糖浓度均远高于原泥,最大值分别是原泥的2. 09、3. 94和3. 95倍。预处理污泥在预处理阶段和厌氧消化阶段的总悬浮物和挥发性悬浮物去除率分别达54. 9%和61. 8%。超声联合热碱预处理不仅能促进污泥有机质破解,还能提高破解有机质的生物可利用性,极大改善污泥厌氧消化效率。  相似文献   

7.
产氢细菌是厌氧发酵过程中重要的功能微生物.将分离自纤维素降解产甲烷复合菌系FSC的产氢细菌FSC-15回补至复合菌系,通过监测氢气产量、甲烷产量、脂肪酸浓度及秸秆降解效率,探究产氢细菌对水稻秸秆水解产甲烷代谢及微生物群落结构的影响.结果显示:添加菌株FSC-15使FSC中纤维素、半纤维素和木质素降解率分别提高了17.33%、28.61%和47.21%,对复合菌系FSC中秸秆降解效率有一定促进作用.培养第3天,氢气产量相比复合菌系FSC提高了41.18%,为产甲烷菌提供更充足的底物,使甲烷产量提高1倍.高通量测序结果显示,Ruminococcaceae和Methanobacteriaceae分别是水稻秸秆厌氧发酵产甲烷体系中水解纤维素和产甲烷的主要类群,Methanobacteriaceae是厌氧发酵体系挥发酸含量较高时产甲烷的主要物种,补加产氢细菌FSC-15对厌氧降解纤维素产甲烷菌系中的细菌群落结构无明显影响,但可以改变古菌的物种多样性及丰度.本研究证明向水稻秸秆厌氧发酵体系补加功能微生物能有效提高体系甲烷产量,可为调控水稻秸秆厌氧消化技术提供理论支撑.  相似文献   

8.
挥发性脂肪酸(volatile fatty acid,VFA)降解是厌氧消化的限速步骤,其产甲烷效率取决于微生物的种间电子传递能力.种间直接电子传递(direct interspecies electron transfer,DIET)克服了种间氢/甲酸电子转移的热力学限制,可加速VFA降解产甲烷过程.基于微生物利用自身结构(如纳米导线、细胞色素c及其他蛋白组分等)进行DIET的原理,综述了外源添加导电材料对VFA厌氧消化产甲烷过程中DIET的强化效果及作用机制.碳材料和铁材料均能有效提高厌氧消化体系的甲烷产率,并缩短VFA的降解时间;碳材料通过替代纳米导线或富集具有DIET能力的微生物(如地杆菌)来实现DIET的强化.但不同类型铁材料的DIET强化机制存在着差异:磁铁矿的作用包括替代细胞色素c、诱导与DIET相关蛋白质的表达以及富集DIET微生物等;赤铁矿和针铁矿也可富集DIET微生物,此外赤铁矿还可促进细胞聚集体的形成及稳定,使DIET的进行更加有利.未来应进一步探究地杆菌以外微生物的DIET能力及作用机制,并优化导电材料强化厌氧消化产甲烷的工艺,以加速有机废弃物的高效资源化处理进程.(图2表3参59)  相似文献   

9.
餐厨垃圾厌氧消化是一种可回收再生能源的生物处理技术,目前运行中主要存在系统稳定性差和效率低等问题,添加碳基材料能够提高餐厨垃圾厌氧消化效率并对系统运行产生积极影响.从甲烷产生和微生物群落变化两方面,综述碳基材料(生物炭、活性炭、碳布等)作为添加剂对餐厨垃圾厌氧消化系统的影响.其主要影响机理为(1)厌氧消化系统稳定性;(2)种间直接电子传递(DIET);(3)微生物群落.已有研究表明,碳基材料可促进餐厨垃圾厌氧消化产甲烷效率,提升甲烷产量1.1%-1 685%,缩短产甲烷迟滞期27.5%-95.7%.此外,碳基材料添加会引起厌氧消化系统中细菌和古菌群落结构变化,碳基材料通过选择性地富集功能微生物,促进微生物间互营代谢,进而影响系统稳定性和产甲烷效率.提出未来在餐厨垃圾厌氧消化的研究中,应着重关注碳基材料在连续运行系统中的分离与回收方法,优化不同厌氧消化条件下碳基材料的添加策略,通过代谢组学分析探究碳基材料对厌氧消化体系中微生物的作用机制.(图2表2参92)  相似文献   

10.
近年来研究发现互营氧化产甲烷过程中存在种间直接电子传递(direct interspecies electron transfer,DIET),这种电子传递方式比传统的种间氢转移或种间甲酸转移更为高效。导电生物炭作为导电介质,可以有效促进DIET介导的互营产甲烷进程。乙酸作为有机物厌氧降解的重要中间产物,其降解过程是否存在DIET途径尚不清楚,导电生物炭对乙酸互营降解产甲烷过程的影响机制也未有研究报道。以具有DIET功能的Geobacter sulfurreducens和Methanosarcina barkeri菌株为研究对象,构建共培养体系,以乙酸为电子供体,比较添加不同导电性生物炭共培养体系的甲烷产生和微生物生长情况。结果表明:(1)导电性生物炭处理的产甲烷速率为0.015~0.017 mmol?d~(-1),显著高于对照处理的0.012 mmol?d~(-1);而不导电生物炭处理的产甲烷速率低于对照处理。说明导电性生物炭促进共培养体系中的产甲烷过程,而不具导电性的生物炭没有促进效应;(2)导电性生物炭存在时,共培养体系的甲烷产生速率(0.008 mmol?d~(-1))和产量(0.14 mmol)明显高于Methanosarcina barkeri单菌体系的产甲烷速率(0.006 mmol?d~(-1))和产甲烷量(0.09 mmol),而添加不导电生物炭的共培养体系和单菌体系的甲烷产生速率和产量无明显差异。以上结果表明,导电性生物炭能介导Geobacter sulfurreducens和Methanosarcina barkeri之间的直接电子传递,即Geobacter sulfurreducens氧化乙酸产生的电子,以导电生物炭为导电通道直接传递至Methanosarcina barkeri还原CO2产生甲烷,从而促进乙酸互营氧化产甲烷过程。本研究结果有助于我们理解种间直接电子传递对互营产甲烷过程的贡献及影响效应,为研究甲烷产生的微生物机制提供新的研究思路。  相似文献   

11.
为探求不同形态水葫芦和污泥联合厌氧消化产沼气性能,在中温35±1℃条件下,设置了2个不同的TS浓度(TS=6%和8%),采用不同形态的水葫芦(水葫芦段、水葫芦浆、水葫芦渣、水葫芦粉和水葫芦汁)与污泥进行联合厌氧消化实验.结果表明,水葫芦和污泥联合厌氧消化的累积产甲烷量均高于对照组;添加水葫芦处理的累积产甲烷量从大到小依次为水葫芦渣水葫芦浆水葫芦段水葫芦粉水葫芦汁,水葫芦渣处理的累积产甲烷量比水葫芦汁提高62.5%(TS=6%)和84.5%(TS=8%);系统TS浓度为8%时,各处理的TS甲烷产率均高于TS浓度为6%的结果,且水葫芦渣和污泥联合厌氧消化的产甲烷性能最好,表明水葫芦的压滤和粉碎有助于提高厌氧消化的产甲烷潜力.  相似文献   

12.
四环素类抗生素和铜复合污染对猪粪厌氧消化的影响   总被引:1,自引:0,他引:1  
兽用抗生素和矿物元素添加剂可起到预防动物疾病、促进动物生长、提高饲料转化率等作用,因此被广泛应用于畜禽养殖业。本研究以猪粪中温厌氧消化为研究目标,采用全自动甲烷潜势测试系统,考察了一定浓度的四环素(TC:30 mg·kg~(-1)dry weight,DW)、土霉素(OTC:50 mg·kg~(-1)DW)和金霉素(CTC:15 mg·kg~(-1)DW)对厌氧累积产甲烷量和日产甲烷速率的影响。结果表明,TC、OTC和CTC对猪粪中温厌氧消化累积产甲烷量和日产甲烷速率均有促进作用(累积产甲烷总量提高比例分别为7.9%、0.4%和5.4%)。另外,采用超高效液相色谱-四极杆串联质谱对猪粪厌氧消化前后样品中四环素类抗生素及其代谢产物进行了分析。结果表明,液相中的四环素类抗生素在猪粪厌氧消化过程中得到了明显的去除,去除率达到90%~100%;而固相中只有金霉素和差向异构金霉素有明显的去除效果,去除率分别为41.69%和41.58%。采用Tessier连续提取法对猪粪厌氧消化前后样品中5种形态的铜包括可交换态、碳酸盐结合态、铁锰氧化结合态、有机物结合态、残渣态进行了分析,结果表明,猪粪厌氧消化后,可交换态、碳酸盐结合态和铁锰结合态的铜浓度比厌氧消化前分别降低了1%~9%、0.1%~3%、12%~19%,而有机态和残渣态的铜浓度却在厌氧消化后分别增加了15%~35%、1%~2%。厌氧消化后,70%~80%的铜都是以有机铜的形态存在。铜逐渐从不稳定态转化为相对稳定的有机态和残渣态铜,因此,厌氧消化过程使铜从可生物利用态转变为不可生物利用态,趋于稳定化。  相似文献   

13.
以热水解后高含固污泥及其脱水后固、液分离产物为对象进行厌氧消化试验,通过生物化学甲烷势(BMP)及脱水性能测定,研究其产气量、有机物分布、污泥脱水性能及生物质能转化特性,评估高含固污泥热水解-脱水-脱水液厌氧消化工艺的可行性.结果表明,经热水解预处理的高含固污泥进行厌氧消化后,其毛细吸收时间(CST)及脱水泥饼含水率由247.5±0.9 s和71.1%±1.3%上升至568.0±1.6 s和80.7%±1.0%,即厌氧消化会导致热水解后污泥脱水性能下降.污泥中74.0%的有机物在水热预处理之后被转移至液相,是厌氧消化所产沼气的主要来源.物质能量衡算结果表明,高含固污泥采用热水解-脱水-脱水液厌氧消化工艺可以有效地将消化装置容积大大减少;沼气燃烧所产能量实现该工艺能量自给自足.  相似文献   

14.
以蔬菜废弃物为原料的厌氧消化过程产甲烷能力下降时,通过添加微量元素可使其恢复稳定状态,因此研究微量元素对厌氧消化系统微生物结构的影响对优化系统性能具有重要意义.采用70 L厌氧发酵罐,有效体积59.5 L,在中温35℃条件下进行蔬菜废弃物厌氧消化的连续冲击负荷试验,根据CH_4含量变化规律,及时添加微量元素(Fe、Co、Ni)促进厌氧消化过程.样品采用16SrRNA基因扩增和MiSeq测序技术分析微生物群落的结构.结果表明,微量元素对细菌群落的影响主要作用于拟杆菌门、厚壁菌门及螺旋菌门.在属水平上,第一次微量元素的添加诱导了拟杆菌门中的VadinBC27 wastewater-sludge的增加,相对丰度从54.1%升至68%,降低了厚壁菌门中Erysipelotrichaceae UGG-004以及螺旋菌门中Sphaerochaeta.第二次微量元素的添加,主要降低了螺旋菌门中的Sphaerochaeta,相对丰度从11.4%到4.4%,以及诱导拟杆菌门中Bacteroides的产生,提高了原料利用率,降低了酸化的抑制作用.微量元素对蔬菜废弃物厌氧消化过程中产甲烷菌群落的影响主要在甲基营养型Candidatus Methanoplasma、甲烷鬃菌属为主导的乙酸营养型.当挥发性脂肪酸含量较高时,Candidatus Methanoplasma占主导地位,微量元素添加后则会诱导甲烷鬃菌为主导的乙酸营养型甲烷菌的产生,相对丰度从2.3%增至80%促进挥发性脂肪酸的消耗转化.本研究表明,微量元素的添加对于微生物群落结构的改变显著,促进厌氧消化过程水解酸化与甲烷化的平衡,从而稳定运行.  相似文献   

15.
甲烷产生过程是湿地生态系统中最活跃的生物地球化学进程之一,岩溶湿地是一类具有典型岩溶地区水文特征和重要环境影响的特殊内陆淡水湿地.为了解岩溶湿地产甲烷菌的类型及其在碳循环中的贡献,综合运用分子生物学、微生物学和地球化学的方法对桂林会仙岩溶湿地沉积物中产甲烷菌的数量、群落组成、活性以及相关的环境因子进行研究.分析15-35 cm沉积物中甲基辅酶M还原酶基因mcr A的数量、种类以及与环境因子之间的关系,发现mcr A基因的拷贝数为106~(-1)07,主要来自5类产甲烷古菌目,分别是甲烷微菌目(Methanomicrobiales)、甲烷八叠球菌目(Methanosarcinales)、甲烷胞菌目(Methanocellales)、甲烷杆菌目(Methanobacteriales)以及一类尚未鉴定的产甲烷古菌,这些序列中有一半的序列与已知Mcr A蛋白序列相似度在95%以下,并且mcr A基因的多样性和数量分布主要受到有机碳和硫酸盐含量的影响.在产甲烷活性方面,沉积物的乙酸型产甲烷速率为1 024(±447)pmol g~(~(-1)) d~(-1),氢型产甲烷量约为650(±155)pmol g~(~(-1)) d~(-1).上述结果表明,会仙岩溶湿地具有同普通淡水湿地类似的产甲烷菌群落组成和较高的产甲烷潜力,并且该环境中可能蕴藏着许多尚未被研究的微生物资源.  相似文献   

16.
谷类秸秆接种瘤胃液的厌氧消化性能和三维荧光光谱特征   总被引:1,自引:0,他引:1  
在全自动甲烷潜力测试系统中,以瘤胃液为接种物,研究了谷类秸秆(水稻、小麦和高粱)的产酸产甲烷性能和三维荧光光谱特征。结果表明,奶牛瘤胃微生物对谷类秸秆表现出很强的水解酸化能力。经过5 d厌氧消化,水稻、小麦和高粱秸秆单位质量挥发性固体(VS)的总挥发性脂肪酸(TVFAs)产率分别达410. 9、430. 9和472. 0 mg·g-1。谷类秸秆的产甲烷规律符合改进型Gompertz模型。经过55 d的厌氧消化,水稻、小麦和高粱秸秆(以VS计)的甲烷产量分别为66. 29、103. 79和76. 89 m L·g-1。通过三维荧光光谱耦合平行因子分析(PARAFAC)识别溶解性有机物的3个有效荧光组分,3个组分分别为酪氨酸类物质、色氨酸类物质和低分子量腐殖酸类物质。其中,色氨酸类物质的荧光强度与TVFAs浓度呈幂函数关系。谷类秸秆溶解性有机物的腐殖化指数(HIX)经过5 d厌氧消化后降低,而后呈现逐渐上升趋势。  相似文献   

17.
重庆主城餐厨垃圾理化性质及产甲烷潜能分析   总被引:3,自引:0,他引:3  
何琴  李蕾  何清明  彭绪亚 《环境化学》2014,(12):2191-2197
以重庆市主城区的餐厨垃圾为研究对象,调查分析其组成成分及粒径、含水率、挥发性固体(VS)含量等理化性质,并通过半连续式单相厌氧消化试验,进一步研究餐厨垃圾在中温条件下37±2℃的产甲烷性能.结果表明,重庆市主城区餐厨垃圾的主要成分为食物残渣、厨余废物等易消化物质,并具有含水率、含油率和VS含量较高等特性;半连续式厌氧消化试验所得实际产甲烷潜能为0.363—0.713 L CH4·g-1VS,占理论产甲烷潜能的45.77%—89.93%,稳定运行时VS去除率达到88.87%—93.85%.中温厌氧消化技术能有效地处理重庆市餐厨垃圾并同时从中高效地回收清洁能源沼气.  相似文献   

18.
偏电压对Ti/TiO2光电催化氧化富里酸的影响   总被引:5,自引:0,他引:5  
采用光电催化反应器对水中天然有机物富里酸(FA)进行降解试验,考察了外加阳极偏电压对光电催化反应器降解富里酸的影响.结果表明,当外加电压为1.2V时,具有最佳的UV254和有机碳TOC去除率,当反应时间为2h时,富里酸的UV254和总有机碳TOC的去除率分别为77.4%和45.4%.另外,在反应初期(前1h内)富里酸光电催化反应动力学常数主要受外加偏电压的影响.  相似文献   

19.
厌氧消化是实现有机废弃物资源化最有效的技术之一,实现形式是产生生物沼气.作为一种清洁能源,生物沼气可以有效减少化石燃料的使用,进而减少温室气体的排放.产甲烷古菌位于厌氧发酵链末端,是生物沼气主要成分甲烷的直接生产者.在厌氧消化系统中,产甲烷古菌与发酵链前端微生物以及各种天然和人工电子传递体存在着活跃的电子互营过程,对于维持厌氧消化系统的稳定性和改善生物沼气的生成效率具有重要作用.本文综述近年来报道的在强化厌氧消化过程中常用的铁基与碳基电子传递体与产甲烷古菌的相互作用机制,着重介绍两类电子传递体通过自身氧化还原反应或物理性质与产甲烷古菌细胞膜上的氢酶和细胞色素c进行电子互营的微观作用机理,分析两类电子传递体通过参与胞外电子传递过程与产甲烷古菌能量代谢可能存在的耦合机制,其中乙酸型产甲烷古菌基于电子歧化传递在进行胞外三价铁呼吸过程中存储能量,从而增强产甲烷代谢,改变了目前对甲烷生成的生化和生态学理解,极大推进了产甲烷古菌与胞外电子传递体相互作用的研究.产甲烷古菌胞外电子传递路径的不清晰和其细胞膜上蛋白功能的不确定是制约产甲烷古菌与电子传递体相互作用机制研究的重要因素.因此提出利用快速发展的...  相似文献   

20.
污泥蛋白质回收已成为剩余污泥资源化的有效途径之一,研究其提取残液的产甲烷强化技术不仅可助力剩余污泥蛋白质提取技术的应用进程,也可为化工、食品行业高硫酸根和高碳氮比废水的厌氧生物处理提供有益参考.结果表明,铁及其螯合物添加不仅可有效促进水解酸化与产甲烷过程关键酶的活性,还可显著抑制亚硫酸盐还原酶的活性,产气效果得到明显提高.当添加10μmol·L~(-1)氨三乙酸与40 mg·L~(-1)零价铁时,累积产气率达196.2 m L·g-1COD,与对照实验相比,提高了123.97%.多糖是含硫酸根的高碳氮比废水产甲烷的主要底物.结合关键酶活性的变化发现,与酸化过程相比,多糖与蛋白质水解是提高产甲烷效果的限速步骤.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号